1
|
Maruyama Y, Yoshida N. RISMiCal: A software package to perform fast RISM/3D-RISM calculations. J Comput Chem 2024; 45:1470-1482. [PMID: 38472097 DOI: 10.1002/jcc.27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Solvent plays an essential role in a variety of chemical, physical, and biological processes that occur in the solution phase. The reference interaction site model (RISM) and its three-dimensional extension (3D-RISM) serve as powerful computational tools for modeling solvation effects in chemical reactions, biological functions, and structure formations. We present the RISM integrated calculator (RISMiCal) program package, which is based on RISM and 3D-RISM theories with fast GPU code. RISMiCal has been developed as an integrated RISM/3D-RISM program that has interfaces with external programs such as Gaussian16, GAMESS, and Tinker. Fast 3D-RISM programs for single- and multi-GPU codes written in CUDA would enhance the availability of these hybrid methods because they require the performance of many computationally expensive 3D-RISM calculations. We expect that our package can be widely applied for chemical and biological processes in solvent. The RISMiCal package is available at https://rismical-dev.github.io.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
2
|
Cao S, Kalin ML, Huang X. EPISOL: A software package with expanded functions to perform 3D-RISM calculations for the solvation of chemical and biological molecules. J Comput Chem 2023; 44:1536-1549. [PMID: 36856731 DOI: 10.1002/jcc.27088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/24/2022] [Accepted: 01/29/2023] [Indexed: 03/02/2023]
Abstract
Integral equation theory (IET) provides an effective solvation model for chemical and biological systems that balances computational efficiency and accuracy. We present a new software package, the expanded package for IET-based solvation (EPISOL), that performs 3D-reference interaction site model (3D-RISM) calculations to obtain the solvation structure and free energies of solute molecules in different solvents. In EPISOL, we have implemented 22 different closures, multiple free energy functionals, and new variations of 3D-RISM theory, including the recent hydrophobicity-induced density inhomogeneity (HI) theory for hydrophobic solutes and ion-dipole correction (IDC) theory for negatively charged solutes. To speed up the convergence and enhance the stability of the self-consistent iterations, we have introduced several numerical schemes in EPISOL, including a newly developed dynamic mixing approach. We show that these schemes have significantly reduced the failure rate of 3D-RISM calculations compared to AMBER-RISM software. EPISOL consists of both a user-friendly graphic interface and a kernel library that allows users to call its routines and adapt them to other programs. EPISOL is compatible with the force-field and coordinate files from both AMBER and GROMACS simulation packages. Moreover, EPISOL is equipped with an internal memory control to efficiently manage the use of physical memory, making it suitable for performing calculations on large biomolecules. We demonstrate that EPISOL can efficiently and accurately calculate solvation density distributions around various solute molecules (including a protein chaperone consisting of 120,715 atoms) and obtain solvent free energy for a wide range of organic compounds. We expect that EPISOL can be widely applied as a solvation model for chemical and biological systems. EPISOL is available at https://github.com/EPISOLrelease/EPISOL.
Collapse
Affiliation(s)
- Siqin Cao
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael L Kalin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Cao S, Qiu Y, Unarta IC, Goonetilleke EC, Huang X. The Ion-Dipole Correction of the 3DRISM Solvation Model to Accurately Compute Water Distributions around Negatively Charged Biomolecules. J Phys Chem B 2022; 126:8632-8645. [PMID: 36282904 DOI: 10.1021/acs.jpcb.2c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The 3D reference interaction site model (3DRISM) provides an efficient grid-based solvation model to compute the structural and thermodynamic properties of biomolecules in aqueous solutions. However, it remains challenging for existing 3DRISM methods to correctly predict water distributions around negatively charged solute molecules. In this paper, we first show that this challenge is mainly due to the orientation of water molecules in the first solvation shell of the negatively charged solute molecules. To properly consider this orientational preference, position-dependent two-body intramolecular correlations of solvent need to be included in the 3DRISM theory, but direct evaluations of these position-dependent two-body intramolecular correlations remain numerically intractable. To address this challenge, we introduce the Ion-Dipole Correction (IDC) to the 3DRISM theory, in which we incorporate the orientation preference of water molecules via an additional solute-solvent interaction term (i.e., the ion-dipole interaction) while keeping the formulism of the 3DRISM equation unchanged. We prove that this newly introduced IDC term is equivalent to an effective direct correlation function which can effectively consider the orientation effect that arises from position dependent two-body correlations. We first quantitatively validate our 3DRISM-IDC theory combined with the PSE3 closure on Cl-, [ClO]- (a two-site anion), and [NO2]- (a three-site anion). For all three anions, we show that our 3DRISM-IDC theory significantly outperforms the 3DRISM theory in accurately predicting the solvation structures in comparison to MD simulations, including RDFs and 3D water distributions. Furthermore, we have also demonstrated that the 3DRISM-IDC can improve the accuracy of hydration free-energy calculation for Cl-. We further demonstrate that our 3DRISM-IDC theory yields significant improvements over the 3DRISM theory when applied to compute the solvation structures for various negatively charged solute molecules, including adenosine triphosphate (ATP), a short peptide containing 19 residues, a DNA hairpin containing 24 nucleotides, and a riboswitch RNA molecule with 77 nucleotides. We expect that our 3DRISM-IDC-PSE3 solvation model holds great promise to be widely applied to study solvation properties for nucleic acids and other biomolecules containing negatively charged functional groups.
Collapse
Affiliation(s)
- Siqin Cao
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Yunrui Qiu
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Ilona C Unarta
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Eshani C Goonetilleke
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| | - Xuhui Huang
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States
| |
Collapse
|
4
|
Sugita M, Onishi I, Irisa M, Yoshida N, Hirata F. Molecular Recognition and Self-Organization in Life Phenomena Studied by a Statistical Mechanics of Molecular Liquids, the RISM/3D-RISM Theory. Molecules 2021; 26:E271. [PMID: 33430461 PMCID: PMC7826681 DOI: 10.3390/molecules26020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
There are two molecular processes that are essential for living bodies to maintain their life: the molecular recognition, and the self-organization or self-assembly. Binding of a substrate by an enzyme is an example of the molecular recognition, while the protein folding is a good example of the self-organization process. The two processes are further governed by the other two physicochemical processes: solvation and the structural fluctuation. In the present article, the studies concerning the two molecular processes carried out by Hirata and his coworkers, based on the statistical mechanics of molecular liquids or the RISM/3D-RISM theory, are reviewed.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1, Ookayama Meguro-ku, Tokyo 152-8550, Japan;
| | - Itaru Onishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Masayuki Irisa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; (I.O.); (M.I.)
| | - Norio Yoshida
- Department of Chemistry, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan;
| | - Fumio Hirata
- Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
5
|
Öztürk A, Yıldız A, Yılmaz H, Ergenekon P, Özkan M. Organic solute rejection capacities of Escherichia coli and Halomonas elongata aquaporin-incorporated nanofiltration membranes. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1641521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ayşenur Öztürk
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ayşen Yıldız
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hilal Yılmaz
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Pınar Ergenekon
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Melek Özkan
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
6
|
Hu X, Maffucci I, Contini A. Advances in the Treatment of Explicit Water Molecules in Docking and Binding Free Energy Calculations. Curr Med Chem 2020; 26:7598-7622. [DOI: 10.2174/0929867325666180514110824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
Background:
The inclusion of direct effects mediated by water during the ligandreceptor
recognition is a hot-topic of modern computational chemistry applied to drug discovery
and development. Docking or virtual screening with explicit hydration is still debatable,
despite the successful cases that have been presented in the last years. Indeed, how to select
the water molecules that will be included in the docking process or how the included waters
should be treated remain open questions.
Objective:
In this review, we will discuss some of the most recent methods that can be used in
computational drug discovery and drug development when the effect of a single water, or of a
small network of interacting waters, needs to be explicitly considered.
Results:
Here, we analyse the software to aid the selection, or to predict the position, of water
molecules that are going to be explicitly considered in later docking studies. We also present
software and protocols able to efficiently treat flexible water molecules during docking, including
examples of applications. Finally, we discuss methods based on molecular dynamics
simulations that can be used to integrate docking studies or to reliably and efficiently compute
binding energies of ligands in presence of interfacial or bridging water molecules.
Conclusions:
Software applications aiding the design of new drugs that exploit water molecules,
either as displaceable residues or as bridges to the receptor, are constantly being developed.
Although further validation is needed, workflows that explicitly consider water will
probably become a standard for computational drug discovery soon.
Collapse
Affiliation(s)
- Xiao Hu
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Via Venezian, 21 20133 Milano, Italy
| | - Irene Maffucci
- Pasteur, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
| | - Alessandro Contini
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Via Venezian, 21 20133 Milano, Italy
| |
Collapse
|
7
|
Temperature-dependent viscosity dominated transport control through AQP1 water channel. J Theor Biol 2019; 480:92-98. [PMID: 31400345 DOI: 10.1016/j.jtbi.2019.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
Abstract
We give a supplementary explanation for previous results about the exclusion of proton as well as hydronium (ion) transport through aquaporins (AQP1) via verified transition state theory by calculating the temperature-dependent viscosity for proton or hydronium (ion) transport through AQP1. We will demonstrate the temperature-dependent viscosity dominated transport control in AQP1 via the selected activation energy as well as the activation volume considering the presumed wavy-roughness along the sub-nano domains. Our numerical results show that once proton or hydronium (ion) transport through AQP1 at room temperature behaves like a molecular fluid with a relatively high viscosity, such as pitch, then proton or hydronium (ion) transport through AQP1 will be blocked (like a solid). Otherwise, proton or hydronium (ion) transport through AQP1 at room temperature manifests like a molecular fluid with a correspondingly lower viscosity, such as water (H2O), and then exclusion of proton or hydronium (ion) through AQP1 will not occur. We also demonstrate possible size effect in blocking proton or hydronium (ion) transport through AQP1. Our predicted results are new and novel as there are no temperature-dependent viscosity measurements relevant to AQP1 yet.
Collapse
|
8
|
Maruyama Y. Correction terms for the solvation free energy functional of three-dimensional reference interaction site model based on the reference-modified density functional theory. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Performance of Kobryn-Gusarov-Kovalenko closure from a thermodynamic viewpoint for one-component Lennard-Jones fluids. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Correction of Kovalenko-Hirata closure in Ornstein-Zernike integral equation theory for Lennard-Jones fluids. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Miyata T. A Parameterization of Empirical Sigma Enlarging Bridge Correction of Kovalenko-Hirata Closure in Ornstein-Zernike Theory for Lennard-Jones Fluids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tatsuhiko Miyata
- Department of Physics, Ehime University, 2-5 Bunkyo-Cho, Matsuyama, Ehime 790-8577
| |
Collapse
|
12
|
Sugita M, Hirata F. Predicting the binding free energy of the inclusion process of 2-hydroxypropyl-β-cyclodextrin and small molecules by means of the MM/3D-RISM method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:384002. [PMID: 27452185 DOI: 10.1088/0953-8984/28/38/384002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A protocol to calculate the binding free energy of a host-guest system is proposed based on the MM/3D-RISM method, taking cyclodextrin derivatives and their ligands as model systems. The protocol involves the procedure to identify the most probable binding mode (MPBM) of receptors and ligands by means of the umbrella sampling method. The binding free energies calculated by the MM/3D-RISM method for the complexes of the seven ligands with the MPBM of the cyclodextrin, and with the fluctuated structures around it, are in agreement with the corresponding experimental data in a semi-quantitative manner. It suggests that the protocol proposed here is promising for predicting the binding affinity of a small ligand to a relatively rigid receptor such as cyclodextrin.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | |
Collapse
|
13
|
Omelyan I, Kovalenko A. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation. J Chem Theory Comput 2016; 11:1875-95. [PMID: 26574393 DOI: 10.1021/ct5010438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 μs observed in experiment.
Collapse
Affiliation(s)
- Igor Omelyan
- Department of Mechanical Engineering, University of Alberta , Mechanical Engineering Building 4-9, Edmonton, Alberta T6G 2G8, Canada.,National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.,Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine , 1 Svientsitskii Street, Lviv 79011, Ukraine
| | - Andriy Kovalenko
- Department of Mechanical Engineering, University of Alberta , Mechanical Engineering Building 4-9, Edmonton, Alberta T6G 2G8, Canada.,National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
14
|
Miyata T, Ebato Y. Thermodynamic significance to correct the location of first rising region in radial distribution function approximately estimated from Ornstein–Zernike integral equation theory for Lennard–Jones fluids. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Phanich J, Rungrotmongkol T, Sindhikara D, Phongphanphanee S, Yoshida N, Hirata F, Kungwan N, Hannongbua S. A 3D-RISM/RISM study of the oseltamivir binding efficiency with the wild-type and resistance-associated mutant forms of the viral influenza B neuraminidase. Protein Sci 2015; 25:147-58. [PMID: 26044768 DOI: 10.1002/pro.2718] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/09/2022]
Abstract
The binding affinity of oseltamivir to the influenza B neuraminidase and to its variants with three single substitutions, E119G, R152K, and D198N, is investigated by the MM/3D-RISM method. The binding affinity or the binding free energy of ligand to receptor was found to be determined by a subtle balance of two major contributions that largely cancel out each other: the ligand-receptor interactions and the dehydration free energy. The theoretical results of the binding affinity of the drug to the mutants reproduced the observed trend in the resistivity, measured by IC50 ; the high-level resistance of E119G and R152K, and the low-level resistance of D198N. For E119G and R152K, reduction of the direct drug-target interaction, especially at the mutated residue, is the main source of high-level oseltamivir resistance. This phenomenon, however, is not found in the D198N strain, which is located in the framework of the active-site.
Collapse
Affiliation(s)
- Jiraphorn Phanich
- Department of Chemistry, Computational Chemistry Unit Cell, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Daniel Sindhikara
- Schrödinger, Inc, 120 West 45th Street, 17th Floor, New York, New York, 10036
| | - Saree Phongphanphanee
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Fumio Hirata
- College of Life Sciences, Ritsumeikan University, and Molecular Design Frontier Co. Ltd, Kusatsu, 525-8577, Japan
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Department of Chemistry, Computational Chemistry Unit Cell, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
16
|
Ratkova EL, Palmer DS, Fedorov MV. Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem Rev 2015; 115:6312-56. [PMID: 26073187 DOI: 10.1021/cr5000283] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ekaterina L Ratkova
- †G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia.,‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany
| | - David S Palmer
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,§Department of Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, United Kingdom
| | - Maxim V Fedorov
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,∥Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
17
|
Yesudas JP, Blinov N, Dew SK, Kovalenko A. Calculation of binding free energy of short double stranded oligonucleotides using MM/3D-RISM-KH approach. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Distinct configurations of cations and water in the selectivity filter of the KcsA potassium channel probed by 3D-RISM theory. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Water-mediated forces between the nucleotide binding domains generate the power stroke in an ABC transporter. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Kovalenko A. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1757-899x/64/1/012040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Yoshida N. Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method. J Chem Phys 2014; 140:214118. [DOI: 10.1063/1.4879795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Miyata T, Thapa J. Accuracy of solvation free energy calculated by hypernetted chain and Kovalenko–Hirata approximations for two-component system of Lennard-Jones liquid. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Phongphanphanee S, Yoshida N, Oiki S, Hirata F. Probing “ambivalent” snug-fit sites in the KcsA potassium channel using three-dimensional reference interaction site model (3D-RISM) theory. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The potassium channel is highly selective for K+ over Na+, and the mechanism underlying this selectivity remains unclear. We show the three-dimensional distribution functions (3D-DFs) of small cations (Li+, Na+, and K+) and the free energy profile of ions inside the open selectivity filter (SF) of the KcsA channel. Our previous results [S. Phongphanphanee, N. Yoshida, S. Oiki, F. Hirata. Abstract Book of 5th International Symposium on Molecular Science of Fluctuations toward Biological Functions, P062 (2012)] indicate that the 3D-DF for K+ exhibits distinct peaks at the sites formed by the eight carbonyl oxygen atoms belonging to the surrounding peptide-backbone and residues (the cage site). Li+ has sharp distributions in the 3D-DF at the center of a quadruplex composed of four carbonyl oxygen atoms (the plane site). Na+ has a rather diffuse distribution throughout the SF region with peaks both in the plane and in cage sites. The results provide microscopic evidence of the phenomenological findings that Li+ and Na+ are not excluded from the SF region and that the binding affinity alone does not cause the ion selectivity of KcsA. In the present study, with an ion placed explicitly along the pore axis, the free energy profiles of the ions inside the SF were calculated; from these profiles we suggest a new mechanism for selective K+ permeation. According to the model, a K+ ion must overcome a free energy barrier that is approximately half that of Na+ to exit from either of the SF mouths due to the existence of an intermediate local minimum along the route for climbing the barriers.
Collapse
|
24
|
Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. J Am Chem Soc 2013; 135:19048-51. [PMID: 24274712 DOI: 10.1021/ja405634k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient conversion of lignocellulosic biomass to second-generation biofuels and valuable chemicals requires decomposition of resilient plant cell wall structure. Cell wall recalcitrance varies among plant species and even phenotypes, depending on the chemical composition of the noncellulosic matrix. Changing the amount and composition of branches attached to the hemicellulose backbone can significantly alter the cell wall strength and microstructure. We address the effect of hemicellulose composition on primary cell wall assembly forces by using the 3D-RISM-KH molecular theory of solvation, which provides statistical-mechanical sampling and molecular picture of hemicellulose arrangement around cellulose. We show that hemicellulose branches of arabinose, glucuronic acid, and especially glucuronate strengthen the primary cell wall by strongly coordinating to hydrogen bond donor sites on the cellulose surface. We reveal molecular forces maintaining the cell wall structure and provide directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing.
Collapse
Affiliation(s)
- Rodrigo L Silveira
- National Institute for Nanotechnology , 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | | | | | | | | |
Collapse
|
25
|
Maruyama Y, Hirata F. Modified Anderson Method for Accelerating 3D-RISM Calculations Using Graphics Processing Unit. J Chem Theory Comput 2012; 8:3015-21. [PMID: 26605714 DOI: 10.1021/ct300355r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A fast algorithm is proposed to solve the three-dimensional reference interaction site model (3D-RISM) theory on a graphics processing unit (GPU). 3D-RISM theory is a powerful tool for investigating biomolecular processes in solution; however, such calculations are often both memory-intensive and time-consuming. We sought to accelerate these calculations using GPUs, but to work around the problem of limited memory size in GPUs, we modified the less memory-intensive "Anderson method" to give faster convergence to 3D-RISM calculations. Using this method on a Tesla C2070 GPU, we reduced the total computational time by a factor of 8, 1.4 times by the modified Andersen method and 5.7 times by GPU, compared to calculations on an Intel Xeon machine (eight cores, 3.33 GHz) with the conventional method.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Fumio Hirata
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
26
|
Population shift between the open and closed states changes the water permeability of an Aquaporin Z mutant. Biophys J 2012; 103:212-8. [PMID: 22853898 DOI: 10.1016/j.bpj.2012.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/27/2012] [Accepted: 05/30/2012] [Indexed: 11/21/2022] Open
Abstract
Aquaporins are tetrameric transmembrane channels permeable to water and other small solutes. Wild-type (WT) and mutant Aquaporin Z (AqpZ) have been widely studied and multiple factors have been found to affect their water permeability. In this study, molecular dynamics simulations have been performed for the tetrameric AqpZ F43W/H174G/T183F mutant. It displayed ∼10% average water permeability compared to WT AqpZ, which had been attributed to the increased channel lumen hydrophobicity. Our simulations, however, show a ring stacking between W43 and F183 acting as a secondary steric gate in the triple mutant with R189 as the primary steric gate in both mutant and WT AqpZ. The double gates (R189 and W43-F183) result in a high population of the closed conformation in the mutant. Occasionally an open state, with diffusive water permeability very close to that of WT AqpZ, was observed. Taken together, our results show that the double-gate mechanism is sufficient to explain the reduced water permeability in the mutant without invoking effects arising from increased hydrophobicity of the channel lumen. Our findings provide insights into how aquaporin-mediated water transport can be modulated and may further point to how aquaporin function can be optimized for biomimetic membrane applications.
Collapse
|
27
|
Sindhikara DJ, Yoshida N, Kataoka M, Hirata F. Solvent penetration in photoactive yellow protein R52Q mutant: A theoretical study. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2011.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Kiyota Y, Yoshida N, Hirata F. A New Approach for Investigating the Molecular Recognition of Protein: Toward Structure-Based Drug Design Based on the 3D-RISM Theory. J Chem Theory Comput 2011; 7:3803-15. [PMID: 26598271 DOI: 10.1021/ct200358h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new approach to investigate a molecular recognition process of protein is presented based on the three-dimensional reference interaction site model (3D-RISM) theory, a statistical mechanics theory of molecular liquids. Numerical procedure for solving the conventional 3D-RISM equation consists of two steps. In step 1, we solve ordinary RISM (or 1D-RISM) equations for a solvent mixture including target ligands in order to obtain the density pair correlation functions (PCF) among molecules in the solution. Then, we solve the 3D-RISM equation for a solute-solvent system to find three-dimensional density distribution functions (3D-DDF) of solvent species around a protein, using PCF obtained in the first step. A key to the success of the method was to regard a target ligand as one of "solvent" species. However, the success is limited due to a difficulty of solving the 1D-RISM equation for a solvent mixture, including large ligand molecules. In the present paper, we propose a method which eases the limitation concerning solute size in the conventional method. In this approach, we solve a solute-solute 3D-RISM equations for a protein-ligand system in which both proteins and ligands are regarded as "solutes" at infinite dilution. The 3D- and 1D-RISM equations are solved for protein-solvent and ligand-solvent systems, respectively, in order to obtain the 3D- and 1D-DDF of solvent around the solutes, which are required for solving the solute-solute 3D-RISM equation. The method is applied to two practical and noteworthy examples concerning pharmaceutical design. One is an odorant binding protein in the Drosophila melanogaster , which binds an ethanol molecule. The other is phospholipase A2, which is known as a receptor of acetylsalicylic acid or aspirin. The result indicates that the method successfully reproduces the binding mode of the ligand molecules in the binding sites measured by the experiments.
Collapse
Affiliation(s)
- Yasuomi Kiyota
- Department of Theoretical Molecular Science, Institute for Molecular Science , Okazaki 444-8585, Japan
| | - Norio Yoshida
- Department of Theoretical Molecular Science, Institute for Molecular Science , Okazaki 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies , Okazaki 444-8585, Japan
| | - Fumio Hirata
- Department of Theoretical Molecular Science, Institute for Molecular Science , Okazaki 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies , Okazaki 444-8585, Japan
| |
Collapse
|
29
|
Howard JJ, Pettitt BM. Integral equations in the study of polar and ionic interaction site fluids. JOURNAL OF STATISTICAL PHYSICS 2011; 145:441-466. [PMID: 22383857 PMCID: PMC3286808 DOI: 10.1007/s10955-011-0260-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this review article we consider some of the current integral equation approaches and application to model polar liquid mixtures. We consider the use of multidimensional integral equations and in particular progress on the theory and applications of three dimensional integral equations. The IEs we consider may be derived from equilibrium statistical mechanical expressions incorporating a classical Hamiltonian description of the system. We give example including salt solutions, inhomogeneous solutions and systems including proteins and nucleic acids.
Collapse
Affiliation(s)
- Jesse J Howard
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003
| | | |
Collapse
|
30
|
Yoshida N, Kiyota Y, Phongphanphanee S, Maruyama Y, Imai T, Hirata F. Statistical mechanics theory of molecular recognition and pharmaceutical design. INT REV PHYS CHEM 2011. [DOI: 10.1080/0144235x.2011.648755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Zhao S, Jin Z, Wu J. New theoretical method for rapid prediction of solvation free energy in water. J Phys Chem B 2011; 115:6971-5. [PMID: 21557595 PMCID: PMC3125112 DOI: 10.1021/jp201949k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a new theoretical method for rapid calculation of the solvation free energy in water by combining molecular simulation and the classical density functional theory (DFT). The DFT calculation is based on an accurate free-energy functional for water that incorporates the simulation results for long-range correlations and the fundamental measure theory for the molecular excluded-volume effects. The numerical performance of the theoretical method has been validated with simulation results and experimental data for the solvation free energies of halide (F(-), Cl(-), Br(-), and I(-)) and alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) ions in water at ambient conditions. Because simulation is applied only to the particular thermodynamic condition of interest, the hybrid method is computationally much more efficient than conventional ways of solvation free energy calculations.
Collapse
Affiliation(s)
- Shuangliang Zhao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521
| | - Zhehui Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521
| |
Collapse
|
32
|
Frolov AI, Ratkova EL, Palmer DS, Fedorov MV. Hydration Thermodynamics Using the Reference Interaction Site Model: Speed or Accuracy? J Phys Chem B 2011; 115:6011-22. [DOI: 10.1021/jp111271c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Andrey I. Frolov
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
| | - Ekaterina L. Ratkova
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
| | - David S. Palmer
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
| | - Maxim V. Fedorov
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
| |
Collapse
|
33
|
Maruyama Y, Matsushita T, Ueoka R, Hirata F. Solvent and Salt Effects on Structural Stability of Human Telomere. J Phys Chem B 2011; 115:2408-16. [DOI: 10.1021/jp1096019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yutaka Maruyama
- Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Taku Matsushita
- Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Ryuichi Ueoka
- Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Fumio Hirata
- Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
34
|
Yoshida N, Kiyota Y, Hirata F. The electronic-structure theory of a large-molecular system in solution: Application to the intercalation of proflavine with solvated DNA. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2010.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Miyata T, Ikuta Y, Hirata F. Free energy calculation using molecular dynamics simulation combined with the three-dimensional reference interaction site model theory. II. Thermodynamic integration along a spatial reaction coordinate. J Chem Phys 2011; 134:044127. [DOI: 10.1063/1.3532078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
36
|
Miyata T, Ikuta Y, Hirata F. Free energy calculation using molecular dynamics simulation combined with the three dimensional reference interaction site model theory. I. Free energy perturbation and thermodynamic integration along a coupling parameter. J Chem Phys 2010; 133:044114. [PMID: 20687640 DOI: 10.1063/1.3462276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article proposes a free energy calculation method based on the molecular dynamics simulation combined with the three dimensional reference interaction site model theory. This study employs the free energy perturbation (FEP) and the thermodynamic integration (TDI) along the coupling parameters to control the interaction potential. To illustrate the method, we applied it to a complex formation process in aqueous solutions between a crown ether molecule 18-Crown-6 (18C6) and a potassium ion as one of the simplest model systems. Two coupling parameters were introduced to switch the Lennard-Jones potential and the Coulomb potential separately. We tested two coupling procedures: one is a "sequential-coupling" to couple the Lennard-Jones interaction followed by the Coulomb coupling, and the other is a "mixed-coupling" to couple both the Lennard-Jones and the Coulomb interactions together as much as possible. The sequential-coupling both for FEP and TDI turned out to be accurate and easily handled since it was numerically well-behaved. Furthermore, it was found that the sequential-coupling had relatively small statistical errors. TDI along the mixed-coupling integral path was to be carried out carefully, paying attention to a numerical behavior of the integrand. The present model system exhibited a nonmonotonic behavior in the integrands for TDI along the mixed-coupling integral path and also showed a relatively large statistical error. A coincidence within a statistical error was obtained among the results of the free energy differences evaluated by FEP, TDI with the sequential-coupling, and TDI with the mixed-coupling. The last one is most attractive in terms of the computer power and is accurate enough if one uses a proper set of windows, taking the numerical behavior of the integrands into account. TDI along the sequential-coupling integral path would be the most convenient among the methods we tested, since it seemed to be well-balanced between the computational load and the accuracy. The numerical results reported in this article qualitatively agree with the experimental data for the potassium ion recognition by the 18C6 in aqueous solution.
Collapse
Affiliation(s)
- Tatsuhiko Miyata
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | | | |
Collapse
|
37
|
Phongphanphanee S, Rungrotmongkol T, Yoshida N, Hannongbua S, Hirata F. Proton Transport through the Influenza A M2 Channel: Three-Dimensional Reference Interaction Site Model Study. J Am Chem Soc 2010; 132:9782-8. [DOI: 10.1021/ja1027293] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Saree Phongphanphanee
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Thanyada Rungrotmongkol
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Norio Yoshida
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Supot Hannongbua
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Fumio Hirata
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, Center of Innovative Nanotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
38
|
Phongphanphanee S, Yoshida N, Hirata F. Molecular Selectivity in Aquaporin Channels Studied by the 3D- RISM Theory. J Phys Chem B 2010; 114:7967-73. [DOI: 10.1021/jp101936y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saree Phongphanphanee
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Japan, 444-8585, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki, Japan, 444-8585
| | - Norio Yoshida
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Japan, 444-8585, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki, Japan, 444-8585
| | - Fumio Hirata
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Japan, 444-8585, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki, Japan, 444-8585
| |
Collapse
|
39
|
Maruyama Y, Yoshida N, Hirata F. Revisiting the Salt-Induced Conformational Change of DNA with 3D-RISM Theory. J Phys Chem B 2010; 114:6464-71. [DOI: 10.1021/jp912141u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yutaka Maruyama
- Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Norio Yoshida
- Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Fumio Hirata
- Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
40
|
Yui T, Shiiba H, Tsutsumi Y, Hayashi S, Miyata T, Hirata F. Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Ialpha crystal model. J Phys Chem B 2010; 114:49-58. [PMID: 19928978 DOI: 10.1021/jp908249r] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A computer docking study has been carried out on the crystal surfaces of cellulose Ialpha crystal models for the carbohydrate binding module (CBM) protein of the cellobiohydrolase Cel7A produced by Trichoderma reesei. Binding free energy maps between the CBM and the crystal surface were obtained by calculating the noncovalent interactions and the solvation free energy at grid points covering the area of the unit cell dimensions at the crystal surface. The potential maps obtained from grid searches of the hydrophobic (110) crystal surface exhibited two distinct potential wells. These reflected the 2-fold helical symmetry of the cellulose chain and had lower binding energies at the minimum positions than those for the hydrophilic (100) and (010) crystal surfaces. The CBM-cellulose crystal complex models derived from the minimum positions were then subjected to molecular dynamics (MD) simulation under an explicit solvent system. The (110) complex models exhibited larger affinities at the interface than the (100) and (010) ones. The CBM was more stably bound to the (110) surface when it was placed in an antiparallel orientation with respect to the cellulose fiber axis. In the solvated dynamics state, the curved (110) surface resulting from the fiber twist somewhat assisted a complementary fit with the CBM at the interface. In addition to the conventional Generalized Born (GB) method, the three-dimensional reference interaction site model (3D-RISM) theory was adopted to assess a solvent effect for the solvated MD trajectories. Large exothermic values for the noncovalent interactions appeared correlated to and were mostly compensated by endothermic values for the solvation free energy. These gave total binding free energies of -13 to -28 kcal/mol. Results also suggested that the hydrogen bonding scheme was not essential for substrate specificity.
Collapse
Affiliation(s)
- Toshifumi Yui
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen Kibanadai, Miyazaki 889-2192, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Phongphanphanee S, Yoshida N, Hirata F. The potential of mean force of water and ions in aquaporin channels investigated by the 3D-RISM method. J Mol Liq 2009. [DOI: 10.1016/j.molliq.2008.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Yokogawa D, Sato H, Sakaki S. The position of water molecules in Bacteriorhodopsin: A three-dimensional distribution function study. J Mol Liq 2009. [DOI: 10.1016/j.molliq.2008.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F. Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B 2009; 113:873-86. [PMID: 19105732 DOI: 10.1021/jp807068k] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent progress in the theory of molecular recognition in biomolecules is reviewed, which has been made based on the statistical mechanics of liquids or the RISM/3D-RISM theory during the last five years in the authors' group. The method requires just the structure of protein and the potential energy parameters for the biomolecules and solutions as inputs. The calculation is carried out in two steps. The first step is to obtain the pair correlation functions for solutions consisting of water and ligands based on the RISM theory. Then, given the pair correlation functions prepared in the first step, we calculate the 3D-distribution functions of water and ligands around and inside protein based on the 3D-RISM theory. The molecular recognition of a ligand by the protein is realized by the 3D-distribution functions: if one finds some conspicuous peaks in the distribution of a ligand inside protein, then the ligand is regarded as "recognized" by the protein. Some biochemical processes are investigated, which are intimately related to the molecular recognition of small ligands including water, noble gases, and ions by a protein.
Collapse
Affiliation(s)
- Norio Yoshida
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
44
|
Kiyota Y, Hiraoka R, Yoshida N, Maruyama Y, Imai T, Hirata F. Theoretical Study of CO Escaping Pathway in Myoglobin with the 3D-RISM Theory. J Am Chem Soc 2009; 131:3852-3. [DOI: 10.1021/ja900332e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuomi Kiyota
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Ryusuke Hiraoka
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Norio Yoshida
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yutaka Maruyama
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takashi Imai
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Fumio Hirata
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu 525-8577, Japan, Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan, and Computational Science Research Program, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
45
|
Howard JJ, Perkyns JS, Choudhury N, Pettitt BM. An Integral Equation Study of the Hydrophobic Interaction between Graphene Plates. J Chem Theory Comput 2008; 4:1928-1939. [PMID: 19262740 DOI: 10.1021/ct8002817] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrophobic association of two parallel graphene sheets is studied using the 3D-RISM HNC integral equations with several theoretical methods for the solvent distribution functions. The potential of mean force is calculated to study the effects of the aqueous solvent models and methods on the plates as a function of distance. The results of several integral equations (IE) are compared to MD simulations for the same model. The 3D-IEs are able to qualitatively reproduce the nature of the solvent effects on the potential of mean force but not quantitatively. The local minima in the potential of mean force occur at distances allowing well defined layers of solvent between the plates but are not coincident with those found in simulation of the same potential regardless of the theoretical methods tested here. The dewetting or drying transition between the plates is generally incorrectly dependent on steric effects with these methods even for very hydrophobic systems without solute-solvent attractions, in contradiction with simulation.
Collapse
Affiliation(s)
- Jesse J Howard
- Department of Chemistry, University of Houston Houston, Texas 77204-5003
| | | | | | | |
Collapse
|