1
|
Sanchez-Ruiz JM, Ibarra-Molero B. Folding Free Energy Surfaces from Differential Scanning Calorimetry. Methods Mol Biol 2022; 2376:105-116. [PMID: 34845605 DOI: 10.1007/978-1-0716-1716-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein folding/unfolding processes involve a large number of weak, non-covalent interactions and are more appropriately described in terms of the movement of a point representing protein conformation in a plot of internal free energy versus conformational degrees of freedom. While these energy landscapes have an astronomically large number of dimensions, it has been shown that many relevant aspects of protein folding can be understood in terms of their projections onto a few relevant coordinates. Remarkably, such low-dimensional free energy surfaces can be obtained from experimental DSC data using suitable analytical models. Here, we describe the experimental procedures to be used to obtain the high-quality DSC data that are required for free-energy surface analysis.
Collapse
Affiliation(s)
- Jose M Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Quimica Fisica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Granada, Spain
| | - Beatriz Ibarra-Molero
- Facultad de Ciencias, Departamento de Quimica Fisica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Granada, Spain.
| |
Collapse
|
2
|
Campos LA, Sadqi M, Muñoz V. Lessons about Protein Folding and Binding from Archetypal Folds. Acc Chem Res 2020; 53:2180-2188. [PMID: 32914959 DOI: 10.1021/acs.accounts.0c00322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The function of proteins as biological nanomachines relies on their ability to fold into complex 3D structures, bind selectively to partners, and undergo conformational changes on cue. The native functional structures, and the rates of interconversion between conformational states (folded-unfolded, bound-free), are all encoded in the physical chemistry of their amino acid sequence. However, despite extensive research over decades, this code has proven difficult to fully crack, in terms of both prediction and understanding the molecular mechanisms at play.Earlier work on single-domain proteins reported a commonality of slow rates (10-2-102 s-1) and simple behavior in both kinetic and thermodynamic unfolding experiments, which suggested the process was all-or-none and thereby analogous to a chemical reaction (e.g., A ⇄ B). In the absence of a first-principles pre-exponential factor for protein (un)folding dynamics, the rates could only be interpreted in relative terms, e.g., the changes induced by mutation, and hence, neither the height of nor the entropic contribution to the free energy barriers was known. The rates were also many orders of magnitude too slow for direct atomistic simulations, and the computational focus was on predicting rate changes induced by mutation via coarse grained simulations. However, even the effects of mutation proved to be strikingly homogeneous with all experimental data clustering at ∼1/3 of the free energy perturbation recovered on folding and ∼2/3 on unfolding.The implementation of ultrafast kinetic methods turned the field upside down because they allowed researchers to measure the time scales of elementary (un)folding motions, which set the pre-exponential factor for protein conformational transitions at ∼1 μs. In parallel, we and others set out to investigate the simplest possible protein structures capable of autonomous folding, which we defined as archetypal folds. The rationale was to recapitulate the hierarchical organization of protein structure, starting from the bottom up. The study of fold archetypes ended up opening new research avenues in protein (un)folding, but also making unexpected connections with the folding upon binding of intrinsically disordered proteins and suggesting their functioning as conformational rheostats.This Account describes our work on the kinetic, thermodynamic, mechanistic, and functional analysis of fold archetypes. We first discuss the kinetic studies, emphasizing their impact on our understanding of (un)folding rates, of barrierless (downhill) folding, and as benchmarks for atomistic simulations. We continue with the thermodynamic analysis, introducing the differential scanning calorimetry, multiprobe, and NMR approaches that we developed to dissect their gradual, minimally cooperative (un)folding transitions and to probe the underlying mechanisms with unprecedented detail. The last two sections cover single-molecule analyses and some recent, mostly computational, results on the exploration of possible biological and technological roles for the gradual conformational transitions of fold archetypes.
Collapse
Affiliation(s)
- Luis Alberto Campos
- Centro Nacional de Biotecnologı́a (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnologı́a IMDEA Nanociencia-CNB, 28049 Madrid, Spain
| | - Mourad Sadqi
- Department of Bioengineering, University of California, Merced, California 95343, United States
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California 95343, United States
| | - Victor Muñoz
- Department of Bioengineering, University of California, Merced, California 95343, United States
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California 95343, United States
- IMDEA Nanociencia, Ciudad Universitaria Cantoblanco, Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
3
|
Subramanian S, Golla H, Divakar K, Kannan A, de Sancho D, Naganathan AN. Slow Folding of a Helical Protein: Large Barriers, Strong Internal Friction, or a Shallow, Bumpy Landscape? J Phys Chem B 2020; 124:8973-8983. [PMID: 32955882 PMCID: PMC7659034 DOI: 10.1021/acs.jpcb.0c05976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The rate at which a protein molecule
folds is determined by opposing
energetic and entropic contributions to the free energy that shape
the folding landscape. Delineating the extent to which they impact
the diffusional barrier-crossing events, including the magnitude of
internal friction and barrier height, has largely been a challenging
task. In this work, we extract the underlying thermodynamic and dynamic
contributions to the folding rate of an unusually slow-folding helical
DNA-binding domain, PurR, which shares the characteristics of ultrafast
downhill-folding proteins but nonetheless appears to exhibit an apparent
two-state equilibrium. We combine equilibrium spectroscopy, temperature-viscosity-dependent
kinetics, statistical mechanical modeling, and coarse-grained simulations
to show that the conformational behavior of PurR is highly heterogeneous
characterized by a large spread in melting temperatures, marginal
thermodynamic barriers, and populated partially structured states.
PurR appears to be at the threshold of disorder arising from frustrated
electrostatics and weak packing that in turn slows down folding due
to a shallow, bumpy landscape and not due to large thermodynamic barriers
or strong internal friction. Our work highlights how a strong temperature
dependence on the pre-exponential could signal a shallow landscape
and not necessarily a slow-folding diffusion coefficient, thus determining
the folding timescales of even millisecond folding proteins and hints
at possible structural origins for the shallow landscape.
Collapse
Affiliation(s)
- Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Hemashree Golla
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalivarathan Divakar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia-San Sebastián 20080, Spain.,Donostia International Physics Center (DIPC), PK 1072, Donostia-San Sebastián 20080, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Downhill, Ultrafast and Fast Folding Proteins Revised. Int J Mol Sci 2020; 21:ijms21207632. [PMID: 33076540 PMCID: PMC7589632 DOI: 10.3390/ijms21207632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Research on the protein folding problem differentiates the protein folding process with respect to the duration of this process. The current structure encoded in sequence dogma seems to be clearly justified, especially in the case of proteins referred to as fast-folding, ultra-fast-folding or downhill. In the present work, an attempt to determine the characteristics of this group of proteins using fuzzy oil drop model is undertaken. According to the fuzzy oil drop model, a protein is a specific micelle composed of bi-polar molecules such as amino acids. Protein folding is regarded as a spherical micelle formation process. The presence of covalent peptide bonds between amino acids eliminates the possibility of free mutual arrangement of neighbors. An example would be the construction of co-micelles composed of more than one type of bipolar molecules. In the case of fast folding proteins, the amino acid sequence represents the optimal bipolarity system to generate a spherical micelle. In order to achieve the native form, it is enough to have an external force field provided by the water environment which directs the folding process towards the generation of a centric hydrophobic core. The influence of the external field can be expressed using the 3D Gaussian function which is a mathematical model of the folding process orientation towards the concentration of hydrophobic residues in the center with polar residues exposed on the surface. The set of proteins under study reveals a hydrophobicity distribution compatible with a 3D Gaussian distribution, taken as representing an idealized micelle-like distribution. The structure of the present hydrophobic core is also discussed in relation to the distribution of hydrophobic residues in a partially unfolded form.
Collapse
|
5
|
Bhattacharjee K, Gopi S, Naganathan AN. A Disordered Loop Mediates Heterogeneous Unfolding of an Ordered Protein by Altering the Native Ensemble. J Phys Chem Lett 2020; 11:6749-6756. [PMID: 32787218 DOI: 10.1021/acs.jpclett.0c01848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high flexibility of long disordered or partially structured loops in folded proteins allows for entropic stabilization of native ensembles. Destabilization of such loops could alter the native ensemble or promote alternate conformations within the native ensemble if the ordered regions themselves are held together weakly. This is particularly true of downhill folding systems that exhibit weak unfolding cooperativity. Here, we combine experimental and computational methods to probe the response of the native ensemble of a helical, downhill folding domain PDD, which harbors an 11-residue partially structured loop, to perturbations. Statistical mechanical modeling points to continuous structural changes on both temperature and mutational perturbations driven by entropic stabilization of partially structured conformations within the native ensemble. Long time-scale simulations of the wild-type protein and two mutants showcase a remarkable conformational switching behavior wherein the parallel helices in the wild-type protein sample an antiparallel orientation in the mutants, with the C-terminal helix and the loop connecting the helices displaying high flexibility, disorder, and non-native interactions. We validate these computational predictions via the anomalous fluorescence of a native tyrosine located at the interface of the helices. Our observations highlight the role of long loops in determining the unfolding mechanisms, sensitivity of the native ensembles to mutational perturbations and provide experimentally testable predictions that can be explored in even two-state folding systems.
Collapse
Affiliation(s)
- Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
Ultrafast folding kinetics of WW domains reveal how the amino acid sequence determines the speed limit to protein folding. Proc Natl Acad Sci U S A 2019; 116:8137-8142. [PMID: 30967507 DOI: 10.1073/pnas.1900203116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein (un)folding rates depend on the free-energy barrier separating the native and unfolded states and a prefactor term, which sets the timescale for crossing such barrier or folding speed limit. Because extricating these two factors is usually unfeasible, it has been common to assume a constant prefactor and assign all rate variability to the barrier. However, theory and simulations postulate a protein-specific prefactor that contains key mechanistic information. Here, we exploit the special properties of fast-folding proteins to experimentally resolve the folding rate prefactor and investigate how much it varies among structural homologs. We measure the ultrafast (un)folding kinetics of five natural WW domains using nanosecond laser-induced temperature jumps. All five WW domains fold in microseconds, but with a 10-fold difference between fastest and slowest. Interestingly, they all produce biphasic kinetics in which the slower phase corresponds to reequilibration over the small barrier (<3 RT) and the faster phase to the downhill relaxation of the minor population residing at the barrier top [transition state ensemble (TSE)]. The fast rate recapitulates the 10-fold range, demonstrating that the folding speed limit of even the simplest all-β fold strongly depends on the amino acid sequence. Given this fold's simplicity, the most plausible source for such prefactor differences is the presence of nonnative interactions that stabilize the TSE but need to break up before folding resumes. Our results confirm long-standing theoretical predictions and bring into focus the rate prefactor as an essential element for understanding the mechanisms of folding.
Collapse
|
7
|
Narayan A, Naganathan AN. Switching Protein Conformational Substates by Protonation and Mutation. J Phys Chem B 2018; 122:11039-11047. [PMID: 30048131 DOI: 10.1021/acs.jpcb.8b05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein modules that regulate the availability and conformational status of transcription factors determine the rapidity, duration, and magnitude of cellular response to changing conditions. One such system is the single-gene product Cnu, a four-helix bundle transcription co-repressor, which acts as a molecular thermosensor regulating the expression of virulence genes in enterobacteriaceae through modulation of its native conformational ensemble. Cnu and related genes have also been implicated in pH-dependent expression of virulence genes. We hypothesize that protonation of a conserved buried histidine (H45) in Cnu promotes large electrostatic frustration, thus disturbing the H-NS, a transcription factor, binding face. Spectroscopic and calorimetric methods reveal that H45 exhibits a suppressed p Ka of ∼5.1, the protonation of which switches the conformation to an alternate native ensemble in which the fourth helix is disordered. The population redistribution can also be achieved through a mutation H45V, which does not display any switching behavior at pH values greater than 4. The Wako-Saitô-Muñoz-Eaton (WSME) statistical mechanical model predicts specific differences in the conformations and fluctuations of the fourth and first helices of Cnu determining the observed pH response. We validate these predictions through fluorescence lifetime measurements of a sole tryptophan, highlighting the presence of both native and non-native interactions in the regions adjoining the binding face of Cnu. Our combined experimental-computational study thus shows that Cnu acts both as a thermo- and pH-sensor orchestrated via a subtle but quantifiable balance between the weak packing of a structural element and protonation of a buried histidine that promotes electrostatic frustration.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
8
|
Iglesias-Bexiga M, Szczepaniak M, Sánchez de Medina C, Cobos ES, Godoy-Ruiz R, Martinez JC, Muñoz V, Luque I. Protein Folding Cooperativity and Thermodynamic Barriers of the Simplest β-Sheet Fold: A Survey of WW Domains. J Phys Chem B 2018; 122:11058-11071. [PMID: 29985628 DOI: 10.1021/acs.jpcb.8b05198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theory and experiments have shown that microsecond folding proteins exhibit characteristic thermodynamic properties that reflect the limited cooperativity of folding over marginal barriers (downhill folding). Those studies have mostly focused on proteins with large α-helical contents and small size, which tend to be the fastest folders. A key open question is whether such properties are also present in the fastest all-β proteins. We address this issue by investigating the unfolding thermodynamics of a collection of WW domains as representatives of the simplest β-sheet fold. WW domains are small microsecond folders, although they do not fold as fast as their α-helical counterparts. In previous work on the NEDD4-WW4 domain, we reported deviations from two-state thermodynamics that were less apparent and thus suggestive of an incipient downhill scenario. Here we investigate the unfolding thermodynamics of four other WW domains (NEDD4-WW3, YAP65-WW1(L30K), FBP11-WW1, and FBP11-WW2) by performing all of the thermodynamic tests for downhill folding that have been previously developed on α-helical proteins. This set of five WW domains shares low sequence identity and include examples from two specificity classes, thus providing a comprehensive survey. Thermodynamic analysis of the four new WW domains consistently reveals all of the properties of downhill folding equilibria, which are in all cases more marked than what we found before in NEDD4-WW4. Our results show that fast-folding all-β proteins do share limited cooperativity and gradual unfolding thermodynamics with fast α-helical proteins and suggest that the free energy barrier to folding of natural proteins is mostly determined by size and fold topology and much less by the specific amino acid sequence.
Collapse
Affiliation(s)
- Manuel Iglesias-Bexiga
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| | - Malwina Szczepaniak
- Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC) , Darwin 3 , 28049 Madrid , Spain
| | - Celia Sánchez de Medina
- Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC) , Darwin 3 , 28049 Madrid , Spain
| | - Eva S Cobos
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| | - Raquel Godoy-Ruiz
- Department of Chemistry & Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Jose C Martinez
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| | - Victor Muñoz
- Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC) , Darwin 3 , 28049 Madrid , Spain.,Department of Bioengineering , University of California Merced , Merced , California 95343 , United States
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology , University of Granada , Granada 18010 , Spain
| |
Collapse
|
9
|
Malgieri G, D'Abrosca G, Pirone L, Toto A, Palmieri M, Russo L, Sciacca MFM, Tatè R, Sivo V, Baglivo I, Majewska R, Coletta M, Pedone PV, Isernia C, De Stefano M, Gianni S, Pedone EM, Milardi D, Fattorusso R. Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chem Sci 2018; 9:3290-3298. [PMID: 29780459 PMCID: PMC5933289 DOI: 10.1039/c8sc00166a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular determinants of fibrillogenesis by studying the aggregation propensities of high homologous proteins with different folding pathways.
Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153–149 and zinc-lacking Ml452–151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153–149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452–151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452–151 and Ml153–149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153–149 has formed only amorphous aggregates and Ml452–151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Angelo Toto
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | | | - Rosarita Tatè
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" , CNR , Via P. Castellino 111 , 80131 Napoli , Italy
| | - Valeria Sivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Roksana Majewska
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine , University of Rome "Tor Vergata" , Via Montpellier 1 , 00133 , Roma , Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Mario De Stefano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Stefano Gianni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging , CNR , Viale A. Doria 6 , 95125 Catania , Italy .
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| |
Collapse
|
10
|
When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Biochem J 2017; 473:2545-59. [PMID: 27574021 PMCID: PMC5003694 DOI: 10.1042/bcj20160107] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022]
Abstract
Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico. All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats.
Collapse
|
11
|
Sharma R, De Sancho D, Muñoz V. Interplay between the folding mechanism and binding modes in folding coupled to binding processes. Phys Chem Chem Phys 2017; 19:28512-28516. [DOI: 10.1039/c7cp04748g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins that fold upon binding to their partners exhibit complex binding behavior such as induced-fit. Using molecular simulations we find that the ability to bind via induced-fit requires the disordered protein to fold downhill. Thus induced-fit appears as a manifestation of a conformational rheostat.
Collapse
Affiliation(s)
- Rajendra Sharma
- National Biotechnology Center
- CSIC
- Madrid 28049
- Spain
- IMDEA Nanoscience
| | - David De Sancho
- IKERBASQUE
- Basque Foundation for Science
- Bilbao
- Spain
- CIC nanoGUNE
| | - Victor Muñoz
- National Biotechnology Center
- CSIC
- Madrid 28049
- Spain
- IMDEA Nanoscience
| |
Collapse
|
12
|
Gopi S, Singh A, Suresh S, Paul S, Ranu S, Naganathan AN. Toward a quantitative description of microscopic pathway heterogeneity in protein folding. Phys Chem Chem Phys 2017; 19:20891-20903. [DOI: 10.1039/c7cp03011h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimentally consistent statistical modeling of protein folding thermodynamics reveals unprecedented complexity with numerous parallel folding routes in five different proteins.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology
- Bhupat & Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Animesh Singh
- Department of Computer Science and Engineering
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | | | - Suvadip Paul
- Department of Computer Science and Engineering
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Sayan Ranu
- Department of Computer Science and Engineering
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Athi N. Naganathan
- Department of Biotechnology
- Bhupat & Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
13
|
Dogan J, Toto A, Andersson E, Gianni S, Jemth P. Activation Barrier-Limited Folding and Conformational Sampling of a Dynamic Protein Domain. Biochemistry 2016; 55:5289-95. [PMID: 27542287 DOI: 10.1021/acs.biochem.6b00573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Folding reaction mechanisms of globular protein domains have been extensively studied by both experiment and simulation and found to be highly concerted chemical reactions in which numerous noncovalent bonds form in an apparent two-state fashion. However, less is known regarding intrinsically disordered proteins because their folding can usually be studied only in conjunction with binding to a ligand. We have investigated by kinetics the folding mechanism of such a disordered protein domain, the nuclear coactivator-binding domain (NCBD) from CREB-binding protein. While a previous computational study suggested that NCBD folds without an activation free energy barrier, our experimental data demonstrate that NCBD, despite its highly dynamic structure, displays relatively slow folding (∼10 ms at 277 K) consistent with a barrier-limited process. Furthermore, the folding kinetics corroborate previous nuclear magnetic resonance data showing that NCBD exists in two folded conformations and one more denatured conformation at equilibrium and, thus, that the folding mechanism is a three-state mechanism. The refolding kinetics is limited by unfolding of the less populated folded conformation, suggesting that the major route for interconversion between the two folded states is via the denatured state. Because the two folded conformations have been suggested to bind distinct ligands, our results have mechanistic implications for conformational sampling in protein-protein interactions.
Collapse
Affiliation(s)
- Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University , BMC Box 582, SE-75123 Uppsala, Sweden
| | - Angelo Toto
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University , BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, University of Rome , 00185 Rome, Italy.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University , BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
14
|
Munshi S, Naganathan AN. Imprints of function on the folding landscape: functional role for an intermediate in a conserved eukaryotic binding protein. Phys Chem Chem Phys 2016; 17:11042-52. [PMID: 25824585 DOI: 10.1039/c4cp06102k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the computational characterization of single domain protein folding, the effective free energies of numerous microstates are projected onto few collective degrees of freedom that in turn serve as well-defined reaction coordinates. In this regard, one-dimensional (1D) free energy profiles are widely used mainly for their simplicity. Since folding and functional landscapes are interlinked, how well can these reduced representations capture the structural and dynamic features of functional states while being simultaneously consistent with experimental observables? We investigate this issue by characterizing the folding of the four-helix bundle bovine acyl-CoA binding protein (bACBP), which exhibits complex equilibrium and kinetic behaviours, employing an Ising-like statistical mechanical model and molecular simulations. We show that the features of the 1D free energy profile are sufficient to quantitatively reproduce multiple experimental observations including millisecond chevron-like kinetics and temperature dependence, a microsecond fast phase, barrier heights, unfolded state movements, the intermediate structure and average ϕ-values. Importantly, we find that the structural features of the native-like intermediate (partial disorder in helix 1) are intricately linked to a unique interplay between packing and electrostatics in this domain. By comparison with available experimental data, we propose that this intermediate determines the promiscuous functional behaviour of bACBP that exhibits broad substrate specificity. Our results present evidence to the possibility of employing the statistical mechanical model and the resulting 1D free energy profile to not just understand folding mechanisms but to even extract features of functionally relevant states and their energetic origins.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | | |
Collapse
|
15
|
Limited cooperativity in protein folding. Curr Opin Struct Biol 2016; 36:58-66. [DOI: 10.1016/j.sbi.2015.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023]
|
16
|
Ibarra-Molero B, Naganathan AN, Sanchez-Ruiz JM, Muñoz V. Modern Analysis of Protein Folding by Differential Scanning Calorimetry. Methods Enzymol 2016; 567:281-318. [DOI: 10.1016/bs.mie.2015.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Naganathan AN, De Sancho D. Bridging Experiments and Native-Centric Simulations of a Downhill Folding Protein. J Phys Chem B 2015; 119:14925-33. [DOI: 10.1021/acs.jpcb.5b09568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David De Sancho
- CIC nanoGUNE, Tolosa Hiribidea,
76, E-20018 Donostia-San
Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Sequence, structure, and cooperativity in folding of elementary protein structural motifs. Proc Natl Acad Sci U S A 2015. [PMID: 26216963 DOI: 10.1073/pnas.1506309112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Residue-level unfolding of two helix-turn-helix proteins--one naturally occurring and one de novo designed--is reconstructed from multiple sets of site-specific (13)C isotopically edited infrared (IR) and circular dichroism (CD) data using Ising-like statistical-mechanical models. Several model variants are parameterized to test the importance of sequence-specific interactions (approximated by Miyazawa-Jernigan statistical potentials), local structural flexibility (derived from the ensemble of NMR structures), interhelical hydrogen bonds, and native contacts separated by intervening disordered regions (through the Wako-Saitô-Muñoz-Eaton scheme, which disallows such configurations). The models are optimized by directly simulating experimental observables: CD ellipticity at 222 nm for model proteins and their fragments and (13)C-amide I' bands for multiple isotopologues of each protein. We find that data can be quantitatively reproduced by the model that allows two interacting segments flanking a disordered loop (double sequence approximation) and incorporates flexibility in the native contact maps, but neither sequence-specific interactions nor hydrogen bonds are required. The near-identical free energy profiles as a function of the global order parameter are consistent with expected similar folding kinetics for nearly identical structures. However, the predicted folding mechanism for the two motifs is different, reflecting the order of local stability. We introduce free energy profiles for "experimental" reaction coordinates--namely, the degree of local folding as sensed by site-specific (13)C-edited IR, which highlight folding heterogeneity and contrast its overall, average description with the detailed, local picture.
Collapse
|
19
|
Naganathan AN, Sanchez-Ruiz JM, Munshi S, Suresh S. Are Protein Folding Intermediates the Evolutionary Consequence of Functional Constraints? J Phys Chem B 2015; 119:1323-33. [DOI: 10.1021/jp510342m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Jose M. Sanchez-Ruiz
- Departamento de Quimica Fisica,
Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
20
|
Naganathan AN, Muñoz V. Thermodynamics of Downhill Folding: Multi-Probe Analysis of PDD, a Protein that Folds Over a Marginal Free Energy Barrier. J Phys Chem B 2014; 118:8982-94. [DOI: 10.1021/jp504261g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Athi N. Naganathan
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Victor Muñoz
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Centro Nacional
de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
21
|
Yasin UM, Sashi P, Bhuyan AK. Free Energy Landscape of Lysozyme: Multiple Near-Native Conformational States and Rollover in the Urea Dependence of Folding Energy. J Phys Chem B 2014; 118:6662-9. [DOI: 10.1021/jp501879s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- U. Mahammad Yasin
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Pulikallu Sashi
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Abani K. Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
22
|
Shao Q. Probing Sequence Dependence of Folding Pathway of α-Helix Bundle Proteins through Free Energy Landscape Analysis. J Phys Chem B 2014; 118:5891-900. [DOI: 10.1021/jp5043393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design
Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
23
|
A disorder-induced domino-like destabilization mechanism governs the folding and functional dynamics of the repeat protein IκBα. PLoS Comput Biol 2013; 9:e1003403. [PMID: 24367251 PMCID: PMC3868533 DOI: 10.1371/journal.pcbi.1003403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
The stability of the repeat protein IκBα, a transcriptional inhibitor in mammalian cells, is critical in the functioning of the NF-κB signaling module implicated in an array of cellular processes, including cell growth, disease, immunity and apoptosis. Structurally, IκBα is complex, with both ordered and disordered regions, thus posing a challenge to the available computational protocols to model its conformational behavior. Here, we introduce a simple procedure to model disorder in systems that undergo binding-induced folding that involves modulation of the contact map guided by equilibrium experimental observables in combination with an Ising-like Wako-Saitô-Muñoz-Eaton model. This one-step procedure alone is able to reproduce a variety of experimental observables, including ensemble thermodynamics (scanning calorimetry, pre-transitions, m-values) and kinetics (roll-over in chevron plot, intermediates and their identity), and is consistent with hydrogen-deuterium exchange measurements. We further capture the intricate distance-dynamics between the domains as measured by single-molecule FRET by combining the model predictions with simple polymer physics arguments. Our results reveal a unique mechanism at work in IκBα folding, wherein disorder in one domain initiates a domino-like effect partially destabilizing neighboring domains, thus highlighting the effect of symmetry-breaking at the level of primary sequences. The offshoot is a multi-state and a dynamic conformational landscape that is populated by increasingly partially folded ensembles upon destabilization. Our results provide, in a straightforward fashion, a rationale to the promiscuous binding and short intracellular half-life of IκBα evolutionarily engineered into it through repeats with variable stabilities and expand the functional repertoire of disordered regions in proteins.
Collapse
|
24
|
Cerminara M, Campos LA, Ramanathan R, Muñoz V. Slow proton transfer coupled to unfolding explains the puzzling results of single-molecule experiments on BBL, a paradigmatic downhill folding protein. PLoS One 2013; 8:e78044. [PMID: 24205082 PMCID: PMC3810382 DOI: 10.1371/journal.pone.0078044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
A battery of thermodynamic, kinetic, and structural approaches has indicated that the small α-helical protein BBL folds-unfolds via the one-state downhill scenario. Yet, single-molecule fluorescence spectroscopy offers a more conflicting view. Single-molecule experiments at pH 6 show a unique half-unfolded conformational ensemble at mid denaturation, whereas other experiments performed at higher pH show a bimodal distribution, as expected for two-state folding. Here we use thermodynamic and laser T-jump kinetic experiments combined with theoretical modeling to investigate the pH dependence of BBL stability, folding kinetics and mechanism within the pH 6-11 range. We find that BBL unfolding is tightly coupled to the protonation of one of its residues with an apparent pKa of ~ 7. Therefore, in chemical denaturation experiments around neutral pH BBL unfolds gradually, and also converts in binary fashion to the protonated species. Moreover, under the single-molecule experimental conditions (denaturant midpoint and 279 K), we observe that proton transfer is much slower than the ~ 15 microseconds folding-unfolding kinetics of BBL. The relaxation kinetics is distinctly biphasic, and the overall relaxation time (i.e. 0.2-0.5 ms) becomes controlled by the proton transfer step. We then show that a simple theoretical model of protein folding coupled to proton transfer explains quantitatively all these results as well as the two sets of single-molecule experiments, including their more puzzling features. Interestingly, this analysis suggests that BBL unfolds following a one-state downhill folding mechanism at all conditions. Accordingly, the source of the bimodal distributions observed during denaturation at pH 7-8 is the splitting of the unique conformational ensemble of BBL onto two slowly inter-converting protonation species. Both, the unprotonated and protonated species unfold gradually (one-state downhill), but they exhibit different degree of unfolding at any given condition because the native structure is less stable for the protonated form.
Collapse
Affiliation(s)
- Michele Cerminara
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- IMDEA-Nanociencia, Madrid, Spain
| | - Luis A. Campos
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- IMDEA-Nanociencia, Madrid, Spain
| | - Ravishankar Ramanathan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Victor Muñoz
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- IMDEA-Nanociencia, Madrid, Spain
- Department of Chemistry and Biochemistry, University of Maryland. College Park, Maryland, United States of America
| |
Collapse
|
25
|
Palmieri M, Malgieri G, Russo L, Baglivo I, Esposito S, Netti F, Del Gatto A, de Paola I, Zaccaro L, Pedone PV, Isernia C, Milardi D, Fattorusso R. Structural Zn(II) Implies a Switch from Fully Cooperative to Partly Downhill Folding in Highly Homologous Proteins. J Am Chem Soc 2013; 135:5220-8. [DOI: 10.1021/ja4009562] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maddalena Palmieri
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Luigi Russo
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Fortuna Netti
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Annarita Del Gatto
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Ivan de Paola
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134
Naples, Italy
| | - Paolo V. Pedone
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Carla Isernia
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging-CNR (Catania), Viale A. Doria 6, 95125
Catania, Italy
| | - Roberto Fattorusso
- Department of Environmental,
Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, 81100
Caserta, Italy
| |
Collapse
|
26
|
Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 2013; 531:100-9. [DOI: 10.1016/j.abb.2012.09.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/19/2023]
|
27
|
Naganathan AN. Predictions from an Ising-like Statistical Mechanical Model on the Dynamic and Thermodynamic Effects of Protein Surface Electrostatics. J Chem Theory Comput 2012; 8:4646-56. [PMID: 26605620 DOI: 10.1021/ct300676w] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Charged residues on the surface of a protein are known hot-spots for post-translational modification, protein/ligand-binding, and tuning conformational stabilities. Recent experimental evidence points to the fact that surface electrostatics can also modulate thermodynamic barriers and hence folding mechanisms. To probe for this behavior across different proteins, we develop a novel version of the Wako-Saitô-Muñoz-Eaton (WSME) model in which we include an electrostatic potential term in the energy function while simplifying the treatment of solvation free energy. Both of the energy terms are obtained by quantitatively fitting the model to differential scanning calorimetry (DSC) experiments that carry critical information on the protein partition function. We characterize four sets of structural/functional homologues (HEWL/BLA, CspB, engrailed, α-spectrin) either by fitting the experimental data of a single domain in the homologous set and predicting the conformational behavior of the rest with the same set of parameters or by performing semiblind predictions. The model with the added electrostatic term is able to successfully reproduce the order of thermodynamic stabilities and relaxation rates of most of the homologues. In parallel, we predict diverse conformational features including a wide range of thermodynamic barriers (∼9-40 kJ/mol), broad native ensembles in helical proteins, structured unfolded states and intermediates, rugged folding landscapes, and further provide an independent protein-specific estimate of the folding speed limit at 298 K (1/(7-300 μs)). Our results are evidence that protein surface electrostatics can be tailored to not only engineer stabilities but also folding mechanisms and the ruggedness of the underlying landscape.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Indian Institute of Technology Madras , Chennai-600036, India
| |
Collapse
|
28
|
Liu J, Campos LA, Cerminara M, Wang X, Ramanathan R, English DS, Muñoz V. Exploring one-state downhill protein folding in single molecules. Proc Natl Acad Sci U S A 2012; 109:179-84. [PMID: 22184219 PMCID: PMC3252948 DOI: 10.1073/pnas.1111164109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A one-state downhill protein folding process is barrierless at all conditions, resulting in gradual melting of native structure that permits resolving folding mechanisms step-by-step at atomic resolution. Experimental studies of one-state downhill folding have typically focused on the thermal denaturation of proteins that fold near the speed limit (ca. 10(6) s(-1)) at their unfolding temperature, thus being several orders of magnitude too fast for current single-molecule methods, such as single-molecule FRET. An important open question is whether one-state downhill folding kinetics can be slowed down to make them accessible to single-molecule approaches without turning the protein into a conventional activated folder. Here we address this question on the small helical protein BBL, a paradigm of one-state downhill thermal (un)folding. We decreased 200-fold the BBL folding-unfolding rate by combining chemical denaturation and low temperature, and carried out free-diffusion single-molecule FRET experiments with 50-μs resolution and maximal photoprotection using a recently developed Trolox-cysteamine cocktail. These experiments revealed a single conformational ensemble at all denaturing conditions. The chemical unfolding of BBL was then manifested by the gradual change of this unique ensemble, which shifts from high to low FRET efficiency and becomes broader at increasing denaturant. Furthermore, using detailed quantitative analysis, we could rule out the possibility that the BBL single-molecule data are produced by partly overlapping folded and unfolded peaks. Thus, our results demonstrate the one-state downhill folding regime at the single-molecule level and highlight that this folding scenario is not necessarily associated with ultrafast kinetics.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| | - Luis A. Campos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Michele Cerminara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Xiang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| | - Ravishankar Ramanathan
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Douglas S. English
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
| | - Victor Muñoz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742; and
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
29
|
Bhattacharya M, Mukhopadhyay S. Structural and Dynamical Insights into the Molten-Globule Form of Ovalbumin. J Phys Chem B 2011; 116:520-31. [DOI: 10.1021/jp208416d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mily Bhattacharya
- Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, India
| | - Samrat Mukhopadhyay
- Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, India
| |
Collapse
|
30
|
Naganathan AN, Perez-Jimenez R, Muñoz V, Sanchez-Ruiz JM. Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis. Phys Chem Chem Phys 2011; 13:17064-76. [PMID: 21769353 DOI: 10.1039/c1cp20156e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The realization that folding free energy barriers can be small enough to result in significant population of the species at the barrier top has sprouted in several methods to estimate folding barriers from equilibrium experiments. Some of these approaches are based on fitting the experimental thermogram measured by differential scanning calorimetry (DSC) to a one-dimensional representation of the folding free-energy surface (FES). Different physical models have been used to represent the FES: (1) a Landau quartic polynomial as a function of the total enthalpy, which acts as an order parameter; (2) the projection onto a structural order parameter (i.e. number of native residues or native contacts) of the free energy of all the conformations generated by Ising-like statistical mechanical models; and (3) mean-field models that define conformational entropy and stabilization energy as functions of a continuous local order parameter. The fundamental question that emerges is how can we obtain robust, model-independent estimates of the thermodynamic folding barrier from the analysis of DSC experiments. Here we address this issue by comparing the performance of various FES models in interpreting the thermogram of a protein with a marginal folding barrier. We chose the small α-helical protein PDD, which folds-unfolds in microseconds crossing a free energy barrier previously estimated as ~1 RT. The fits of the PDD thermogram to the various models and assumptions produce FES with a consistently small free energy barrier separating the folded and unfolded ensembles. However, the fits vary in quality as well as in the estimated barrier. Applying Bayesian probabilistic analysis we rank the fit performance using a statistically rigorous criterion that leads to a global estimate of the folding barrier and its precision, which for PDD is 1.3 ± 0.4 kJ mol(-1). This result confirms that PDD folds over a minor barrier consistent with the downhill folding regime. We have further validated the multi-model Bayesian approach through the analysis of two additional protein systems: gpW, a midsize single-domain with α + β topology that also folds in microseconds and has been previously catalogued as a downhill folder, and α-spectrin SH3, a domain of similar size but with a β-barrel fold, slow-folding kinetics and two-state-like thermodynamics. From a general viewpoint, the Bayesian analysis developed here results in a statistically robust, virtually model-independent, method to estimate the thermodynamic free-energy barriers to protein folding from DSC thermograms. Our method appears to be sufficiently accurate to consistently detect small differences in the barrier height, and thus opens up the possibility of characterizing experimentally the changes in thermodynamic folding barriers induced by single-point mutations on proteins within the downhill regime.
Collapse
Affiliation(s)
- Athi N Naganathan
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | |
Collapse
|
31
|
Naganathan AN, Orozco M. The native ensemble and folding of a protein molten-globule: functional consequence of downhill folding. J Am Chem Soc 2011; 133:12154-61. [PMID: 21732676 DOI: 10.1021/ja204053n] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continually emerging functional significance of intrinsic disorder and conformational flexibility in proteins has challenged the long-standing dogma of a well-defined structure contributing to a specific function. Molten-globular states, a class of proteins with significant secondary-structure but a fluid hydrophobic core, is one such example. They have however been difficult to characterize due to the complexity of experimental data and lack of computational avenues. Here, we dissect the folding mechanism of the α-helical molten-globular protein NCBD from three fundamentally different approaches: statistical-mechanical variable barrier model, C(α)-based Gō-model and explicit water all-atom molecular dynamics (MD) simulations. We find that NCBD displays the characteristics of a one-state globally downhill folder but is significantly destabilized. Using simulation techniques, we generate a highly constrained but a heterogeneous native ensemble of the molten-globule for the first time that is consistent with experimental data including small angle X-ray scattering (SAXS), circular dichroism (CD), and nuclear magnetic resonance (NMR). The resulting native ensemble populates conformations reported in other bound-forms providing direct evidence to the mechanism of conformational selection for binding multiple partners in this domain. Importantly, our simulations reveal a connection between downhill folding and large conformational flexibility in this domain that has been evolutionarily selected and functionally exploited resulting in large binding promiscuity. Finally, the multimodel approach we employ here serves as a powerful methodology to study mechanisms and suggests that the thermodynamic features of molten-globules fall within the array of folding mechanisms available to small single-domain proteins.
Collapse
Affiliation(s)
- Athi N Naganathan
- IRB-BSC Joint Research Program in Computational Biology, Barcelona Supercomputing Center, Torre Girona, C/Jordi Girona 31, Barcelona 08034, Spain.
| | | |
Collapse
|
32
|
Affiliation(s)
- Jose M. Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, 18071 Granada, Spain;
| |
Collapse
|
33
|
Bruscolini P, Naganathan AN. Quantitative prediction of protein folding behaviors from a simple statistical model. J Am Chem Soc 2011; 133:5372-9. [PMID: 21417380 DOI: 10.1021/ja110884m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The statistical nature of the protein folding process requires the use of equally detailed yet simple models that lend themselves to characterize experiments. One such model is the Wako-Saitô-Muñoz-Eaton model, that we extend here to include solvation effects (WSME-S), introduced via empirical terms. We employ the novel version to analyze the folding of two proteins, gpW and SH3, that have similar size and thermodynamic stability but with the former folding 3 orders of magnitude faster than SH3. A quantitative analysis reveals that gpW presents at most marginal barriers, in contrast to SH3 that folds following a simple two-state approximation. We reproduce the observed experimental differences in melting temperature in gpW as seen by different experimental spectroscopic probes and the shape of the rate-temperature plot. In parallel, we predict the folding complexity expected in gpW from the analysis of both the residue-level thermodynamics and kinetics. SH3 serves as a stringent control with neither folding complexity nor dispersion in melting temperatures being observed. The extended model presented here serves as an ideal tool not only to characterize folding data but also to make experimentally testable predictions.
Collapse
Affiliation(s)
- Pierpaolo Bruscolini
- Departamento de Física Teórica & Instituto de Biocomputacíon y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.
| | | |
Collapse
|
34
|
Naganathan AN, Orozco M. The protein folding transition-state ensemble from a Gō-like model. Phys Chem Chem Phys 2011; 13:15166-74. [DOI: 10.1039/c1cp20964g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
De Sancho D, Muñoz V. Integrated prediction of protein folding and unfolding rates from only size and structural class. Phys Chem Chem Phys 2011; 13:17030-43. [PMID: 21670826 DOI: 10.1039/c1cp20402e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- David De Sancho
- Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | | |
Collapse
|