1
|
Fuchs K, Oberhof N, Sauter G, Pollien A, Brödner K, Rominger F, Freudenberg J, Dreuw A, Tegeder P, Bunz UHF. Azaacene Diradicals Based on Non-Kekulé Meta-Quinodimethane with Large Two-Photon Cross-Sections in the Infrared Spectral Region. Angew Chem Int Ed Engl 2024; 63:e202406384. [PMID: 39190530 DOI: 10.1002/anie.202406384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Non-Kekulé quinoidal azaacences m-A (1 a,b) were synthesized and compared to their para- and ortho-quinodimethane analogues. m-A display high diradical characters (1 b: y0 = 0.88) due to their meta-quinodimethane (m-QDM) topology. Electron paramagnetic, nuclear magnetic resonance spectroscopies and supraquantum interference device measurements in combination with quantum-chemical calculations revealed singlet ground states for m-A with singlet-triplet gaps ΔEST (0.13-0.25 kcal mol-1) and thermally populated triplet states. These non-Kekulé structures are over all void of zwitterionic character and possess record high two-photon absorption cross sections over a broad spectral range in the near-infrared.
Collapse
Affiliation(s)
- Kathleen Fuchs
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nils Oberhof
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Gabriel Sauter
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Audrey Pollien
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, 4 Av. des Sciences, 91190, Gif-sur-Yvette, France
| | - Kerstin Brödner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Petra Tegeder
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Weng T, Xu Z, Li K, Guo Y, Chen X, Li Z, Sun Z. 1,1'-Biolympicenyl: A Stable Non-Kekulé Diradical with a Small Singlet and Triplet Energy Gap. J Am Chem Soc 2024; 146:26454-26465. [PMID: 39254188 DOI: 10.1021/jacs.4c09627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Dimerization of delocalized polycyclic hydrocarbon radicals is a simple and versatile method to create diradicals with tailored electronic structures and accessible high-spin states. However, the synthesis is challenging, and the stability issue of the diradicals remains a concern. In this study, we present the synthesis of a stable non-Kekulé 1,1'-biolympicenyl diradical 1 using a protection-oxidation-protection strategy. Diradical 1 demonstrated exceptional stability, with a solution half-life time exceeding 3.5 years and a solid state thermal decomposition temperature above 300 °C. X-ray crystallographic analysis revealed its intersected molecular structure and tightly bound dimer configuration. A singlet ground state with a small singlet-triplet energy gap is consistently identified using electron paramagnetic resonance (EPR) and a superconducting quantum interference device (SQUID) in a rigid matrix, and the triplet state is thermally accessible at room temperature. The solution phase properties were systematically examined through EPR, absorption spectroscopy, and cyclic voltammetry, revealing a rotational motion in the slow-motion regime and multistage redox characteristics. This study presents an efficient synthetic and stabilization strategy for organic diradicals, enabling the development of various high-spin functional materials.
Collapse
Affiliation(s)
- Taoyu Weng
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
3
|
Bhattacharjee R, McCormack ME, Zhou Z, Wei Z, Petrukhina MA, Kertesz M. A unique trimeric triphenylene radical cation: stacking aggregation, bonding, and stability. Chem Sci 2024:d4sc03774j. [PMID: 39246342 PMCID: PMC11376047 DOI: 10.1039/d4sc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
A new and unique π-stacking triphenylene trimer cation radical unit appears in the crystal structure of a newly synthesized salt with an oligomeric gallium(iii) chloride, [(C18H12)3]˙+(Ga3Cl10)-, which is the first triphenylene aggregate observed. The structure is attributed to a shared electron distributed over the trimer displaying π-stacking pancake bonding. Computational modeling rationalizes the appearance of a "chain-shaped" rather than a "star-shaped" gallium chloride anion as well as the reasons why the trimer, rather than a radical cation aggregate of different size, is preferred in this system. Moreover, the calculations allowed evaluation of larger cationic triphenylene radical π-stacked aggregates. Additional stabilization due to the shared single unpaired electron is calculated to remain significant at 5-7 kcal mol-1 for aggregates as large as 5-6 units.
Collapse
Affiliation(s)
- Rameswar Bhattacharjee
- Department of Chemistry and Institute of Soft Matter, Georgetown University 37th and O Streets, NW Washington DC 20057-1227 USA
| | - Megan E McCormack
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
- School of Materials Science and Engineering, Tongji University 4800 Cao'an Road Shanghai 201804 China
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft Matter, Georgetown University 37th and O Streets, NW Washington DC 20057-1227 USA
| |
Collapse
|
4
|
Dai D, Zhan Q, Shi T, Wang D, Zheng Y. Spin characteristics in conjugated stable diradicals. Chem Commun (Camb) 2024; 60:8997-9006. [PMID: 39081131 DOI: 10.1039/d4cc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Spin properties are intrinsic characters of electrons. Radical molecules contain unpaired electron(s), and their unique chemical and physical properties make them an ideal platform for investigating spin properties in molecular systems. Among them, the burgeoning interest in stable conjugated diradicals is attributed to their distinctive characteristics, notably the dynamic resonance structures between open-shell and closed-shell forms, the malleability of their spin states, and the profound influence of intermolecular spin-spin interactions. A deep understanding of the spin characteristics of unpaired electrons in stable conjugated diradicals provides guidance for the design, synthesis, and characterization of radical-based materials. In this review, we discuss the unique spin delocalization, spin states, and spin-spin coupling characteristics of conjugated diradicals and emphasize how to precisely control these spin characteristics to understand their role in the molecules and as functional radical materials.
Collapse
Affiliation(s)
- Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Qian Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Tianfang Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
5
|
Jiang Q, Tang H, Peng Y, Hu Z, Zeng W. Helical polycyclic hydrocarbons with open-shell singlet ground states and ambipolar redox behaviors. Chem Sci 2024; 15:10519-10528. [PMID: 38994409 PMCID: PMC11234857 DOI: 10.1039/d4sc02116a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Organic π-conjugated polycyclic hydrocarbons (PHs) with an open-shell diradical character are attracting increasing interest due to their promising applications in organic electronics and spintronics. However, most of the open-shell PHs synthesized thus far are based on planar π-conjugated molecules. Herein, we report the synthesis and characterization of two new quinodimethane-embedded expanded helicenes H1 and H2. The helical structures of both molecules were revealed using X-ray crystallographic analysis. It was elucidated in detailed experimental and theoretical studies that they possess an open-shell singlet biradical structure in the ground state and show a small energy gap and amphoteric redox behavior. Both compounds can also be easily oxidized or reduced into relatively stable charged species. The dianions of H1 and H2 exhibit similar electronic structures to the respective isoelectronic structures of their all-benzenoid helical analogues according to NMR measurements and theoretical calculations. Moreover, the structures of the dication and dianion of H2 were identified by X-ray crystallographic analysis, revealing the effect of electron transfer on their backbones and aromaticity. This study thus opens up new avenues for both helical polycyclic π-systems and diradicaloids.
Collapse
Affiliation(s)
- Qing Jiang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Hui Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Yuchen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Zhenni Hu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Wangdong Zeng
- School of Materials Science and Engineering, Hunan University of Science and Technology Xiangtan 411201 China
| |
Collapse
|
6
|
Tada K, Kitagawa Y. Issues on DFT+ U calculations of organic diradicals. Phys Chem Chem Phys 2023; 25:32110-32122. [PMID: 37983012 DOI: 10.1039/d3cp04187e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The diradical state is an important electronic state for understanding molecular functions and should be elucidated for the in silico design of functional molecules and their application to molecular devices. The density functional theory calculation with plane-wave basis and correction of the on-site Coulomb parameter U (DFT+U/plane-wave calculation) is a good candidate of high-throughput calculations of diradical-band interactions. However, it has not been investigated in detail to what extent the DFT+U/plane-wave calculation can be used to calculate organic diradicals with a high degree of accuracy. In the present study, using typical organic diradical molecules (bisphenalenyl molecules) as model systems, the discrepancy in the optimum U values between the two electronic states (open-shell singlet and triplet) that compose the diradical state is detected. The calculated results show that the reason for this U value discrepancy is the difference in electronic delocalisation due to π-conjugation between the open-shell singlet and triplet states, and that the effect of U discrepancy becomes large as diradical character decreases. This indicates that it is necessary to investigate the U value discrepancy with reference to the calculated results by more accurate methods or to experimental values when calculating organic diradicals with low diradical character. For this investigation, the local magnetic moments, unpaired beta electron numbers, and effective magnetic exchange integral values can be used as reference values. For the effective magnetic exchange integral values, the effects of U discrepancy are partially cancelled out. However, because the effects may not be completely offset, care should be taken when using the effective magnetic exchange integral value as a reference. Furthermore, a comparison of DFT+U and hybrid-DFT calculations shows that the DFT+U underestimates the HOMO-LUMO gap of bisphenalenyls, although a qualitative discussion of the gap is possible.
Collapse
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
7
|
Ferrão LFA, Pontes MAP, Fernandes GFS, Bettanin F, Aquino AJA, Lischka H, Nachtigallova D, Machado FBC. Stability and Reactivity of the Phenalene and Olympicene Isomers. J Phys Chem A 2023; 127:9430-9441. [PMID: 37920974 DOI: 10.1021/acs.jpca.3c04331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The phenalene (triangulene) and olympicene molecules belong to the polycyclic aromatic hydrocarbon class, which have attracted substantial technological interest due to their unique electronic properties. Electronic structure calculations serve as a valuable tool in investigating the stability and reactivity of these molecular systems. In the present work, the multireference calculations, namely, the complete active space second-order perturbation theory and multireference averaged quadratic coupled cluster (MR-AQCC), were employed to study the reactivity and stability of phenalene and olympicene isomers, as well as their modified structures where the sp3-carbon at the borders were removed. The harmonic oscillator model of aromaticity (HOMA) and the nucleus-independent chemical shift as geometric and magnetic indexes calculated with density functional theory were utilized to assess the aromaticity of the studied molecules. These indexes were compared with properties such as the excitation energy and natural orbitals occupation. The reactivity analyzed using the HOMA index combined with MR-AQCC revealed the radical character of certain structures as well as the weakening of their aromaticity. Moreover, the results suggest that the removal of sp3-carbon atoms and the addition of hydrogen atoms did not alter the π network and the excitation energies of the phenalene molecules.
Collapse
Affiliation(s)
- Luiz F A Ferrão
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| | - Marcelo A P Pontes
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| | - Gabriel F S Fernandes
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| | - Fernanda Bettanin
- Escola de Artes, Ciências e Humanidades (EACH) - Universidade de São Paulo (USP), São Paulo 03828-000, SP, Brazil
| | - Adélia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Dana Nachtigallova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| |
Collapse
|
8
|
Chang D, Zhu J, Sun Y, Chi K, Qiao Y, Wang T, Zhao Y, Liu Y, Lu X. From closed-shell edge-extended kekulenes to open-shell carbonylated cycloarene diradicaloid. Chem Sci 2023; 14:6087-6094. [PMID: 37293645 PMCID: PMC10246668 DOI: 10.1039/d3sc01295f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
The precise synthesis of cycloarenes remains a challenging topic in both organic chemistry and materials science due to their unique fully fused macrocyclic π-conjugated structure. Herein, a series of alkoxyl- and aryl-cosubstituted cycloarenes (kekulene and edge-extended kekulene derivatives, K1-K3) were conveniently synthesized and an unexpected transformation of the anthryl-containing cycloarene K3 into a carbonylated cycloarene derivative K3-R was disclosed by controlling the temperature and gas atmosphere of the Bi(OTf)3-catalyzed cyclization reaction. All their molecular structures were confirmed by single-crystal X-ray analysis. The crystallographic data, NMR measurements, and theoretical calculations reveal their rigid quasi-planar skeletons, dominant local aromaticities, and decreasing intermolecular π-π stacking distance with extension of the two opposite edges. The much lower oxidation potential for K3 by cyclic voltammetry explains its unique reactivity. Moreover, carbonylated cycloarene derivative K3-R shows a remarkable stability, large diradical character, a small singlet-triplet energy gap (ΔES-T = -1.81 kcal mol-1), and weak intramolecular spin-spin coupling. Most importantly, it represents the first example of carbonylated cycloarene diradicaloids as well as the first example of radical-acceptor cycloarenes and will shed some light on synthesis of extended kekulenes and conjugated macrocyclic diradicaloids and polyradicaloids.
Collapse
Affiliation(s)
- Dongdong Chang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Jiangyu Zhu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Yutao Sun
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Kai Chi
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Yanjun Qiao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Teng Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Yan Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Yunqi Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Xuefeng Lu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| |
Collapse
|
9
|
Guo J, Tian X, Wang Y, Dou C. Progress of Indeno-type Organic Diradicaloids. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Closed-shell and open-shell dual nature of singlet diradical compounds. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Abstract
Unlike triplet diradicals, singlet diradicals can vary in diradical character from 0 % to 100 % depending on linker units that allow two formally unpaired electrons to couple covalently. In principle, the electronic structure of singlet diradicals can be described as a quantum superposition of closed-shell and open-shell structures. This means that, depending on the external environment, singlet diradicals can behave as either closed-shell or open-shell species. This paper summarizes our progress in understanding the electronic structure of π-conjugated singlet diradical molecules in terms of closed-shell and open-shell dual nature. We first discuss the coexistence of intra- and intermolecular covalent bonding interactions in the π-dimer of a singlet diradical molecule. The intra- and intermolecular coupling of two formally unpaired electrons are related to closed-shell and open-shell nature of singlet diradical, respectively. Then we demonstrate the coexistence of the covalent bonding interactions in the one-dimensional stack of singlet diradical molecules having different diradical character. The relative strength of the interactions is varied with the magnitude of singlet diradical index y
0. Finally, we show the dual reactivity of a singlet diradical molecule, which undergoes rapid [4 + 2] and [4 + 4] cycloaddition reactions in the dark at room temperature. Closed-shell and open-shell nature endow the singlet diradical molecule with the reaction manner as diene and diradical species, respectively.
Collapse
|
11
|
Luo T, Wang Y, Hao J, Chen PA, Hu Y, Chen B, Zhang J, Yang K, Zeng Z. Furan-Extended Helical Rylenes with Fjord Edge Topology and Tunable Optoelectronic Properties. Angew Chem Int Ed Engl 2023; 62:e202214653. [PMID: 36470852 DOI: 10.1002/anie.202214653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lateral furan-expansion of polycyclic aromatics, which enables multiple O-doping and peripheral edge evolution of rylenes, is developed for the first time. Tetrafuranylperylene TPF-4CN and octafuranylquaterrylene OFQ-8CN were prepared as model compounds bearing unique fjord edge topology and helical conformations. Compared to TPF-4CN, the higher congener OFQ-8CN displays a largely red-shifted (≈333 nm) and intensified absorption band (λmax =829 nm) as well as a narrowed electrochemical band gap (≈1.08 eV) due to its pronounced π-delocalization and emerging of open-shell diradicaloid upon the increase of fjord edge length. Moreover, strong circular dichroism signals in a broad range until 900 nm are observed for open-shell chiral OFQ-8CN, owing to the excellent conformational stability of its central bis(tetraoxa[5]helicene) fragments. Our studies provide insights into the relationships between edge topologies and (chir)optoelectronic properties for this novel type of O-doped PAHs.
Collapse
Affiliation(s)
- Teng Luo
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanpei Wang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiahang Hao
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bo Chen
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230039, P. R. China
| | - Kun Yang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
12
|
Kuriakose F, Commodore M, Hu C, Fabiano CJ, Sen D, Li RR, Bisht S, Üngör Ö, Lin X, Strouse GF, DePrince AE, Lazenby RA, Mentink-Vigier F, Shatruk M, Alabugin IV. Design and Synthesis of Kekulè and Non-Kekulè Diradicaloids via the Radical Periannulation Strategy: The Power of Seven Clar's Sextets. J Am Chem Soc 2022; 144:23448-23464. [PMID: 36516873 DOI: 10.1021/jacs.2c09637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This work introduces an approach to uncoupling electrons via maximum utilization of localized aromatic units, i.e., the Clar's π-sextets. To illustrate the utility of this concept to the design of Kekulé diradicaloids, we have synthesized a tridecacyclic polyaromatic system where a gain of five Clar's sextets in the open-shell form overcomes electron pairing and leads to the emergence of a high degree of diradical character. According to unrestricted symmetry-broken UCAM-B3LYP calculations, the singlet diradical character in this core system is characterized by the y0 value of 0.98 (y0 = 0 for a closed-shell molecule, y0 = 1 for pure diradical). The efficiency of the new design strategy was evaluated by comparing the Kekulé system with an isomeric non-Kekulé diradical of identical size, i.e., a system where the radical centers cannot couple via resonance. The calculated singlet-triplet gap, i.e., the ΔEST values, in both of these systems approaches zero: -0.3 kcal/mol for the Kekulé and +0.2 kcal/mol for the non-Kekulé diradicaloids. The target isomeric Kekulé and non-Kekulé systems were assembled using a sequence of radical periannulations, cross-coupling, and C-H activation. The diradicals are kinetically stabilized by six tert-butyl substituents and (triisopropylsilyl)acetylene groups. Both molecules are NMR-inactive but electron paramagnetic resonance (EPR)-active at room temperature. Cyclic voltammetry revealed quasi-reversible oxidation and reduction processes, consistent with the presence of two nearly degenerate partially occupied molecular orbitals. The experimentally measured ΔEST value of -0.14 kcal/mol confirms that K is, indeed, a nearly perfect singlet diradical.
Collapse
Affiliation(s)
- Febin Kuriakose
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Michael Commodore
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Catherine J Fabiano
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Debashis Sen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Shubham Bisht
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| |
Collapse
|
13
|
Malik R, Bu Y. Intramolecular Proton Transfer Modulation of Magnetic Spin Coupling Interaction in Photochromic Azobenzene Derivatives with an Ortho-Site Hydroxyl as a Modulator. J Phys Chem A 2022; 126:9165-9177. [DOI: 10.1021/acs.jpca.2c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Rabia Malik
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, People’s Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, People’s Republic of China
| |
Collapse
|
14
|
Iwata K, Egawa Y, Yamanishi K, Tsuji H. Preparation of 2,3-Dibromo-1 H-indenes and Tetrabromodihydro- s-indacenes as Synthetic Building Blocks. J Org Chem 2022; 87:13882-13890. [PMID: 36226725 DOI: 10.1021/acs.joc.2c01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The acid-induced intramolecular cyclization of 1,1-disubstituted 3-aryl-2,3-dibromoallylalcohols affords 2,3-dibromo-1H-indene derivatives. This method is also applicable to the preparation of tetrabromodihydro-s-indacenes. The thus obtained multi-brominated compounds can serve as versatile synthetic building blocks to obtain a variety of indene and indacene derivatives, as demonstrated by the synthesis of dialkylmethylene-bridged oligo(phenylenevinylene)s, which feature attractive photophysical properties.
Collapse
Affiliation(s)
- Keisuke Iwata
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| | - Yasunobu Egawa
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| | - Katsunori Yamanishi
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| | - Hayato Tsuji
- Department of Chemistry, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| |
Collapse
|
15
|
Design of an open-shell nitrogen-centered diradicaloid with tunable stimuli-responsive electronic properties. Commun Chem 2022; 5:127. [PMID: 36697916 PMCID: PMC9814612 DOI: 10.1038/s42004-022-00747-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/03/2022] [Indexed: 01/28/2023] Open
Abstract
Organic diradicaloids usually display an open-shell singlet ground state with significant singlet diradical character (y0) which endow them with intriguing physiochemical properties and wide applications. In this study, we present the design of an open-shell nitrogen-centered diradicaloid which can reversibly respond to multiple stimuli and display the tunable diradical character and chemo-physical properties. 1a was successfully synthesized through a simple and high-yielding two-step synthetic strategy. Both experimental and calculated results indicated that 1a displayed an open-shell singlet ground state with small singlet-triplet energy gap (ΔES-T = -2.311 kcal mol-1) and a modest diradical character (y0 = 0.60). Interestingly, 1a was demonstrated to undergo reversible Lewis acid-base reaction to form acid-base adducts, which was proven to effectively tune the ground-state electronic structures of 1a as well as its diradical character and spin density distributions. Based on this, we succeeded in devising a photoresponsive system based on 1a and a commercially available photoacid merocyanine (MEH). We believe that our studies including the molecular design methodology and the stimuli-responsive organic diradicaloid system will open up a new way to develop organic diradicaloids with tunable properties and even intelligent-responsive diradicaloid-based materials.
Collapse
|
16
|
Ahmed J, Mandal SK. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem Rev 2022; 122:11369-11431. [PMID: 35561295 DOI: 10.1021/acs.chemrev.1c00963] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenalenyl, a zigzag-edged odd alternant hydrocarbon unit can be found in the graphene nanosheet. Hückel molecular orbital calculations indicate the presence of a nonbonding molecular orbital (NBMO), which originates from the linear combination of atomic orbitals (LCAO) arising from 13 carbon atoms of the phenalenyl molecule. Three redox states (cationic, neutral radical, and anionic) of the phenalenyl-based molecules were attributed to the presence of this NBMO. The cationic state can undergo two consecutive reductions to result in neutral radical and anionic states, stepwise, respectively. The phenalenyl-based radicals were found as crucial building blocks and attracted the attention of various research fields such as organic synthesis, material science, computation, and device physics. From 2012 onward, a strategy was devised using the cationic state of phenalenyl-based molecules and in situ generated phenalenyl radicals, which created a new domain of catalysis. The in situ generated phenalenyl radicals were utilized for the single electron transfer (SET) process resulting in redox catalysis. This emerging range of applications rejuvenates the more than six decades-old phenalenyl chemistry. This review captures such developments ranging from fundamental understanding to multidirectional applications of phenalenyl-based radicals.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
17
|
Xiang Q, Sun Z. Doublet Open-Shell Graphene Fragments. Chem Asian J 2022; 17:e202200251. [PMID: 35438845 DOI: 10.1002/asia.202200251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Indexed: 11/11/2022]
Abstract
The recent advances on neutral delocalized radical species based on polycyclic aromatic hydrocarbons with fused hexagonal rings, herein defined as doublet open-shell graphene fragments, are summarized in this review. A few simple yet useful theoretical approaches for structural analysis and molecular design were introduced at first. Then, based on the number of fused hexagonal rings, molecular systems with different size, symmetry and edge structure were discussed with emphasis on those isolated in the crystalline form. Their unique self-association behavior, chemical reactivity and physical properties were summarized and discussed, and insights on their functions and potential applications were provided.
Collapse
Affiliation(s)
- Qin Xiang
- Tianjin University, Institute of Molecular Plus, CHINA
| | - Zhe Sun
- Tianjin University, Institute of molecular plus, No. 92 Weijin Road, Nankai District, 300072, Tianjin, CHINA
| |
Collapse
|
18
|
Abstract
Parent 2,3:10,11-dibenzoheptazethrene is a singlet diradicaloid polycyclic hydrocarbon in the ground state that did not change its diradical character upon substitution (methyl and triisopropylsilylethynyl). Described herein are the synthesis and characterization of an ethoxy/3,5-(CF3)2C6H3-substituted 2,3:10,11-dibenzoheptazethrene 3 that prefers to retain its p-quinoidal core and shows zero diradical character, as determined by single-crystal analysis and density functional theory calculations. Negative solvatochromism, π-π interactions, Csp2-H···O hydrogen bonding, intramolecular charge transfer, redox amphotericity, and a narrow HOMO-LUMO energy gap make 3 a potential candidate for application in optoelectronics.
Collapse
Affiliation(s)
- Priyank Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Soumyajit Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
19
|
Guo Y, Ding S, Zhang N, Xu Z, Wu S, Hu J, Xiang Q, Li ZY, Chen X, Sato S, Wu J, Sun Z. π-Extended Doublet Open-Shell Graphene Fragments Exhibiting One-Dimensional Chain Stacking. J Am Chem Soc 2022; 144:2095-2100. [PMID: 35099946 DOI: 10.1021/jacs.1c12854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hitherto elusive benzo[c]anthanthrenyl radical derivatives composed of seven fused six-membered rings are synthesized and isolated in the crystalline form, representing a laterally π-extended doublet open-shell graphene fragment compared to the phenalenyl and olympicenyl radical structures. X-ray crystallographic analysis revealed one-dimensional chain stacking with relatively close intermolecular contacts, which is an important precondition for achieving single-component conductors. The magnetic, optical, and redox properties are investigated in the solution phase. In combination with the good stability, such open-shell molecular systems have potentials as functional electronic materials.
Collapse
Affiliation(s)
- Yupeng Guo
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shuaishuai Ding
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Na Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Jinlian Hu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Xing Chen
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sota Sato
- Department of Applied Chemistry, Integrated Molecular Structure Analysis Laboratory, Social Cooperation Program, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
20
|
Khurana R, Bajaj A, Ali ME. Tuning the magnetic properties of a diamagnetic di-Blatter's zwitterion to antiferro- and ferromagnetically coupled diradicals. Phys Chem Chem Phys 2022; 24:2543-2553. [PMID: 35024707 DOI: 10.1039/d1cp04807d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest of obtaining organic molecular magnets based on stable diradicals, we have tuned the inherent zwitterionic ground state of tetraphenylhexaazaanthracene (TPHA), a molecule containing two Blatter's moieties, by adopting two different strategies. In the first strategy, we have increased the length of the coupler between the two radical moieties and observed a transition from the zwitterionic ground state to the diradicalized state. With a larger coupler, ferromagnetic interactions are realized based on density functional theory (DFT) and wave-function theory (WFT) based complete active space self-consistent field (CASSCF)-N-electron valence state perturbation theory (NEVPT2) methods. An analysis based on the extent of spin contamination, diradical character, CASSCF orbital occupation number, Head-Gordon's index, HOMO-LUMO and SOMOs energy gaps is demonstrated that marks the transition of the ground state in these systems. In another approach, we systematically explore the effect of push-pull substitution on the way to obtain molecules based on a TPHA skeleton with diradicaloid state and, in some cases, even a triplet ground state.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
21
|
Han H, Zhang D, Zhu Z, Wei R, Xiao X, Wang X, Liu Y, Ma Y, Zhao D. Aromatic Stacking Mediated Spin-Spin Coupling in Cyclophane-Assembled Diradicals. J Am Chem Soc 2021; 143:17690-17700. [PMID: 34637282 DOI: 10.1021/jacs.1c08262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the capability of π-π stacking motifs to enable spin-spin coupling, we designed and synthesized three pairs of regio-isomers featuring two radical moieties joined by a [2.2]paracyclophane (CP) unit. By fusing indeno units to CP, two partially stacked fluorene radicals are covalently linked, exhibiting evident antiferromagnetic (AFM) coupling regardless of the orientation of two spins. Remarkably, while possessing high diradical indices of 0.8 and 0.9, the two molecules demonstrate good air stability by virtue of their singlet ground state. Single crystals help unravel the structural basis of their AFM coupling behaviors. When two radical centers are arranged at the pseudometa-positions around CP, the face-to-face stacked phenylene rings intrinsically confer orbital interactions that promote AFM coupling. On the other hand, if two radicals are directed in the pseudopara-orientation, significant orbital overlapping is observed between the radical centers (i.e., C9 of fluorene) and the aromatic carbons laid on the side, rendering AFM coupling between the two spins. In contrast, when two fluorene radicals are tethered to CP via C9 through a single C-C bond, ferromagnetic (FM) coupling is manifested by both diradical isomers featuring pseudometa- and pseudopara-connectivity. With minimal spin distributed on CP and thus limited contribution from π-π stacking, their spin-spin coupling properties are more similar to a pair of nitroxide diradical analogues, in which the two spins are dominantly coupled via through-space interactions. From these results, important conclusions are elucidated such as that although through-space interactions may confer FM coupling, with weakened strength shown by PAH radicals due to their lower polarity, face-to-face stacked π-frameworks tend to induce AFM coupling, because favorable orbital interactions are readily achieved by PAH systems hosting delocalized spins that are capable of adopting varied stacking motifs.
Collapse
Affiliation(s)
- Han Han
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ziqi Zhu
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Rong Wei
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiao Xiao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiaoge Wang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Gao FW, Li SB, Xu HL, Su ZM. Periodic B- and N-doped phenalenyl π-aggregates: unexpected nonlinear optical properties by tuning pancake π-π bonding. Phys Chem Chem Phys 2021; 23:23998-24003. [PMID: 34664046 DOI: 10.1039/d1cp03540a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phenalenyl (PLY) and its derivatives could form one-dimensional π-aggregates through pancake π-π bonding, which would lead to exotic optoelectronic properties. We will highlight the key aspects of the PLY derivatives from the design strategies to exploration of the electronic properties. Here, we primarily construct alternating boron (B)- and nitrogen (N)-doped PLY π-aggregates: dimer[12], trimer[12-1], trimer[12-2], tetramer[12]2, pentamer[12]2-1, pentamer[12]2-2, and hexamer[12]3. The geometric and electronic structures show that the short intermolecular distances of the π-aggregates drive the formation of pancake π-π bonding. Significantly, the molecular structures show periodic changes in the π-aggregates, but the first hyperpolarizabilities (βtot) present unexpected changes, which are found to increase sharply with increasing even layer thickness due to intermolecular charge transfer. The βtot value of hexamer[12]3 (5.72 × 104 a.u.) is 6.4 times that of tetramer[12]2 (8.95 × 103 a.u.), and is 22.4 times that of dimer[12] (2.55 × 103 a.u.). Thus, constructing π-aggregates can significantly improve the second-order NLO response, which is mainly due to intermolecular charge transfer through pancake π-π bonding of the interlayers.
Collapse
Affiliation(s)
- Feng-Wei Gao
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Shi-Bin Li
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zhong-Min Su
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| |
Collapse
|
23
|
Hirao Y, Daifuku Y, Ihara K, Kubo T. Spin–Spin Interactions in One‐Dimensional Assemblies of a Cumulene‐Based Singlet Biradical. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasukazu Hirao
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoko Daifuku
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keiji Ihara
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Takashi Kubo
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
24
|
Kubo T. Syntheses and Properties of Open-Shell π-Conjugated Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
25
|
Hirao Y, Daifuku Y, Ihara K, Kubo T. Spin-Spin Interactions in One-Dimensional Assemblies of a Cumulene-Based Singlet Biradical. Angew Chem Int Ed Engl 2021; 60:21319-21326. [PMID: 34101316 DOI: 10.1002/anie.202105740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
The synthesis of phenalenyl-endcapped [5]cumulene as a cumulene-based singlet biradical and the spin correlation changes of one-dimensional aggregates are described. The high propensity for self-aggregation of phenalenyl rings and the introduction of bulky substituents into the appropriate positions led to the formation of a one-dimensional chain assembly. Single-crystal X-ray structural analysis indicated that the bond length alternation of the cumulene chain increased with decreasing temperature, along with improved overlapping of the phenalenyl rings. Variable-temperature Raman spectroscopy and magnetic susceptibility measurements revealed that a localized spin pair within the molecule decouples at low temperatures, and a continuum spin system involving intra- and intermolecular spin-spin interactions emerges in the one-dimensional chain.
Collapse
Affiliation(s)
- Yasukazu Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoko Daifuku
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keiji Ihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
26
|
Minkin VI, Starikov AG, Starikova AA. Acene-Linked Zethrenes and Bisphenalenyls: A DFT Search for Organic Tetraradicals. J Phys Chem A 2021; 125:6562-6570. [PMID: 34310142 DOI: 10.1021/acs.jpca.1c02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons are of special interest due to their promising nonlinear optical and magnetic properties. A series of acene-linked zethrenes and bisphenalenyls comprising from five to nine benzene rings in the linker group have been computationally studied by the DFT UB3LYP/6-311++G(d,p) quantum-chemical modeling of their electronic structure, possible spin states, and exchange interactions. The zethrenes with octacene and nonacene linkers as well as bisphenalenyls comprising heptacene, octacene, and nonacene linker groups have been revealed to possess tetraradicaloid nature, which makes them promising building blocks for organic optoelectronic and spintronic devices. The results obtained open a way of constructing tetraradicaloid organic molecules characterized by the presence of two types of paramagnetic centers.
Collapse
Affiliation(s)
- Vladimir I Minkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| | - Andrey G Starikov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| |
Collapse
|
27
|
Ota K, Kinjo R. A Crystalline B 4N 2 Dewar Benzene as a Building Block for Conjugated B,N-Chains. J Am Chem Soc 2021; 143:11152-11159. [PMID: 34264664 DOI: 10.1021/jacs.1c04860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dewar benzene, one of the isolable valence isomers of C6H6, has been extensively studied since its first synthesis in 1962. By contrast, the chemistry of inorganic congeners of Dewar benzene, which can be formally gained by replacing the skeletal carbon atoms with heteroatoms, has been less developed despite their peculiar structural and electronic features. Among them, the extant B,N-Dewar benzenes are limited to the B3N3 system. Herein, we report the development of the first example of an isolable B4N2 Dewar benzene, 3. As predicted by DFT calculations, a judicious selection of the substituents allows synthesizing 3. Single-crystal X-ray analysis, NMR, and computational studies confirmed that 3 possesses a high-lying B(sp3)-B(sp3) σ-bond at the bridgehead position. Reactions with ethylene and phenylacetylene proceeded smoothly under mild conditions, affording the fused B4C4N2 ring systems (4 and 5). Structural characterization as well as DFT calculations revealed that compounds 4 and 5 involve a rigid and conjugated (BN)4 tetraene scaffold. Formation of 4 and 5 demonstrates that 3 may serve as a building block for the construction of conjugated B,N-chains.
Collapse
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
28
|
Zong C, Zhu X, Xu Z, Zhang L, Xu J, Guo J, Xiang Q, Zeng Z, Hu W, Wu J, Li R, Sun Z. Isomeric Dibenzoheptazethrenes for Air‐Stable Organic Field‐Effect Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaoyang Zong
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Zhanqiang Xu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Lifeng Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Jun Xu
- Health Science Platform Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics Center for Aggregation-Induced Emission College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Qin Xiang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics Center for Aggregation-Induced Emission College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhe Sun
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
29
|
Zong C, Zhu X, Xu Z, Zhang L, Xu J, Guo J, Xiang Q, Zeng Z, Hu W, Wu J, Li R, Sun Z. Isomeric Dibenzoheptazethrenes for Air-Stable Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2021; 60:16230-16236. [PMID: 33999484 DOI: 10.1002/anie.202105872] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 01/15/2023]
Abstract
Singlet diradicaloids hold great potential as semiconductors for organic field-effect transistors (OFETs). However, their relative low material and device stabilities impede the practical applications. Here, to achieve balanced stability and performance, two isomeric dibenzoheptazethrene derivatives with singlet diradical character were synthesized in a concise manner. Benefitting from the aromatic stabilization, both compounds display a small diradical character and large singlet-triplet gap, as corroborated by variable-temperature electron paramagnetic resonance spectra, single-crystal analysis, and theoretical calculations. OFET devices based on single crystals showed a high hole mobility of 0.15 cm2 V-1 s-1 , which is the highest for zethrene-based semiconductors. Both isomers exhibited remarkable material stability in air-saturated solutions as well as excellent bias-stress and storage stability in device under ambient air.
Collapse
Affiliation(s)
- Chaoyang Zong
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhanqiang Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
30
|
Suzuki S, Yamaguchi D, Uchida Y, Naota T. Hysteretic Control of Near‐infrared Transparency Using a Liquescent Radical Cation. Angew Chem Int Ed Engl 2021; 60:8284-8288. [DOI: 10.1002/anie.202016930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Shuichi Suzuki
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Daiki Yamaguchi
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Yoshiaki Uchida
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Takeshi Naota
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
31
|
Suzuki S, Yamaguchi D, Uchida Y, Naota T. Hysteretic Control of Near‐infrared Transparency Using a Liquescent Radical Cation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuichi Suzuki
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Daiki Yamaguchi
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Yoshiaki Uchida
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Takeshi Naota
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
32
|
|
33
|
Wang Z, Akisaka R, Yabumoto S, Nakagawa T, Hatano S, Abe M. Impact of the macrocyclic structure and dynamic solvent effect on the reactivity of a localised singlet diradicaloid with π-single bonding character. Chem Sci 2020; 12:613-625. [PMID: 34163792 PMCID: PMC8179019 DOI: 10.1039/d0sc05311b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Localised singlet diradicals are key intermediates in bond homolysis processes. Generally, these highly reactive species undergo radical–radical coupling reaction immediately after their generation. Therefore, their short-lived character hampers experimental investigations of their nature. In this study, we implemented the new concept of “stretch effect” to access a kinetically stabilised singlet diradicaloid. To this end, a macrocyclic structure was computationally designed to enable the experimental examination of a singlet diradicaloid with π-single bonding character. The kinetically stabilised diradicaloid exhibited a low carbon–carbon coupling reaction rate of 6.4 × 103 s−1 (155.9 μs), approximately 11 and 1000 times slower than those of the first generation of macrocyclic system (7.0 × 104 s−1, 14.2 μs) and the parent system lacking the macrocycle (5 × 106 s−1, 200 ns) at 293 K in benzene, respectively. In addition, a significant dynamic solvent effect was observed for the first time in intramolecular radical–radical coupling reactions in viscous solvents such as glycerin triacetate. This theoretical and experimental study demonstrates that the stretch effect and solvent viscosity play important roles in retarding the σ-bond formation process, thus enabling a thorough examination of the nature of the singlet diradicaloid and paving the way toward a deeper understanding of reactive intermediates. An extremely long-lived localised singlet diradical with π-single bonding character is found in a macrocyclic structure that retards the radical–radical coupling reaction by the “stretch and solvent-dynamic effects”.![]()
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Rikuo Akisaka
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Sohshi Yabumoto
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Tatsuo Nakagawa
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Sayaka Hatano
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan .,Hiroshima University Research Centre for Photo-Drug-Delivery-Systems (HiU-P-DDS), Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
34
|
Dressler JJ, Haley MM. Learning how to fine‐tune diradical properties by structure refinement. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Justin J. Dressler
- Department of Chemistry and Biochemistry and the Materials Science Institute University of Oregon Eugene Oregon USA
| | - Michael M. Haley
- Department of Chemistry and Biochemistry and the Materials Science Institute University of Oregon Eugene Oregon USA
| |
Collapse
|
35
|
Dressler JJ, Barker JE, Karas LJ, Hashimoto HE, Kishi R, Zakharov LN, MacMillan SN, Gomez-Garcia CJ, Nakano M, Wu JI, Haley MM. Late-Stage Modification of Electronic Properties of Antiaromatic and Diradicaloid Indeno[1,2-b]fluorene Analogues via Sulfur Oxidation. J Org Chem 2020; 85:10846-10857. [DOI: 10.1021/acs.joc.0c01387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | - Lucas J. Karas
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | | | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Lev N. Zakharov
- CAMCOR, University of Oregon, Eugene, Oregon 97403-1433, United States
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Carlos J. Gomez-Garcia
- Department of Inorganic Chemistry and Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Judy I. Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael M. Haley
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-6231, United States
| |
Collapse
|
36
|
Dressler JJ, Cárdenas Valdivia A, Kishi R, Rudebusch GE, Ventura AM, Chastain BE, Gómez-García CJ, Zakharov LN, Nakano M, Casado J, Haley MM. Diindenoanthracene Diradicaloids Enable Rational, Incremental Tuning of Their Singlet-Triplet Energy Gaps. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Sahara K, Abe M, Zipse H, Kubo T. Duality of Reactivity of a Biradicaloid Compound with an o-Quinodimethane Scaffold. J Am Chem Soc 2020; 142:5408-5418. [DOI: 10.1021/jacs.0c01003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Keisuke Sahara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Manabu Abe
- JST-CREST, K’s Gobancho 6F, 7, Gobancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hendrik Zipse
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
38
|
Nieman R, Silva NJ, Aquino AJA, Haley MM, Lischka H. Interplay of Biradicaloid Character and Singlet/Triplet Energy Splitting for cis-/trans-Diindenoacenes and Related Benzothiophene-Capped Oligomers as Revealed by Extended Multireference Calculations. J Org Chem 2020; 85:3664-3675. [DOI: 10.1021/acs.joc.9b03308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Nadeesha J. Silva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Adelia J. A. Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Michael M. Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
39
|
Barker JE, Dressler JJ, Cárdenas Valdivia A, Kishi R, Strand ET, Zakharov LN, MacMillan SN, Gómez-García CJ, Nakano M, Casado J, Haley MM. Molecule Isomerism Modulates the Diradical Properties of Stable Singlet Diradicaloids. J Am Chem Soc 2020; 142:1548-1555. [PMID: 31876145 DOI: 10.1021/jacs.9b11898] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inclusion of quinoidal cores in conjugated hydrocarbons is a common strategy to modulate the properties of diradicaloids formed by aromaticity recovery within the quinoidal unit. Here we describe an alternative approach of tuning of diradical properties in indenoindenodibenzothiophenes upon anti → syn isomerism of the benzothiophene motif. This alters the relationship of the S atom with the radical center from linear to cross conjugation yet retains the same 2,6-naphtho conjugation pattern of the rearomatized core. We conduct a full comparison between the anti and syn derivatives based on structural, spectroscopic, theoretical, and magnetic measurements, showing that these systems are stable open-shell singlet diradicaloids that only access their triplet state at elevated temperatures.
Collapse
Affiliation(s)
- Joshua E Barker
- Department of Chemistry & Biochemistry and the Materials Science Institute , University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Justin J Dressler
- Department of Chemistry & Biochemistry and the Materials Science Institute , University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry , University of Malaga , Campus de Teatinos s/n 29071 Malaga , Spain
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science , Osaka University , Toyonaka, Osaka 560-8531 , Japan
| | - Eric T Strand
- Department of Chemistry & Biochemistry and the Materials Science Institute , University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Lev N Zakharov
- CAMCOR , University of Oregon , Eugene , Oregon 97403-1433 , United States
| | - Samantha N MacMillan
- Department of Chemistry & Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Carlos J Gómez-García
- Department of Inorganic Chemistry and Instituto de Ciencia Molecular , Universidad de Valencia , 46980 Paterna , Spain
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science , Osaka University , Toyonaka, Osaka 560-8531 , Japan.,Center for Spintronics Research Network, Graduate School of Engineering Science , Osaka University , Toyonaka, Osaka 560-8531 , Japan.,Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives , Osaka University , Toyonaka, Osaka 560-8531 , Japan.,Institute for Molecular Science , 38 Nishigo-Naka , Myodaiji, Okazaki 444-8585 , Japan
| | - Juan Casado
- Department of Physical Chemistry , University of Malaga , Campus de Teatinos s/n 29071 Malaga , Spain
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute , University of Oregon , Eugene , Oregon 97403-1253 , United States.,Phil and Penny Knight Campus for Accelerating Scientific Impact , University of Oregon , Eugene , Oregon 97403-6231 , United States
| |
Collapse
|
40
|
Akisaka R, Ohga Y, Abe M. Dynamic solvent effects in radical-radical coupling reactions: an almost bottleable localised singlet diradical. Phys Chem Chem Phys 2020; 22:27949-27954. [PMID: 33184617 DOI: 10.1039/d0cp05235c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Localised singlet diradicals are key intermediates in bond homolysis, which plays a crucial role in chemical reactions. However, thorough experimental analyses of the reaction dynamics and chemical properties are generally difficult because bond formation is rapid, even under low-temperature matrix conditions. In this study, the effects of solvent and pressure on the lifetimes of long-lived singlet diradicals with bulky substituents were investigated. The solvent dynamic effect was revealed to provide control over the rate constant of radical-radical coupling reactions, and an almost bottleable singlet diradical with a lifetime of ∼2 s at 293 K was obtained.
Collapse
Affiliation(s)
- Rikuo Akisaka
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | | | | |
Collapse
|
41
|
|
42
|
Jiang Y, Wang C, Lu G, Zhao L, Gong L, Wang T, Qi D, Chen Y, Jiang J. Compartmentalization within Nanofibers of Double‐Decker Phthalocyanine Induces High‐Performance Sensing in both Aqueous Solution and the Gas Phase. Chemistry 2019; 25:16207-16213. [DOI: 10.1002/chem.201903553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yuying Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Chiming Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Guang Lu
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Luyang Zhao
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Lei Gong
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| | - Yanli Chen
- School of ScienceChina University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Department of ChemistryBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline MaterialsUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
43
|
Wang Q, Song M, Song X, Bu Y. Unexpected diradical character and large magnetic spin coupling in modified porphyrins induced by inverting pyrrole rings. Phys Chem Chem Phys 2019; 21:17209-17220. [PMID: 31343647 DOI: 10.1039/c9cp02691f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porphyrin derivatives with inverted pyrrole rings have been experimentally synthesized, and their relevant electronic and magnetic properties have great application prospects in terms of electronic devices. In this work, we rationally design the structures and computationally investigate the electronic properties of porphine and Mg/Zn-porphyrin derivatives with two inverted pyrrole rings, i.e. the dipyrrole-inverted porphine and Mg/Zn-porphyrin analogues (1NN-2H, 2NN-2H, 1NN-Mg, 2NN-Mg, 1NN-Zn and 2NN-Zn), at the B3LYP/6-311G(d,p) level. The main structural characters of these porphyrin derivatives are that the [double bond splayed left]NH units of two pyrrole rings are inverted outwards and the porphyrin-like macrocycles are distorted from square to diamond shapes. More interestingly, these dipyrrole-inverted porphyrin derivatives present diradical characters with noticeably large antiferromagnetic spin coupling constants, i.e.-982.2/-936.3 cm-1 for 1NN-2H/2NN-2H, -796.3/-764.2 cm-1 for 1NN-Mg/2NN-Mg and -1044.5/-1055.2 cm-1 for 1NN-Zn/2NN-Zn, but their monopyrrole-inverted counterparts do not. Examinations of the orbital properties featuring large occupation numbers of the lowest unoccupied natural orbitals and two singly occupied molecular orbitals that are polarized in opposite directions also confirm these findings. These porphyrin derivatives have small singlet-triplet energy gaps and small energy gaps between the highest occupied molecular orbital and lowest unoccupied molecular orbital of the closed-shell singlet states. These are conducive to the emergence of diradical character and large spin coupling constants. Furthermore, the spin-alternation analyses show that each dipyrrole-inverted porphyrin derivative has two resonant structures featuring two spin-opposite single electrons, in agreement with the observed antiferromagnetic spin couplings. This work provides novel insights into the electronic structures and properties of the porphyrin derivatives with modified structures and also provides helpful information for the rational design, synthesis and characterization of new porphyrin-based magnets.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Meiyu Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Xinyu Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
44
|
Jousselin-Oba T, Mamada M, Marrot J, Maignan A, Adachi C, Yassar A, Frigoli M. Excellent Semiconductors Based on Tetracenotetracene and Pentacenopentacene: From Stable Closed-Shell to Singlet Open-Shell. J Am Chem Soc 2019; 141:9373-9381. [DOI: 10.1021/jacs.9b03488] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tanguy Jousselin-Oba
- UMR CNRS 8180, UVSQ, Institut Lavoisier de Versailles, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), JST ERATO Adachi Molecular Exciton Engineering Project, and Education Center for Global Leaders in Molecular System for Devices, Kyushu University, Nishi, Fukuoka 819-0395, Japan
| | - Jérôme Marrot
- UMR CNRS 8180, UVSQ, Institut Lavoisier de Versailles, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Antoine Maignan
- UMR CNRS 6508, Normandie Université, CRISMAT, ENSICAEN, UNICAEN, F-14000 Caen, France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), JST ERATO Adachi Molecular Exciton Engineering Project, and Education Center for Global Leaders in Molecular System for Devices, Kyushu University, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka 819-0395, Japan
| | - Abderrahim Yassar
- UMR CNRS 7647, LPICM-École Polytechnique, 91128 Palaiseau Cedex, France
| | - Michel Frigoli
- UMR CNRS 8180, UVSQ, Institut Lavoisier de Versailles, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
45
|
Wehrmann CM, Charlton RT, Chen MS. A Concise Synthetic Strategy for Accessing Ambient Stable Bisphenalenyls toward Achieving Electroactive Open-Shell π-Conjugated Materials. J Am Chem Soc 2019; 141:3240-3248. [PMID: 30689950 DOI: 10.1021/jacs.8b13300] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Open-shell, π-conjugated molecules represent exciting next-generation materials due to their unique optoelectronic and magnetic properties and their potential to exploit unpaired spin densities to engineer exceptionally close π-π interactions. However, prior syntheses of ambient stable, open-shell molecules required lengthy routes and displayed intermolecular spin-spin coupling with limited dimensionality. Here we report a general fragment-coupling strategy with phenalenone that enables the rapid construction of both biradicaloid (Ph2- s-IDPL, 1) and radical [10(OTf)] bisphenalenyls in ≤7 steps from commercial starting materials. Significantly, we have discovered an electronically stabilized π-radical cation [10(OTf)] that shows multiple intermolecular closer-than-vdW contacts (<3.4 Å) in its X-ray crystal structure. DFT simulations reveal that each of these close π-π interactions allows for intermolecular spin-spin coupling to occur and suggests that 10(OTf) achieves electrostatically enhanced intermolecular covalent-bonding interactions in two dimensions. Single crystal devices were fabricated from 10(OTf) and demonstrate average electrical conductivities of 1.31 × 10-2 S/cm. Overall, these studies highlight the practical synthesis and device application of a new π-conjugated material, based on a design principle that promises to facilitate spin and charge transport.
Collapse
Affiliation(s)
- Caleb M Wehrmann
- Department of Chemistry , Lehigh University , Bethlehem , Pennsylvania 18015-3102 , United States
| | - Ryan T Charlton
- Department of Chemistry , Lehigh University , Bethlehem , Pennsylvania 18015-3102 , United States
| | - Mark S Chen
- Department of Chemistry , Lehigh University , Bethlehem , Pennsylvania 18015-3102 , United States
| |
Collapse
|
46
|
Kertesz M. Pancake Bonding: An Unusual Pi‐Stacking Interaction. Chemistry 2018; 25:400-416. [DOI: 10.1002/chem.201802385] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/14/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Miklos Kertesz
- Chemistry Department and Institute of Soft Matter Georgetown University 37th and O Streets NW Washington, DC 20057-1227 USA
| |
Collapse
|
47
|
Ooi S, Shimizu D, Furukawa K, Tanaka T, Osuka A. Stable Face-to-Face Singlet Diradicaloids: Triply Linked Corrole Dimer Gallium(III) Complexes with Two μ
-Hydroxo-Bridges. Angew Chem Int Ed Engl 2018; 57:14916-14920. [DOI: 10.1002/anie.201810200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Shota Ooi
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Daiki Shimizu
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Takayuki Tanaka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
48
|
Ooi S, Shimizu D, Furukawa K, Tanaka T, Osuka A. Stable Face-to-Face Singlet Diradicaloids: Triply Linked Corrole Dimer Gallium(III) Complexes with Two μ
-Hydroxo-Bridges. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shota Ooi
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Daiki Shimizu
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities; Niigata University; Nishi-ku Niigata 950-2181 Japan
| | - Takayuki Tanaka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
49
|
Thiophene and its sulfur inhibit indenoindenodibenzothiophene diradicals from low-energy lying thermal triplets. Nat Chem 2018; 10:1134-1140. [PMID: 30224686 DOI: 10.1038/s41557-018-0133-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/02/2018] [Indexed: 11/08/2022]
Abstract
Many qualitative structure-property correlations between diradical character and emerging molecular properties are known. For example, the increase of diradical character further decreases the singlet-triplet energy gap. Here we show that inclusion of thiophenes within a quinoidal polycyclic hydrocarbon imparts appreciable diradical character yet retains the large singlet-triplet energy gap, a phenomenon that has no precedent in the literature. The low aromatic character of thiophene and its electron-rich nature are the key properties leading to these unique findings. A new indenoindenodibenzothiophene scaffold has been prepared and fully characterized by several spectroscopies, magnetic measurements, solid-state X-ray and state-of-the-art quantum chemical calculations, all corroborating this unique dichotomy between the diradical input and the emerging magnetic properties. New structure-property relationships such as these are not only extremely important in the field of diradical chemistry and organic electronics, but also provide new insights into the versatility of π-electron chemical bonding.
Collapse
|
50
|
Ravat P, Šolomek T, Häussinger D, Blacque O, Juríček M. Dimethylcethrene: A Chiroptical Diradicaloid Photoswitch. J Am Chem Soc 2018; 140:10839-10847. [PMID: 30067898 PMCID: PMC6120736 DOI: 10.1021/jacs.8b05465] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/28/2022]
Abstract
We describe the synthesis and properties of 13,14-dimethylcethrene, a prototype of a chiral diradicaloid photochemical switch that can be transformed reversibly via conrotatory electrocyclization to its more stable closed form by light (630 nm) or heat and back to its open form by light (365 nm). This system illustrates how the chemical reactivity of a diradicaloid molecule can be translated into a switching function, which alters substantially all electronic parameters, namely, the HOMO-LUMO and the singlet-triplet (ST) energy gaps, and the degree of helical twist. As a result, distinct changes in the optical and chiroptical properties of this system were observed, which allowed us to monitor the switching process by a variety of spectroscopic techniques, including NMR, UV-vis, and CD. In comparison to the previously reported parent molecule cethrene, this system benefits from two methyl substituents installed in the fjord region, which account for the stability of the closed form against oxidation and racemization. The methyl substituents increase the ST energy gap of 13,14-dimethylcethrene by ∼4 kcal mol-1 in comparison to cethrene. Our DFT calculations reveal that the larger ST gap is a result of electronic and geometric effects of the methyl substituents and show the potential of related systems to act as magnetic switches at room temperature.
Collapse
Affiliation(s)
- Prince Ravat
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tomáš Šolomek
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of
Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| | - Michal Juríček
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Department of Chemistry, University of
Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland
| |
Collapse
|