1
|
Li P, Jiang YL, Men Y, Jiao YZ, Chen S. Kinetic cation effect in alkaline hydrogen electrocatalysis and double layer proton transfer. Nat Commun 2025; 16:1844. [PMID: 39984483 PMCID: PMC11845716 DOI: 10.1038/s41467-025-56966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Unveiling the so far ambiguous mechanism of the significant dependence on the identity of alkali metal cation would prompt opportunities to solve the more than two orders of magnitude slowdown of hydrogen electrocatalytic kinetics in base relative to acid, which has hampered the effort to reduce the precious metal usage in fuel cells by using the hydroxide exchange membrane. Herein, we present atomic-scale evidences from ab-initio molecular dynamics simulation and in-situ surface-enhanced infrared absorption spectroscopy which show that it is the apparent discrepancies in the electric double-layer structures induced by differently sized cations that lead to largely different interfacial proton transfer barriers and therefore hydrogen electrocatalytic kinetics in base. Concretely, severe accumulation of larger cation in electric double-layer causes more discontinuous interfacial water distribution and H-bond network, thus rendering the proton transfer from bulk to interface more obstructed. Such notion is strikingly different from the previously envisioned impact of cation-intermediate interactions on the energetics of surface steps, providing a unique interfacial perspective for understanding the ubiquitous cation specificity in electrocatalysis.
Collapse
Affiliation(s)
- Peng Li
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Ya-Ling Jiang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yana Men
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yu-Zhou Jiao
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Fairhurst A, Snyder J, Wang C, Strmcnik D, Stamenkovic VR. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chem Rev 2025; 125:1332-1419. [PMID: 39873431 PMCID: PMC11826915 DOI: 10.1021/acs.chemrev.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.
Collapse
Affiliation(s)
- Alasdair
R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Joshua Snyder
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 United States
| | - Dusan Strmcnik
- National
Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
4
|
Yukuhiro V, Vicente RA, Fernández PS, Cuesta A. Alkaline-Metal Cations Affect Pt Deactivation for the Electrooxidation of Small Organic Molecules by Affecting the Formation of Inactive Pt Oxide. J Am Chem Soc 2024; 146:27745-27754. [PMID: 39324334 PMCID: PMC11467990 DOI: 10.1021/jacs.4c09590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The activity of Pt for the electro-oxidation of several organic molecules changes with the cation of the electrolyte. It has been proposed that the underlying reason behind that effect is the so-called noncovalent interactions between the hydrated cations and adsorbed OH (OHad). However, there is a lack of spectroscopic evidence for this phenomenon, resulting in an incomplete understanding at the microscopic level of these electrochemical processes. Herein, we explore the electro-oxidation of glycerol (EOG) on platinum (Pt) in LiOH, NaOH and KOH using in situ surface-enhanced infrared absorption spectroscopy in the attenuated total reflectance mode (ATR-SEIRAS) and in situ X-ray absorption spectroscopy (XAS). Our results show that the electrolyte cation influences the rate and potential at which adsorbed CO (COad), a catalytic poison, is formed and oxidized. We attribute this to the cation-dependent stability of oxygenated species on the metallic Pt surface and the different intensities of the electric field at the electrode/electrolyte interface. We also demonstrate that the formation of an inactive Pt oxide layer is indirectly also cation-dependent: the formation of this layer is triggered by the cation-dependent oxidative removal of reaction intermediates (for instance, CO). This phenomenon explains the well-known cation-induced differences in the voltammetric profiles, of not just glycerol, but generally of alcohols and polyols.
Collapse
Affiliation(s)
- Victor
Y. Yukuhiro
- Chemistry
Institute, Universidade Estadual de Campinas
(UNICAMP), 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies (CINE), Universidade
Estadual de Campinas, 13083-841 Campinas, São
Paulo, Brazil
| | - Rafael A. Vicente
- Chemistry
Institute, Universidade Estadual de Campinas
(UNICAMP), 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies (CINE), Universidade
Estadual de Campinas, 13083-841 Campinas, São
Paulo, Brazil
| | - Pablo S. Fernández
- Chemistry
Institute, Universidade Estadual de Campinas
(UNICAMP), 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies (CINE), Universidade
Estadual de Campinas, 13083-841 Campinas, São
Paulo, Brazil
| | - Angel Cuesta
- Advanced
Centre for Energy and Sustainability (ACES), School of Natural and
Computing Sciences, University of Aberdeen, AB24 3UE Aberdeen, Scotland, U.K.
- Centre
for Energy Transition, University of Aberdeen,
King’s College, AB24
3FX Aberdeen, Scotland, U.K.
| |
Collapse
|
5
|
Li Z, Wang L, Sun L, Yang W. Dynamic Cation Enrichment during Pulsed CO 2 Electrolysis and the Cation-Promoted Multicarbon Formation. J Am Chem Soc 2024; 146:23901-23908. [PMID: 39054919 DOI: 10.1021/jacs.4c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recently, pulsed electrolysis has been demonstrated as an emerging electrochemical technique that significantly promotes the performance of various electrocatalysis applications. The ionic nature of aqueous electrolytes implies a likely change in ionic distribution under these alternating potential conditions. However, despite the well-known importance of cations, the impact of pulsed electrolysis on the cation distribution remains unexplored as well as its influences on the performance. Herein, we explore the cation effects on the pulsed electrochemical CO2 reduction (p-CO2RR) using the most widely utilized alkali metal cations, including Li+, Na+, K+, and Cs+. It is discovered that the nature of cations can significantly influence the product ratio of C2+ over C1 (mostly CH4) during p-CO2RR in an order of Li+< Na+< K+< Cs+, much more profoundly than those of static cases. We report direct experimental evidence for the cation enrichment caused by pulsed electrolysis, depending on the radius of the hydrated ions. With further quasi-in situ analysis of the catalyst surface, the cation-promoted Cu dissolution-and-redeposition process was identified; this is found to alter the surface CuxO/Cu ratio during the pulsed process. We demonstrate that both the cation enrichment and the cation-adjusted surface CuxO/Cu composition impact the C2+/C1 ratio through the control of the surface-adsorbed CO population. These results reveal the presence of pulse-induced cation redistribution in emerging pulsed electrolysis techniques and provide a comprehensive understanding of alkali metal cation effects for improving the selectivity of p-CO2RR.
Collapse
Affiliation(s)
- Zhuofeng Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang, China
| |
Collapse
|
6
|
Fernández-Vidal J, Koper MTM. Effect of a Physisorbed Tetrabutylammonium Cation Film on Alkaline Hydrogen Evolution Reaction on Pt Single-Crystal Electrodes. ACS Catal 2024; 14:8130-8137. [PMID: 38868101 PMCID: PMC11165451 DOI: 10.1021/acscatal.4c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The addition of tetrabutylammonium (TBA+) to alkaline electrolytes enhances the hydrogen evolution reaction (HER) activity on Pt single-crystal electrodes. The concentration of TBA+ significantly influences the HER on Pt(111). Concentrations of ≤1 mM yield no significant effect on HER currents or the coverage of adsorbed hydrogen (H*) but exhibit an interaction with the OHads on the surface. Conversely, concentrations of >1 mM result in an apparent site-blocking effect for underpotential-deposited H* caused by the physisorption of the organic cation, which counterintuitively leads to an increase in the HER activity. The physisorption of TBA+ is linked to its accumulation in the diffuse layer, as it can be reversibly removed by the addition of nonadsorbing cations such as sodium. Following the previous literature on the TBA+ interaction with electrode surfaces, we ascribe this effect to the formation of a two-dimensional TBA+ film in the double layer. On stepped Pt single-crystal surfaces, TBA+ enhances HER activity at all concentrations, primarily at step sites. Our findings not only highlight the complexities of TBA+ accumulation on Pt electrodes but also offer important molecular-level insights for optimizing the HER by organic film formation on various atomic-level electrode structures.
Collapse
Affiliation(s)
- Julia Fernández-Vidal
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Shen L, Goyal A, Chen X, Koper MTM. Cation Effects on Hydrogen Oxidation Reaction on Pt Single-Crystal Electrodes in Alkaline Media. J Phys Chem Lett 2024; 15:2911-2915. [PMID: 38451074 PMCID: PMC10945570 DOI: 10.1021/acs.jpclett.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The exact mechanism behind the cation-assisted hydrogen oxidation reaction (HOR) on platinum electrodes in alkaline media remains disputed. We show that the cation effects at platinum display a remarkable structure sensitivity: not only the H adsorption but also the HOR activity on (111) terrace sites are independent of the nature of cation and cation concentration. On (110) step sites, at low cation concentration and mildly alkaline media, cations promote the HOR, whereas at more alkaline pH and consequently higher near-surface cation concentrations, the HOR is inhibition by the cations. Moreover, the role of the cation on terrace-OHad is different from that on step-OHad, as can also be observed from the inhibition of the HOR current by terrace-OHad at higher potentials. These results suggest that near the onset potential, HOR mainly takes place on steps, but under diffusion-limited conditions at higher overpotential, HOR mainly takes place on terraces.
Collapse
Affiliation(s)
- Linfan Shen
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Akansha Goyal
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Xiaoting Chen
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, P. R. China
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Chen X, Ojha K, Koper MTM. Subsurface Hydride Formation Leads to Slow Surface Adsorption Processes on a Pd(111) Single-Crystal Electrode in Acidic Electrolytes. JACS AU 2023; 3:2780-2789. [PMID: 37885584 PMCID: PMC10598829 DOI: 10.1021/jacsau.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Palladium is one of the most important catalysts due to its widespread use in heterogeneous catalysis and electrochemistry. However, an understanding of the electrochemical processes and interfacial phenomena at Pd single-crystal electrodes/electrolytes is still scarce. In this work, the electrochemical behavior of the Pd(111) electrode was studied by the combination of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in different acidic electrolytes, namely, sulfuric acid, perchlorate acid, methane sulfonic acid, and hydrofluoric acid. An analysis of CV profiles shows the strong adsorption of all anions at low electrode potential, partially overlapping with underpotential deposited hydrogen (UPD-H), leading to the appearance of a pair of sharp peaks in what would be considered the "hydrogen region". All anions studied (HSO4-, ClO4-, CH3SO3-, and F-) adsorb specifically and interact with (or effectively block) the surface-adsorbed hydroxyl phase formed on the Pd(111) terrace at higher potentials. Strikingly, the scan rate-dependent results show that the process of anion adsorption and desorption is a kinetically rather slow step. EIS measurements show that the exact mechanism of this slow anion ad/desorption process actually stems from (sub)surface phenomena: the direct hydrogen insertion into Pd lattice (hydrogen subsurface absorption) commences from ca. 0.40 V and leads to the formation of (subsurface) Pd hydrides (PdHx). We argue that the subsurface hydrogen phase significantly alters the work function and thereby the kinetics of the anion adsorption and desorption processes, leading to irreversible peaks in the voltammetry. This precise understanding is important in guiding further fundamental work on Pd single crystals and will be crucial to advancing the eventual design of optimized Pd electrocatalysts.
Collapse
Affiliation(s)
- Xiaoting Chen
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, P.R. China
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Kasinath Ojha
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
9
|
Ostervold L, Smerigan A, Liu MJ, Filardi LR, Vila FD, Perez-Aguilar JE, Hong J, Tarpeh WA, Hoffman AS, Greenlee LF, Clark EL, Janik MJ, Bare SR. Cation Incorporation into Copper Oxide Lattice at Highly Oxidizing Potentials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47025-47036. [PMID: 37756387 DOI: 10.1021/acsami.3c10296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.
Collapse
Affiliation(s)
- Lars Ostervold
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam Smerigan
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Leah R Filardi
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lauren F Greenlee
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ezra Lee Clark
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
10
|
Le JB, Chen A, Kuang Y, Cheng J. Molecular understanding of cation effects on double layers and their significance to CO-CO dimerization. Natl Sci Rev 2023; 10:nwad105. [PMID: 37842071 PMCID: PMC10575609 DOI: 10.1093/nsr/nwad105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 10/17/2023] Open
Abstract
Cation effects have been shown in numerous experiments to play a significant role in electrocatalysis. To understand these effects at the molecular level, we systematically investigate the structures and capacitances of electric double layers with a variety of cations as counter charges at Pt(111)-COad/water interfaces with ab initio molecular dynamics. It is encouraging to find that the computed Helmholtz capacitances for different cations are in quantitative agreement with experiments, and that the trend of cation effects on capacitances shows clear correlation with the structures of interface cations of differing sizes and hydration energies. More importantly, we demonstrate the Helmholtz capacitance as the key descriptor for measuring the activity of CO-CO dimerization, the rate-determining step for C2+ formation in electroreduction of CO and CO2. Our work provides atomistic insights into cation effects on electric double layers and electrocatalysis that are crucial for optimizing electrode and electrolyte materials.
Collapse
Affiliation(s)
- Jia-Bo Le
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ao Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361100, China
| |
Collapse
|
11
|
Chen A, Le JB, Kuang Y, Cheng J. Modeling stepped Pt/water interfaces at potential of zero charge with ab initio molecular dynamics. J Chem Phys 2022; 157:094702. [DOI: 10.1063/5.0100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is worthwhile to understand the potentials of zero charge (PZCs) and structures of stepped metal/water interfaces, because for many electrocatalytic reactions stepped surfaces are more active than atomically flat surfaces. Herein, a series of stepped Pt/water interfaces are modeled at different step densities with ab initio molecular dynamics (AIMD). It is found that the structures of Pt/water interfaces are significantly influenced by the step density, particularly for the distribution of chemisorbed water. The step sites of metal surfaces are more preferred for water chemisorption than the terrace sites, and until the step density is very low, water will chemisorb on the terrace. In addition, it is revealed that the PZCs of stepped Pt/water interfaces are generally smaller than that of Pt(111), and the difference is mainly attributed to the difference in the work function, providing a simple way to estimate the PZCs of stepped metal surfaces. Finally, it is interesting to see that the Volta potential difference is almost same for Pt/water interfaces with different step densities, although their interface structures and magnitude of charge transfer clearly differ.
Collapse
Affiliation(s)
| | - Jia-Bo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China
| | | | | |
Collapse
|
12
|
Luo M, Koper MTM. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat Catal 2022. [DOI: 10.1038/s41929-022-00810-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractProton-exchange membrane fuel cells demand efficient electrode–electrolyte interfaces to catalyse the oxygen reduction reaction (ORR), the kinetics of which depends on the energetics of surface adsorption and on electrolyte environment. Here we show an unanticipated effect of non-specifically adsorbed anions on the ORR kinetics on a Pt(111) electrode; these trends do not follow the usual ORR descriptor, that is *OH binding energy. We propose a voltammetry-accessible descriptor, namely reversibility of the *O ↔ *OH transition. This descriptor tracks the dependence of ORR rates on electrolyte, including the concentration/identity of anions in acidic media, cations in alkaline media and the effect of ionomers. We propose a model that relates the ORR rate on Pt(111) to the rate of the *O to *OH transition, in addition to the thermodynamic *OH binding energy descriptor. Our model also rationalizes different trends for the ORR rate on stepped Pt surfaces in acidic versus alkaline media.
Collapse
|
13
|
Rizo R, Fernández-Vidal J, Hardwick LJ, Attard GA, Vidal-Iglesias FJ, Climent V, Herrero E, Feliu JM. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat Commun 2022; 13:2550. [PMID: 35538173 PMCID: PMC9090771 DOI: 10.1038/s41467-022-30241-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
The study of the OH adsorption process on Pt single crystals is of paramount importance since this adsorbed species is considered the main intermediate in many electrochemical reactions of interest, in particular, those oxidation reactions that require a source of oxygen. So far, it is frequently assumed that the OH adsorption on Pt only takes place at potentials higher than 0.55 V (versus the reversible hydrogen electrode), regardless of the Pt surface structure. However, by CO displacement experiments, alternating current voltammetry, and Raman spectroscopy, we demonstrate here that OH is adsorbed at more negative potentials on the low coordinated Pt atoms, the Pt steps. This finding opens a new door in the mechanistic study of many relevant electrochemical reactions, leading to a better understanding that, ultimately, can be essential to reach the final goal of obtaining improved catalysts for electrochemical applications of technological interest.
Collapse
Affiliation(s)
- Rubén Rizo
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| | - Julia Fernández-Vidal
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Street, Liverpool, L69 7ZF, UK
| | - Laurence J Hardwick
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Street, Liverpool, L69 7ZF, UK
| | - Gary A Attard
- Department of Physics, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | | | - Victor Climent
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| |
Collapse
|
14
|
Pan B, Liu B, Wang S, Lv Y, Du H, Zhang Y. Understanding the Hydroxyl Adsorption Behavior at Pt Electrode Surface in High-Temperature Alkaline Solutions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Ou L, Zhou H. Theoretical insights into the origin of promoter effect of alkali metals on Au-catalyzed nitrogen electroreduction. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ding X, Scieszka D, Watzele S, Xue S, Garlyyev B, Haid RW, Bandarenka AS. A Systematic Study of the Influence of Electrolyte Ions on the Electrode Activity. ChemElectroChem 2022. [DOI: 10.1002/celc.202101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Ding
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Daniel Scieszka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Song Xue
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Richard W. Haid
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
- Catalysis Research Center TUM Technical University of Munich Ernst-Otto-Fischer-Strasse 1 85748 Garching Germany
| |
Collapse
|
18
|
Jiang N, Zhu Z, Xue W, Xia BY, You B. Emerging Electrocatalysts for Water Oxidation under Near-Neutral CO 2 Reduction Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105852. [PMID: 34658063 DOI: 10.1002/adma.202105852] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR), which produces valuable fuels and chemicals under near-neutral conditions, offers a renewable approach to alleviate the global energy crisis as well as the increasing concerns on climate change. However, to implement this strategy, one of the major challenges, the sluggish kinetics of the paired oxygen evolution reaction (OER) at anode, needs to be surmounted. It is therefore highly desirable to explore high-performance and cost-effective OER electrocatalysts suitable for CO2 RR conditions, which is very different from those widely investigated under acidic or alkaline conditions. In this review, the ongoing development of OER electrocatalysts under near pH-neutral CO2 -saturated (bi)carbonate solutions are highlighted and the future opportunities are discussed. It is started with a brief introduction on OER paired with CO2 RR, the relevant theoretical tools such as density functional theory (DFT) and particularly machine learning (ML), and the operando characterization techniques. Then, there are some detailed discussions of recent progress on the rational design of OER electrocatalysts under CO2 RR conditions ranging from noble-metal oxides to nonprecious metal phosphides, carbonates, (hydro)oxides, and so on. Finally, a perspective for developing OER electrocatalysts integrated with CO2 electroreduction is proposed.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154, USA
- Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zhiwei Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Wenjie Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| |
Collapse
|
19
|
Zheng Y, Cheung YT, Liang L, Qiu H, Zhang L, Tsang A, Chen Q, Tong R. Electrochemical oxidative rearrangement of tetrahydro-β-carbolines in a zero-gap flow cell. Chem Sci 2022; 13:10479-10485. [PMID: 36277623 PMCID: PMC9473527 DOI: 10.1039/d2sc03951f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023] Open
Abstract
Oxidative rearrangement of tetrahydro-β-carbolines (THβCs) is one of the most efficient methods for the synthesis of biologically active spirooxindoles, including natural products and drug molecules. Here, we report the first electrochemical approach to achieve this important organic transformation in a flow cell. The key to the high efficiency was the use of a multifunctional LiBr electrolyte, where the bromide (Br−) ion acts as a mediator and catalyst and lithium ion (Li+) acts as a likely hydrophilic spectator, which might considerably reduce diffusion of THβCs into the double layer and thus prevent possible nonselective electrode oxidation of indoles. Additionally, we build a zero-gap flow cell to speed up mass transport and minimize concentration polarization, simultaneously achieving a high faradaic efficiency (FE) of 96% and an outstanding productivity of 0.144 mmol (h−1 cm−2). This electrochemical method is demonstrated with twenty substrates, offering a general, green path towards bioactive spirooxindoles without using hazardous oxidants. A zero-gap flow cell was designed for the first electro-oxidative rearrangement of tetrahydro-β-carbolines to spirooxindoles with high yield, faradaic efficiency and productivity when LiBr was discovered as a bi-functional mediator and catalyst.![]()
Collapse
Affiliation(s)
- Yiting Zheng
- Department of Mechanical and Aerospace Engineering, and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lixin Liang
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Huiying Qiu
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lei Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Anson Tsang
- Department of Mechanical and Aerospace Engineering, and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rongbiao Tong
- Department of Chemistry, The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Melle G, de Souza MB, Santiago PV, Corradini PG, Mascaro LH, Fernández PS, Sitta E. Glycerol electro-oxidation at Pt in alkaline media: influence of mass transport and cations. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Briega-Martos V, Sarabia FJ, Climent V, Herrero E, Feliu JM. Cation Effects on Interfacial Water Structure and Hydrogen Peroxide Reduction on Pt(111). ACS MEASUREMENT SCIENCE AU 2021; 1:48-55. [PMID: 36785745 PMCID: PMC9836069 DOI: 10.1021/acsmeasuresciau.1c00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interface between the Pt(111) surface and several MeF/HClO4 (Me+ = Li+, Na+, or Cs+) aqueous electrolytes is investigated by means of cyclic voltammetry and laser-induced temperature jump experiments. Results point out that the effect of the electrolyte on the interfacial water structure is different depending on the nature of the metal alkali cation, with the values of the potential of maximum entropy (pme) following the order pme (Li+) < pme (Na+) < pme (Cs+). In addition, the hydrogen peroxide reduction reaction is studied under these conditions. This reaction is inhibited at low potentials as a consequence of the build up of negative charges on the electrode surface. The potential where this inhibition takes place (E inhibition) follows the same trend as the pme. These results evidence that the activity of an electrocatalytic reaction can depend to great extent on the structure of the interfacial water adlayer and that the latter can be modulated by the nature of the alkali metal cation.
Collapse
|
22
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical Engineering Hanyang University 222 Wangsimni ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
23
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021; 60:23051-23067. [PMID: 34523770 PMCID: PMC8596788 DOI: 10.1002/anie.202110352] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/08/2022]
Abstract
For decades, turnover frequency (TOF) has served as an accurate descriptor of the intrinsic activity of a catalyst, including those in electrocatalytic reactions involving both fuel generation and fuel consumption. Unfortunately, in most of the recent reports in this area, TOF is often not properly reported or not reported at all, in contrast to the overpotentials at a benchmarking current density. The current density is significant in determining the apparent activity, but it is affected by catalyst-centric parasitic reactions, electrolyte-centric competing reactions, and capacitance. Luckily, a properly calculated TOF can precisely give the intrinsic activity free from these phenomena in electrocatalysis. In this Viewpoint we ask: 1) What makes the commonly used activity markers unsuitable for intrinsic activity determination? 2) How can TOF reflect the intrinsic activity? 3) Why is TOF still underused in electrocatalysis? 4) What methods are used in TOF determination? and 5) What is essential in the more accurate calculation of TOF? Finally, the significance of normalizing TOF by Faradaic efficiency (FE) is stressed and we give our views on the development of universal analytical tools to determine the exact number of active sites and real surface area for all kinds of materials.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical EngineeringHanyang University222 Wangsimni ro, Seongdong-guSeoul04763Republic of Korea
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| |
Collapse
|
24
|
Li Y, Liu ZF. Cross-Sphere Electrode Reaction: The Case of Hydroxyl Desorption during the Oxygen Reduction Reaction on Pt(111) in Alkaline Media. J Phys Chem Lett 2021; 12:6448-6456. [PMID: 34236872 DOI: 10.1021/acs.jpclett.1c01800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydroxide ion is a common electrolyte when electrode reactions take place in alkaline media. In the case of oxygen reduction reaction on Pt(111), we demonstrate by ab initio molecular dynamics calculations that the desorption of hydroxyl (OH*) from the electrode surface to form a solvated OH- is a cross-sphere process, with the OH* reactant in the inner sphere and the OH- product directly generated in the aqueous outer sphere. Such a mechanism is distinct from the typical inner sphere and outer sphere reactions. It is dictated by the strong hydrogen bonding interactions between a hydroxide ion and water molecules and is facilitated by proton transfer through solvation layers. It should play a significant role whenever OH* desorption, or its reverse, OH- adsorption, is involved in an electrochemical reaction.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen China
| |
Collapse
|
25
|
Li Y, Wang X, Mei B, Wang Y, Luo Z, Luo E, Yang X, Shi Z, Liang L, Jin Z, Wu Z, Jiang Z, Liu C, Xing W, Ge J. Carbon monoxide powered fuel cell towards H 2-onboard purification. Sci Bull (Beijing) 2021; 66:1305-1311. [PMID: 36654152 DOI: 10.1016/j.scib.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) suffer extreme CO poisoning even at PPM level (<10 ppm), owning to the preferential CO adsorption and the consequential blockage of the catalyst surface. Herein, however, we report that CO itself can become an easily convertible fuel in PEMFC using atomically dispersed Rh catalysts (Rh-N-C). With CO to CO2 conversion initiates at 0 V, pure CO powered fuel cell attains unprecedented power density at 236 mW cm-2, with maximum CO turnover frequency (64.65 s-1, 363 K) far exceeding any chemical or electrochemical catalysts reported. Moreover, this feature enables efficient CO selective removal from H2 gas stream through the PEMFC technique, with CO concentration reduced by one order of magnitude through running only one single cell, while simultaneously harvesting electricity. We attribute such catalytic behavior to the weak CO adsorption and the co-activation of H2O due to the interplay between two adjacent Rh sites.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaoyan Luo
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ergui Luo
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolong Yang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Liang Liang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhao Jin
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China; Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China.
| | - Changpeng Liu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
26
|
Zhang Y, Tang J, Ni Z, Zhao Y, Jia F, Luo Q, Mao L, Zhu Z, Wang F. Real-Time Characterization of the Fine Structure and Dynamics of an Electrical Double Layer at Electrode-Electrolyte Interfaces. J Phys Chem Lett 2021; 12:5279-5285. [PMID: 34061525 DOI: 10.1021/acs.jpclett.1c01134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemisorption of an electrolyte species on electrode surfaces is ubiquitous and affects the dynamics and mechanism of various electrochemical reactions. Understanding of the chemical structure and property of the resulting electrical double layer is vital but limited. Herein, we operando probed the electrochemical interface between a gold electrode surface and a common electrolyte, phosphate buffer, using our newly developed in situ liquid secondary ion mass spectrometry. We surprisingly found that, on the positively charged gold electrode surface, sodium cations were anchored in the Stern layer in a partially dehydrated form by a formation of compact ion pairs with the accumulated phosphate anions. The resulting strong adsorption phase was further revealed to retard the electro-oxidation reaction of ascorbate. This finding addressed one major gap in the fundamental science of electrode-electrolyte interfaces, namely, where and how cations reside in the double layer to impose effects on electrochemical reactions, providing insights into the engineering of better electrochemical systems.
Collapse
Affiliation(s)
- Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jilin Tang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Ni
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland 99354, Washington, United States
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
El-Ghannam A, Chandrasekaran S, Sultana F. Synthesis and characterization of a novel silica nanowire-reinforced SiC thermal material. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Granda-Marulanda LP, McCrum IT, Koper MTM. A simple method to calculate solution-phase free energies of charged species in computational electrocatalysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:204001. [PMID: 33761487 DOI: 10.1088/1361-648x/abf19d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Determining the adsorption potential of adsorbed ions in the field of computational electrocatalysis is of great interest to study their interaction with the electrode material and the solvent, and to map out surface phase diagrams and reaction pathways. Calculating the adsorption potentials of ions with density functional theory and comparing across various ions requires an accurate reference energy of the ion in solution and electrons at the same electrochemical scale. Here we highlight a previously used method for determining the reference free energy of solution phase ions using a simple electrochemical thermodynamic cycle, which allows this free energy to be calculated from that of a neutral gas-phase or solid species and an experimentally measured equilibrium potential, avoiding the need to model solvent around the solution phase ion in the electronic structure calculations. While this method is not new, we describe its use and utility in detail and show that this same method can be used to find the free energy of any ion from any reaction, as long as the half-cell equilibrium potential is known, even for reactions that do not transfer the same number of protons and electrons. To illustrate its usability, we compare the adsorption potentials obtained with DFT of I*, Br*, Cl*, and SO4*on Pt(111) and Au(111) and OH*and Ag*on Pt(111) with those measured experimentally and find that this simple and computationally affordable method reproduces the experimental trends.
Collapse
Affiliation(s)
| | - Ian T McCrum
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Department of Chemical & Biomolecular Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, United States of America
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
29
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Yan X, Gan T, Shi S, Du J, Xu G, Zhang W, Yan W, Zou Y, Liu G. Potassium-incorporated manganese oxide enhances the activity and durability of platinum catalysts for low-temperature CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01409a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Potassium-incorporated manganese oxide is demonstrated as an efficient support for fabricating highly active and stable Pt catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Xuelan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tao Gan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaozhen Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Guohao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenxiang Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
31
|
Sebastián-Pascual P, Jordão Pereira I, Escudero-Escribano M. Tailored electrocatalysts by controlled electrochemical deposition and surface nanostructuring. Chem Commun (Camb) 2020; 56:13261-13272. [PMID: 33104137 DOI: 10.1039/d0cc06099b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled electrodeposition and surface nanostructuring are very promising approaches to tailor the structure of the electrocatalyst surface, with the aim to enhance their efficiency for sustainable energy conversion reactions. In this highlight, we first summarise different strategies to modify the structure of the electrode surface at the atomic and sub-monolayer level for applications in electrocatalysis. We discuss aspects such as structure sensitivity and electronic and geometric effects in electrocatalysis. Nanostructured surfaces are finally introduced as more scalable electrocatalysts, where morphology, cluster size, shape and distribution play an essential role and can be finely tuned. Controlled electrochemical deposition and selective engineering of the surface structure are key to design more active, selective and stable electrocatalysts towards a decarbonised energy scheme.
Collapse
Affiliation(s)
- Paula Sebastián-Pascual
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - Inês Jordão Pereira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - María Escudero-Escribano
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| |
Collapse
|
32
|
|
33
|
Xue S, Haid RW, Kluge RM, Ding X, Garlyyev B, Fichtner J, Watzele S, Hou S, Bandarenka AS. Enhancing the Hydrogen Evolution Reaction Activity of Platinum Electrodes in Alkaline Media Using Nickel-Iron Clusters. Angew Chem Int Ed Engl 2020; 59:10934-10938. [PMID: 32142192 PMCID: PMC7318285 DOI: 10.1002/anie.202000383] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Indexed: 11/11/2022]
Abstract
Herein, we demonstrate an easy way to improve the hydrogen evolution reaction (HER) activity of Pt electrodes in alkaline media by introducing Ni-Fe clusters. As a result, the overpotential needed to achieve a current density of 10 mA cm-2 in H2 -saturated 0.1 m KOH is reduced for the model single-crystal electrodes down to about 70 mV. To our knowledge, these modified electrodes outperform any other reported electrocatalysts tested under similar conditions. Moreover, the influence of 1) Ni to Fe ratio, 2) cluster coverage, and 3) the nature of the alkali-metal cations present in the electrolyte on the HER activity has been investigated. The observed catalytic performance likely originates from both the improved water dissociation at the Ni-Fe clusters and the subsequent optimal hydrogen adsorption and recombination at Pt atoms present at the Ni-Fe/Pt boundary.
Collapse
Affiliation(s)
- Song Xue
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Richard W Haid
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Regina M Kluge
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Xing Ding
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Johannes Fichtner
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Shujin Hou
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany
| | - Aliaksandr S Bandarenka
- Physics of Energy Conversion and Storage, Physik-Department, Technische Universität München, James-Franck-Strasse 1, 85748, Garching, Germany.,Catalysis Research Center TUM, Ernst-Otto-Fischer-Strasse 1, 85748, Garching, Germany
| |
Collapse
|
34
|
Xue S, Haid RW, Kluge RM, Ding X, Garlyyev B, Fichtner J, Watzele S, Hou S, Bandarenka AS. Aktivitätssteigerung der Wasserstoffentwicklung von Platinelektroden in alkalischen Medien unter Verwendung von Ni‐Fe‐Clustern. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Song Xue
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Richard W. Haid
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Regina M. Kluge
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Xing Ding
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Johannes Fichtner
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Shujin Hou
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage, Physik-DepartmentTechnische Universität München James-Franck-Str. 1 85748 Garching Deutschland
- Catalysis Research Center TUM Ernst-Otto-Fischer-Straße 1 85748 Garching Deutschland
| |
Collapse
|
35
|
da Silva KN, Sitta E. Tuning oscillatory time-series evolution by Pt(111)-OHad stabilization. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04557-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Wang N, Cao Z, Zheng X, Zhang B, Kozlov SM, Chen P, Zou C, Kong X, Wen Y, Liu M, Zhou Y, Dinh CT, Zheng L, Peng H, Zhao Y, Cavallo L, Zhang X, Sargent EH. Hydration-Effect-Promoting Ni-Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906806. [PMID: 31950562 DOI: 10.1002/adma.201906806] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Indexed: 05/26/2023]
Abstract
Oxygen evolution reaction (OER) catalysts that function efficiently in pH-neutral electrolyte are of interest for biohybrid fuel and chemical production. The low concentration of reactant in neutral electrolyte mandates that OER catalysts provide both the water adsorption and dissociation steps. Here it is shown, using density functional theory simulations, that the addition of hydrated metal cations into a Ni-Fe framework contributes water adsorption functionality proximate to the active sites. Hydration-effect-promoting (HEP) metal cations such as Mg2+ and hydration-effect-limiting Ba2+ into Ni-Fe frameworks using a room-temperature sol-gel process are incorporated. The Ni-Fe-Mg catalysts exhibit an overpotential of 310 mV at 10 mA cm-2 in pH-neutral electrolytes and thus outperform iridium oxide (IrO2 ) electrocatalyst by a margin of 40 mV. The catalysts are stable over 900 h of continuous operation. Experimental studies and computational simulations reveal that HEP catalysts favor the molecular adsorption of water and its dissociation in pH-neutral electrolyte, indicating a strategy to enhance OER catalytic activity.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, P. R. China
- Renewable Energy Conversion and Storage Center of Nankai University, Tianjin, 300072, P. R. China
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Zhen Cao
- Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xueli Zheng
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Sergey M Kozlov
- Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peining Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Chengqin Zou
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Xiangbin Kong
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, P. R. China
- Renewable Energy Conversion and Storage Center of Nankai University, Tianjin, 300072, P. R. China
| | - Yunzhou Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Min Liu
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Yansong Zhou
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Cao Thang Dinh
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, P. R. China
- Renewable Energy Conversion and Storage Center of Nankai University, Tianjin, 300072, P. R. China
| | - Luigi Cavallo
- Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, P. R. China
- Renewable Energy Conversion and Storage Center of Nankai University, Tianjin, 300072, P. R. China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| |
Collapse
|
37
|
Kristoffersen HH, Chan K, Vegge T, Hansen HA. Energy–entropy competition in cation–hydroxyl interactions at the liquid water–Pt(111) interface. Chem Commun (Camb) 2020; 56:427-430. [DOI: 10.1039/c9cc07769c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At water–Pt(111) interfaces, cation–*OH interactions are found to consist of both internal energy stabilizations and entropy costs emphasizing the complexity of such systems.
Collapse
Affiliation(s)
| | - Karen Chan
- Department of Physics
- Technical University of Denmark
- DK-2800 Kgs. Lyngby
- Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
38
|
Waegele MM, Gunathunge CM, Li J, Li X. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J Chem Phys 2019; 151:160902. [PMID: 31675864 DOI: 10.1063/1.5124878] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Electrocatalysis is central to the production of renewable fuels and high-value commodity chemicals. The electrolyte and the electrode together determine the catalytic properties of the liquid/solid interface. In particular, the cations of the electrolyte can greatly change the rates and reaction selectivity of many electrocatalytic processes. For this reason, the careful choice of the cation is an essential step in the design of catalytic interfaces with high selectivity for desired high-value products. To make such a judicious choice, it is critical to understand where in the electric double layer the cations reside and the various distinct mechanistic impacts they can have on the electrocatalytic process of interest. In this perspective, we review recent advances in the understanding of the electric double layer with a particular focus on the interfacial distribution of cations and the cations' hydration states in the vicinity of the electrode under various experimental conditions. Furthermore, we summarize the different ways in which cations can alter the rates and selectivity of chemical processes at electrified interfaces and identify possible future areas of research in this field.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Charuni M Gunathunge
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Jingyi Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| | - Xiang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Boston, Massachusetts 02467, USA
| |
Collapse
|
39
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
40
|
Huang J, Liu Y, Xu M, Wan C, Liu H, Li M, Huang Z, Duan X, Pan X, Huang Y. PtCuNi Tetrahedra Catalysts with Tailored Surfaces for Efficient Alcohol Oxidation. NANO LETTERS 2019; 19:5431-5436. [PMID: 31287958 DOI: 10.1021/acs.nanolett.9b01937] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Direct methanol/ethanol alkaline fuel cells (DMAFCs/DEAFCs) represent an attractive mobile power generation technology. The methanol/ethanol oxidation reaction (MOR/EOR) often requires high-performance yet expensive Pt-based catalysts that may be easily poisoned. Herein, we report the development of PtCuNi tetrahedra electrocatalysts with optimized specific activity and mass activity for MOR and EOR. Our synthetic and structural characterizations show that these PtCuNi tetrahedra have Cu-rich core and PtNi-rich shell with tunable surface composition. Electrocatalytic studies demonstrate that Pt56Cu28Ni16 exhibits exceptional MOR and EOR specific activities of 14.0 ± 1.0 mA/cm2 and 11.2 ± 1.0 mA/cm2, respectively and record high mass activity of 7.0 ± 0.5 A/mgPt and 5.6 ± 0.6 A/mgPt, comparing favorably with the best MOR or EOR Pt alloy-based catalysts reported to date. Furthermore, we show that the unique core-shell tetrahedra configuration can also lead to considerably improved durability.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P.R. China
| | - Mingjie Xu
- Fok Ying Tung Research Institute , Hong Kong University of Science and Technology , Guangzhou 511458 , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu J, Huang J. A mean-field model for the double layer of stepped platinum single-crystal electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Rizo R, Pérez‐Rodríguez S, García G. Well‐Defined Platinum Surfaces for the Ethanol Oxidation Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201900600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rubén Rizo
- Instituto de Materiales y Nanotecnología Departamento de QuímicaUniversidad de La Laguna PO Box 456 38200 La Laguna, Santa Cruz de Tenerife Spain
- Current address: Department of Interface ScienceFritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | | | - Gonzalo García
- Instituto de Materiales y Nanotecnología Departamento de QuímicaUniversidad de La Laguna PO Box 456 38200 La Laguna, Santa Cruz de Tenerife Spain
| |
Collapse
|
43
|
Electrolyte effects on undoped and Mo-doped BiVO4 film for photoelectrochemical water splitting. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc Natl Acad Sci U S A 2019; 116:9220-9229. [PMID: 31004052 DOI: 10.1073/pnas.1900761116] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The product selectivity of many heterogeneous electrocatalytic processes is profoundly affected by the liquid side of the electrocatalytic interface. The electrocatalytic reduction of CO to hydrocarbons on Cu electrodes is a prototypical example of such a process. However, probing the interactions of surface-bound intermediates with their liquid reaction environment poses a formidable experimental challenge. As a result, the molecular origins of the dependence of the product selectivity on the characteristics of the electrolyte are still poorly understood. Herein, we examined the chemical and electrostatic interactions of surface-adsorbed CO with its liquid reaction environment. Using a series of quaternary alkyl ammonium cations ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]), we systematically tuned the properties of this environment. With differential electrochemical mass spectrometry (DEMS), we show that ethylene is produced in the presence of [Formula: see text] and [Formula: see text] cations, whereas this product is not synthesized in [Formula: see text]- and [Formula: see text]-containing electrolytes. Surface-enhanced infrared absorption spectroscopy (SEIRAS) reveals that the cations do not block CO adsorption sites and that the cation-dependent interfacial electric field is too small to account for the observed changes in selectivity. However, SEIRAS shows that an intermolecular interaction between surface-adsorbed CO and interfacial water is disrupted in the presence of the two larger cations. This observation suggests that this interaction promotes the hydrogenation of surface-bound CO to ethylene. Our study provides a critical molecular-level insight into how interactions of surface species with the liquid reaction environment control the selectivity of this complex electrocatalytic process.
Collapse
|
45
|
Liu E, Li J, Jiao L, Doan HTT, Liu Z, Zhao Z, Huang Y, Abraham KM, Mukerjee S, Jia Q. Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts. J Am Chem Soc 2019; 141:3232-3239. [PMID: 30673227 DOI: 10.1021/jacs.8b13228] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the fundamental and practical significance of the hydrogen evolution and oxidation reactions (HER/HOR), their kinetics in base remain unclear. Herein, we show that the alkaline HER/HOR kinetics can be unified by the catalytic roles of the adsorbed hydroxyl (OHad)-water-alkali metal cation (AM+) adducts, on the basis of the observations that enriching the OHad abundance via surface Ni benefits the HER/HOR; increasing the AM+ concentration only promotes the HER, while varying the identity of AM+ affects both HER/HOR. The presence of OHad-(H2O) x-AM+ in the double-layer region facilitates the OHad removal into the bulk, forming OH--(H2O) x-AM+ as per the hard-soft acid-base theory, thereby selectively promoting the HER. It can be detrimental to the HOR as per the bifunctional mechanism, as the AM+ destabilizes the OHad, which is further supported by the CO oxidation results. This new notion may be important for alkaline electrochemistry.
Collapse
Affiliation(s)
- Ershuai Liu
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Jingkun Li
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Li Jiao
- Department of Chemical Engineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Huong Thi Thanh Doan
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Zeyan Liu
- Department of Materials Science and Engineering , University of California , Los Angeles , California 90095 , United States
| | - Zipeng Zhao
- Department of Materials Science and Engineering , University of California , Los Angeles , California 90095 , United States
| | - Yu Huang
- Department of Materials Science and Engineering , University of California , Los Angeles , California 90095 , United States.,California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90095 , United States
| | - K M Abraham
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Qingying Jia
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
46
|
Farias MJS, Feliu JM. Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces. Top Curr Chem (Cham) 2019; 377:5. [PMID: 30631969 DOI: 10.1007/s41061-018-0228-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/26/2018] [Indexed: 11/28/2022]
Abstract
The identification of active sites in electrocatalytic reactions is part of the elucidation of mechanisms of catalyzed reactions on solid surfaces. However, this is not an easy task, even for apparently simple reactions, as we sometimes think the oxidation of adsorbed CO is. For surfaces consisting of non-equivalent sites, the recognition of specific active sites must consider the influence that facets, as is the steps/defect on the surface of the catalyst, cause in its neighbors; one has to consider the electrochemical environment under which the "active sites" lie on the surface, meaning that defects/steps on the surface do not partake in chemistry by themselves. In this paper, we outline the recent efforts in understanding the close relationships between site-specific and the overall rate and/or selectivity of electrocatalytic reactions. We analyze hydrogen adsorption/desorption, and electro-oxidation of CO, methanol, and ammonia. The classical topic of asymmetric electrocatalysis on kinked surfaces is also addressed for glucose electro-oxidation. The article takes into account selected existing data combined with our original works.
Collapse
Affiliation(s)
- Manuel J S Farias
- Departamento de Química, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, São Luís, Maranhão, CEP 65080-805, Brazil
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
47
|
Garlyyev B, Xue S, Pohl MD, Reinisch D, Bandarenka AS. Oxygen Electroreduction at High-Index Pt Electrodes in Alkaline Electrolytes: A Decisive Role of the Alkali Metal Cations. ACS OMEGA 2018; 3:15325-15331. [PMID: 31458194 PMCID: PMC6643383 DOI: 10.1021/acsomega.8b00298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Currently, platinum group metals play a central role in the electrocatalysis of the oxygen reduction reaction (ORR). Successful design and synthesis of new highly active materials for this process mainly rely on understanding of the so-called electrified electrode/electrolyte interface. It is widely accepted that the catalytic properties of this interface are only dependent on the electrode surface composition and structure. Therefore, there are limited studies about the effects of the electrolyte components on electrocatalytic activity. By now, however, several key points related to the electrolyte composition have become important for many electrocatalytic reactions, including the ORR. It is essential to understand how certain "spectator ions" (e.g., alkali metal cations) influence the electrocatalytic activity and what is the contribution of the electrode surface structure when, for instance, changing the pH of the electrolyte. In this work, the ORR activity of model stepped Pt [n(111) × (111)] surfaces (where n is equal to either 3 or 4 and denotes the atomic width of the (111) terraces of the Pt electrodes) was explored in various alkali metal (Li+, Na+, K+, Rb+, and Cs+) hydroxide solutions. The activity of these electrodes was unexpectedly strongly dependent not only on the surface structure but also on the type of the alkali metal cation in the solutions with the same pH, being the highest in potassium hydroxide solutions (i.e., K+ ≫ Na+ > Cs+ > Rb+ ≈ Li+). A possible reason for the observed ORR activity of Pt [n(111) × (111)] electrodes is discussed as an interplay between structural effects and noncovalent interactions between alkali metal cations and reaction intermediates adsorbed at active catalytic sites.
Collapse
Affiliation(s)
- Batyr Garlyyev
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Song Xue
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Marcus D. Pohl
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - David Reinisch
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Aliaksandr S. Bandarenka
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
- Nanosystems
Initiative Munich (NIM), Schellingstraße 4, 80799 Munich, Germany
- Catalysis
Research Center TUM, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
| |
Collapse
|
48
|
Janik MJ, McCrum IT, Koper MT. On the presence of surface bound hydroxyl species on polycrystalline Pt electrodes in the “hydrogen potential region” (0–0.4 V-RHE). J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Hiltrop D, Cychy S, Elumeeva K, Schuhmann W, Muhler M. Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles. Beilstein J Org Chem 2018; 14:1428-1435. [PMID: 29977406 PMCID: PMC6009201 DOI: 10.3762/bjoc.14.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/24/2018] [Indexed: 01/23/2023] Open
Abstract
The effects of the alkali cations Na+ and K+ were investigated in the alkaline electrochemical oxidation of glycerol over Pd nanoparticles (NPs) deposited on functionalized carbon nanotubes (CNTs). The electrocatalytic activity was assessed by cyclic voltammetry revealing a lower overpotential of glycerol oxidation for nitrogen-functionalized Pd/NCNTs compared with oxygen-functionalized Pd/OCNTs. Whereas significantly lower current densities were observed for Pd/OCNT in NaOH than in KOH in agreement with stronger non-covalent interactions on the Pd surface, Pd/NCNT achieved an approximately three-times higher current density in NaOH than in KOH. In situ electrochemistry/IR spectroscopy was applied to unravel the product distribution as a function of the applied potential in NaOH and KOH. The IR spectra exhibited strongly changing band patterns upon varying the potential between 0.77 and 1.17 V vs RHE: at low potentials oxidized C3 species such as mesoxalate and tartronate were formed predominantly, and with increasing potentials C2 and C1 species originating from C–C bond cleavage were identified. The tendency to produce carbonate was found to be less pronounced in KOH. The less favored formation of highly oxidized C3 species and of carbonate is deduced to be the origin of the lower current densities in the cyclic voltammograms (CVs) for Pd/NCNT in KOH. The enhanced current densities in NaOH are rationalized by the presence of Na+ ions bound to the basic nitrogen species in the NCNT support. Adsorbed Na+ ions can form complexes with the organic molecules, presumably enhanced by the chelate effect. In this way, the organic molecules are assumed to be bound more tightly to the NCNT support in close proximity to the Pd NPs facilitating their oxidation.
Collapse
Affiliation(s)
- Dennis Hiltrop
- Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Steffen Cychy
- Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Karina Elumeeva
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
50
|
Xue S, Garlyyev B, Watzele S, Liang Y, Fichtner J, Pohl MD, Bandarenka AS. Influence of Alkali Metal Cations on the Hydrogen Evolution Reaction Activity of Pt, Ir, Au, and Ag Electrodes in Alkaline Electrolytes. ChemElectroChem 2018. [DOI: 10.1002/celc.201800690] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Song Xue
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Yunchang Liang
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Johannes Fichtner
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Marcus D. Pohl
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
- Nanosystems Initiative Munich (NIM); Schellingstraße 4 80799 Munich Germany
- Catalysis Research Center TUM; Ernst-Otto-Fischer-Straße 1 85748 Garching Germany
| |
Collapse
|