1
|
Huang H, Wu H, Zhang Y, Feng X. Polyhedral Polymeric Microparticles with Interwoven 1 nm Gyroid Pores for Precise Adsorption and Nanoconfined Degradation. ACS NANO 2025; 19:8926-8938. [PMID: 39993254 DOI: 10.1021/acsnano.4c16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Molecular-scale adsorption, catalysis, and separation demand nanoporous materials with high permeability, extensive surface areas, and pronounced nanoconfined effects. Fabricating polymeric particles with 3-D interwoven pores of ∼1 nm potentially addresses these needs. However, significant challenges remain in controlling their pore interconnectivity, uniformity, and achieving faceted particle shapes. Herein we present facile fabrication of polyhedral particles possessing interpenetrating 1 nm pores by suspension polymerization of double-gyroid (DG) liquid crystalline droplets. Mechanical stirring of the disordered phase at elevated temperatures, followed by undercooling, leads to the emulsification of DG droplets, as confirmed by synchrotron small-angle X-ray scattering (SAXS). UV-induced cross-linking of the DG droplets preserves the ordered network of 1 nm pores, as characterized by SAXS and microscopy. Intriguingly, due to the elasticity induced by the Ia3̅d periodicities, these particles adopt polyhedral shapes to avoid the elastic energy penalty associated with conventional sphericity. We demonstrate that these faceted particles, featuring 1 nm pores and efficient packing, enable rapid, size-exclusive adsorption and nanoconfined degradation of organic pollutants, driven by their 3-D permeability, high surface area, and enhanced nanoconfinement effects.
Collapse
Affiliation(s)
- Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yizhou Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Kato T, Imamura K, Sakamoto T, Hoshino Y. Liquid-crystalline nanostructured membranes for CO 2 separation. Chem Commun (Camb) 2025; 61:3998-4001. [PMID: 39951290 DOI: 10.1039/d4cc06751g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report herein that self-organized subnanoporous membranes prepared from ionic liquid-crystalline (LC) compounds exhibit CO2 separation properties (αCO2/N2 ≈ 60) in humid conditions. A bicontinuous cubic (Cubbi) LC film shows N2 barrier properties, whereas the CO2 permeability is kept as permeable.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Institute for Aqua Regeneration, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kazushi Imamura
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takeshi Sakamoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Lange A, Kapernaum N, Wojnarowska Z, Holtzheimer L, Mies S, Williams V, Gießelmann F, Taubert A. Sulfobetaine ionic liquid crystals based on strong acids: phase behavior and electrochemistry. Phys Chem Chem Phys 2025; 27:844-860. [PMID: 39661016 DOI: 10.1039/d4cp03060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A group of new zwitterion based ionic liquid crystals (ILCs) have been synthesized. Depending on the counter anion (mesylate or hydrogen sulfate) the phase behavior of the resulting ILCs is quite different. Mesylate based ILCs show complex phase behavior with multiple phases depending on the alkyl chain length. In contrast, hydrogen sulfate based systems always exhibit Colr phases irrespective of the alkyl chain length. The latter show much larger ILC mesophase windows and are thermally stable up to ca. 200 °C. All ILCs show reasonable ionic conductivities of up to 10-4 S cm-1 at elevated temperatures, making these ILCs candidates for intermediate temperature ionic conductors.
Collapse
Affiliation(s)
- Alyna Lange
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Nadia Kapernaum
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Lea Holtzheimer
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Stefan Mies
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Vance Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Frank Gießelmann
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Aoki N, Tang Y, Zeng X, Ichikawa T. Design of Functional Gyroid Minimal Surfaces Transporting Proton Based Solely on Surface Hopping Conduction Mechanism. Macromol Rapid Commun 2024:e2400619. [PMID: 39491048 DOI: 10.1002/marc.202400619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Surface proton hopping conduction (SPHC) mechanisms is an important proton conduction mechanism in conventional polymer electrolytes, along with the Grotthuss and vehicle mechanisms. Due to the small diffusion coefficient of protons in the SPHC mechanism, few studies have focused on the SPHC mechanism. Recently, it has been found that a dense alignment of SO3 - groups significantly lowers the activation energy in the SPHC mechanism, enabling fast proton conduction. In this study, a series of polymerizable amphiphilic-zwitterions is prepared, forming bicontinuous cubic liquid-crystalline assemblies with gyroid symmetry in the presence of suitable amounts of bis(trifluoromethanesulfonyl) imide (HTf2N) and water. In situ polymerization of these compounds yields gyroid-nanostructured polymer films, as confirmed by synchrotron small-angle X-ray scattering experiments. The high proton conductivity of the films on the order of 10-2 S cm-1 at 40 °C and relative humidity of 90% is based solely on the SPHC mechanism.
Collapse
Affiliation(s)
- Nanami Aoki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| |
Collapse
|
5
|
Ichikawa T, Obara S, Yamaguchi S, Tang Y, Kato T, Zeng X. Design of V-shaped ionic liquid crystals: atropisomerisation ability and formation of double-gyroid molecular assemblies. Chem Commun (Camb) 2024; 60:11279-11282. [PMID: 39196639 DOI: 10.1039/d4cc03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We designed V-shaped ionic liquid crystals with two sterically congested ionic parts at the vertex. Depending on the degree of steric hindrance, atropisomerisation occurred in solution. All compounds formed bicontinuous cubic phases with double-gyroid structures in the bulk state, partially owing to the co-existence of atropisomers with opposite chirality.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Soki Obara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Saori Yamaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Toshiyo Kato
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
6
|
Liu D, He S, Luo L, Yang W, Liu Y, Yang S, Shen Z, Chen S, Fan XH. Double gyroid-structured electrolyte based on an azobenzene-containing monomer and its polymer. SOFT MATTER 2024; 20:6424-6430. [PMID: 39087847 DOI: 10.1039/d4sm00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The self-assembled structure has a significant impact on the performance of ion conductors. We prepared a new type of electrolyte with self-assembled structures from an azobenzene-based liquid crystalline (LC) monomer and its corresponding polymer. By doping different amounts of monomers and lithium salt LiTFSI, the self-assembled nanostructure of the electrolyte was changed from lamellae to double gyroid. The ionic conductivity of the azobenzene-based electrolytes with the double gyroid structure was 1.64 × 10-4 S cm-1, higher than most PEO-based polymer electrolytes. The azobenzene-based system provides a new strategy to design solid electrolytes with self-assembled structures that may be potentially used in solid-state lithium-ion batteries.
Collapse
Affiliation(s)
- Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shangming He
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shichu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shuangjun Chen
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Jacob L, Niedzicki L, Jakubowski R, Pociecha D, Kaszyński P. Lithium salt of a pro-mesogenic [ closo-CB 11H 12] - derivative: anisotropic Li + ion transport in liquid crystalline electrolytes. Dalton Trans 2024; 53:10293-10302. [PMID: 38832635 DOI: 10.1039/d4dt01246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Li+ ion conduction in two aligned liquid crystalline electrolytes consisting of 10 mol% Li+ salt of a pro-mesogenic anion derived from [closo-1-CB11H12]- in non-ionic hosts was investigated. Using electrochemical impedance spectroscopy (EIS), the ionic conductivity in the parallel (σ‖) and perpendicular (σ⊥) directions of the electrolyte samples was determined using two types of cells: an interdigitated gold electrode and a nylon 6-coated ITO cell. The ratio of ionic conductivities σ⊥/σ‖ in the electrolyte with a nona(ethylene oxide) spacer was about 3 in the entire SmA phase, while in the shorter homologue, the ratio monotonically increases from about 0.4 to 2.9. The liquid crystalline behavior of the hosts and the electrolytes was investigated by optical, thermal, and powder XRD methods.
Collapse
Affiliation(s)
- Litwin Jacob
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland.
| | - Leszek Niedzicki
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Rafał Jakubowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland.
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Piotr Kaszyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland.
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37130, USA
| |
Collapse
|
8
|
Mehlhose S, Sakamoto T, Eickhoff M, Kato T, Tanaka M. Electrochemical Detection of Selective Anion Transport through Subnanopores in Liquid-Crystalline Water Treatment Membranes. J Phys Chem B 2024; 128:4537-4543. [PMID: 38683761 PMCID: PMC11089498 DOI: 10.1021/acs.jpcb.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
The anion-selective transport through subnanoporous liquid-crystalline (LC) water treatment membranes was quantitatively detected by the deposition and electrochemical analysis of the LC membrane on the GaN electrode. The time course of the capacitance and Warburg resistance of the LC membrane suggest that the interaction of the LC membrane with monovalent Cl- ions is distinctly different from that with SO42- ions. A continuous decay in capacitance suggests the condensation of Cl- ions in subnanopores, whereas the interaction between SO42- ions and the inner wall of subnanopores is much weaker. The chronoamperometry data further suggest that SO42- ions are transported through subnanoporous channels 10 times faster than Cl- ions. These results, together with the previous X-ray emission spectroscopy, suggest that SO42- ions, which possess similar hydrogen-bonded structures to the hydrogen-bonded networks inside the subnanopores, can exchange the associated water molecules and hop along the network of water molecules, but Cl- ions bind and accumulate inside subnanopores. The well-controlled supramolecular self-assembly of LC building blocks opens a large potential toward the fine adjustment of hydrogen-bonding networks in nanospace providing materials new functions, which cannot be realized by bulk water.
Collapse
Affiliation(s)
- Sven Mehlhose
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
| | - Takeshi Sakamoto
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Martin Eickhoff
- Institut
für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee NW1, D28359 Bremen, Germany
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, Wakasato, Nagano 380-8553, Japan
| | - Motomu Tanaka
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Kato T, Uchida J, Ishii Y, Watanabe G. Aquatic Functional Liquid Crystals: Design, Functionalization, and Molecular Simulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306529. [PMID: 38126650 PMCID: PMC10885670 DOI: 10.1002/advs.202306529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Aquatic functional liquid crystals, which are ordered molecular assemblies that work in water environment, are described in this review. Aquatic functional liquid crystals are liquid-crystalline (LC) materials interacting water molecules or aquatic environment. They include aquatic lyotropic liquid crystals and LC based materials that have aquatic interfaces, for example, nanoporous water treatment membranes that are solids preserving LC order. They can remove ions and viruses with nano- and subnano-porous structures. Columnar, smectic, bicontinuous LC structures are used for fabrication of these 1D, 2D, 3D materials. Design and functionalization of aquatic LC sensors based on aqueous/LC interfaces are also described. The ordering transitions of liquid crystals induced by molecular recognition at the aqueous interfaces provide distinct optical responses. Molecular orientation and dynamic behavior of these aquatic functional LC materials are studied by molecular dynamics simulations. The molecular interactions of LC materials and water are key of these investigations. New insights into aquatic functional LC materials contribute to the fields of environment, healthcare, and biotechnology.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiki Ishii
- Department of Data Science, School of Frontier Engineering, Kitasato University, Sagamihara, 252-0373, Japan
| | - Go Watanabe
- Department of Data Science, School of Frontier Engineering, Kitasato University, Sagamihara, 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Ebina, 243-0435, Japan
| |
Collapse
|
10
|
Noll K, Lambov M, Singh DP, Lehmann M. Discotic Star Mesogen with Thymine Nucleobases Exhibiting a Rare Gyroid Cubic Mesophase with 3D Conductivity. Chemistry 2024; 30:e202303375. [PMID: 37889092 DOI: 10.1002/chem.202303375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
A unique gyroid cubic phase has been discovered for a discotic star mesogen with three covalently attached DNA bases. In this cubicI a 3 ‾ d ${Ia\bar{3}d}$ phase, the conjugated core of the mesogens and the thymine pseudo guests self-assemble in mirror image continuous networks, representing a semiconducting material with three-dimensional transport pathways. The hole carrier mobilities are found to be in the typical range of poly(phenylenevinylene) scaffolds. This structure is stabilized by a weak hydrogen bonding between the thymine bases and can be switched to a columnar liquid crystal - thermally and by the addition of complementary adenine guests.
Collapse
Affiliation(s)
- Katja Noll
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin Lambov
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dharmendra Pratap Singh
- Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, 62100, Calais, France
| | - Matthias Lehmann
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemsitry and Bavarian Polymer Institute, Theodor-Bovori-Weg 4, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Zhang L, Wang S, Wang Q, Shao H, Jin Z. Dendritic Solid Polymer Electrolytes: A New Paradigm for High-Performance Lithium-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303355. [PMID: 37269533 DOI: 10.1002/adma.202303355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Indexed: 06/05/2023]
Abstract
Li-ions battery is widely used and recognized, but its energy density based on organic electrolytes has approached the theoretical upper limit, while the use of organic electrolytes also brings some safety hazards (leakage and flammability). Polymer electrolytes (PEs) are expected to fundamentally solve the safety problem and improve energy density. Therefore, Li-ions battery based on solid PE has become a research hotspot in recent years. However, low ionic conductivity and poor mechanical properties, as well as a narrow electrochemical window limit its further development. Dendritic PEs with unique topology structure has low crystallinity, high segmental mobility, and reduced chain entanglement, providing a new avenue for designing high-performance PEs. In this review, the basic concept and synthetic chemistry of dendritic polymers are first introduced. Then, this story will turn to how to balance the mechanical properties, ionic conductivity, and electrochemical stability of dendritic PEs from synthetic chemistry. In addition, accomplishments on dendritic PEs based on different synthesis strategies and recent advances in battery applications are summarized and discussed. Subsequently, the ionic transport mechanism and interfacial interaction are deeply analyzed. In the end, the challenges and prospects are outlined to promote further development in this booming field.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
| | - Shi Wang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, N23-4022, Avenida da Universidad, Taipa, Maca, 519000, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Jennings J, Pabst G. Multiple Routes to Bicontinuous Cubic Liquid Crystal Phases Discovered by High-Throughput Self-Assembly Screening of Multi-Tail Lipidoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206747. [PMID: 37026678 DOI: 10.1002/smll.202206747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Bicontinuous cubic phases offer advantageous routes to a broad range of applied materials ranging from drug delivery devices to membranes. However, a priori design of molecules that assemble into these phases remains a technological challenge. In this article, a high-throughput synthesis of lipidoids that undergo protonation-driven self-assembly (PrSA) into liquid crystalline (LC) phases is conducted. With this screening approach, 12 different multi-tail lipidoid structures capable of assembling into the bicontinuous double gyroid phase are discovered. The large volume of small-angle X-ray scattering (SAXS) data uncovers unexpected design criteria that enable phase selection as a function of lipidoid headgroup size and architecture, tail length and architecture, and counterion identity. Surprisingly, combining branched headgroups with bulky tails forces lipidoids to adopt unconventional pseudo-disc conformations that pack into double gyroid networks, entirely distinct from other synthetic or biological amphiphiles within bicontinuous cubic phases. From a multitude of possible applications, two examples of functional materials from lipidoid liquid crystals are demonstrated. First, the fabrication of gyroid nanostructured films by interfacial PrSA, which are rapidly responsive to the external medium. Second, it is shown that colloidally-dispersed lipidoid cubosomes, for example, for drug delivery, are easily assembled using top-down solvent evaporation methods.
Collapse
Affiliation(s)
- James Jennings
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Georg Pabst
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| |
Collapse
|
13
|
Guschlbauer J, Niedzicki L, Jacob L, Rzeszotarska E, Pociecha D, Kaszyński P. Liquid Crystalline Electrolytes Derived from the 1,12-Disubstituted [closo-CB11H12]– Anion. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
14
|
Wu H, Huang H, Zhang Y, Lu X, Majewski PW, Feng X. Stabilizing Differential Interfacial Curvatures by Mismatched Molecular Geometries: Toward Polymers with Percolating 1 nm Channels of Gyroid Minimal Surfaces. ACS NANO 2022; 16:21139-21151. [PMID: 36516967 DOI: 10.1021/acsnano.2c09103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft materials with self-assembled networks possess saddle-shaped interfaces with distributed negative Gaussian curvatures. The ability to stabilize such a geometry is critically important for various applications but can be challenging due to the possibly "deficient" packing of the building blocks. This nontrivial challenge has been manifested, for example, by the limited availability of cross-linkable bicontinuous cubic (Q) liquid crystals (LCs), which can be utilized to fabricate compelling polymers with networked nanochannels uniformly sized at ∼1 nm. Here, we devise a facile approach to stabilizing cross-linkable Q mesophases by leveraging the synergistic self-assembly from pairs of scalably synthesized polymerizable amphiphiles. Hybridization of the molecular geometries by mixing significantly increases the propensity of the local deviations in the interfacial curvature specifically required for Q assemblies. "Normal" (type 1) double gyroid LCs possessing 1 nm ionic channels conforming to minimal surfaces can be formulated by simultaneous hydration of the amphiphile mixtures, as opposed to the formation of hexagonal or lamellar mesophases exhibited by the single-amphiphile systems, respectively. Fixation of the bicontinuous network in polymers via radical polymerization has been efficaciously facilitated by the presence of the bifunctional polymerizable groups in one of the employed amphiphiles. High-fidelity lock-in of the ordered continuous 1 nm channels has been unambiguously confirmed by the observation of single-crystal-like diffraction patterns from synchrotron small-angle X-ray scattering and large-area periodicities by transmission electron microscopy. The produced polymeric materials exhibit the required mechanical integrity as well as chemical robustness in a variety of organic solvents that benefit their practical applications for selective transport of ions and molecules.
Collapse
Affiliation(s)
- Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, and School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People's Repubic of China
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, Anhui230026, People's Repubic of China
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw02089, Poland
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| |
Collapse
|
15
|
Tang X, Chang X, Zhu B, Cui L, Jiang B, Meng F, Yan G. Self‐assembly, mesomorphic behavior, and ionic conductivity of polymerized ionic liquid crystals with a threshold switching characteristic. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinqiao Tang
- College of Sciences Northeastern University Shenyang China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials Ningde Normal University Ningde China
| | - Xiaolong Chang
- College of Sciences Northeastern University Shenyang China
| | - Boyan Zhu
- College of Sciences Northeastern University Shenyang China
| | - Luan Cui
- College of Sciences Northeastern University Shenyang China
| | - Beihong Jiang
- College of Sciences Northeastern University Shenyang China
| | - Fanbao Meng
- College of Sciences Northeastern University Shenyang China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials Ningde Normal University Ningde China
| |
Collapse
|
16
|
Wang R, Fang C, Yang L, Li K, Zhu K, Liu G, Chen J. The Novel Ionic Liquid and Its Related Self‐Assembly in the Areas of Energy Storage and Conversion. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Runtong Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Chengdong Fang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Le Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Ke Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Kailing Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Guofeng Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Jiajia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChem) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
17
|
Ishii Y, Matubayasi N, Washizu H. Nonpolarizable Force Fields through the Self-Consistent Modeling Scheme with MD and DFT Methods: From Ionic Liquids to Self-Assembled Ionic Liquid Crystals. J Phys Chem B 2022; 126:4611-4622. [PMID: 35698025 DOI: 10.1021/acs.jpcb.2c02782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key to achieve the accuracy of molecular dynamics (MD) simulation is the set of force fields used to express the atomistic interactions. In particular, the electrostatic interaction remains the main issue for the precise simulation of various ionic soft materials from ionic liquids to their supramolecular compounds. In this study, we test the nonpolarizable force fields of ionic liquids (ILs) and self-assembled ionic liquid crystals (ILCs) for which the intermolecular charge transfer and intramolecular polarization are significant. The self-consistent modeling scheme is adopted to refine the atomic charges of ionic species in a condensed state through the use of density functional theory (DFT) under the periodic boundary condition. The atomic charges of the generalized amber force field (GAFF) are effectively updated to express the electrostatic properties of ionic molecules obtained by the DFT calculation in condensed phase, which improves the prediction accuracy of ionic conductivity with the obtained force field (GAFF-DFT). The derived DFT charges then suggest that the substitution of a hydrophobic liquid-crystalline moiety into IL-based cations enhances the charge localization of ionic groups in the amphiphilic molecules, leading to the amplification of the electrostatic interactions among the hydrophilic/ionic groups in the presence of hydrophobic moieties. In addition, we focus on an ion-conductive pathway hidden in the self-assembled nanostructure. The MD results indicate that the ionic groups of cation and anion interact strongly for keeping the bicontinuous nanosegregation of ionic nanochannel. The partial fractions of hydrophilic/ionic and hydrophobic nanodomains are then quantified with the volume difference from referenced IL systems, while the calculated ionic conductivity decreases in the self-assembled ILCs more than the occupied volume of ionic nanodomains. These analyses suggest that the mobility of ions in the self-assembled ILCs remains quite restricted even with small tetrafluoroborate anions because of strong attractive interaction among ionic moieties.
Collapse
Affiliation(s)
- Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Nobuyuki Matubayasi
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan.,Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
18
|
Uchida J, Soberats B, Gupta M, Kato T. Advanced Functional Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109063. [PMID: 35034382 DOI: 10.1002/adma.202109063] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystals have been intensively studied as functional materials. Recently, integration of various disciplines has led to new directions in the design of functional liquid-crystalline materials in the fields of energy, water, photonics, actuation, sensing, and biotechnology. Here, recent advances in functional liquid crystals based on polymers, supramolecular complexes, gels, colloids, and inorganic-based hybrids are reviewed, from design strategies to functionalization of these materials and interfaces. New insights into liquid crystals provided by significant progress in advanced measurements and computational simulations, which enhance new design and functionalization of liquid-crystalline materials, are also discussed.
Collapse
Affiliation(s)
- Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
19
|
Tang X, Yan G, Wang J, Cui L, Jiang B, Zhu B, Meng F. Self‐assembly and antistatic property of ionic liquid crystalline polymers. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinqiao Tang
- College of Sciences Northeastern University Shenyang China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials Ningde Normal University Ningde China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials Ningde Normal University Ningde China
| | - Jiwei Wang
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College Ningde Normal University Ningde China
| | - Luan Cui
- College of Sciences Northeastern University Shenyang China
| | - Beihong Jiang
- College of Sciences Northeastern University Shenyang China
| | - Boyan Zhu
- College of Sciences Northeastern University Shenyang China
| | - Fanbao Meng
- College of Sciences Northeastern University Shenyang China
| |
Collapse
|
20
|
Yılmaz Topuzlu E, Okur HI, Ulgut B, Dag Ö. Role of Water in the Lyotropic Liquid Crystalline Mesophase of Lithium Salts and Non-ionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14443-14453. [PMID: 34856801 DOI: 10.1021/acs.langmuir.1c02411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lyotropic liquid crystalline (LLC) mesophase forms upon evaporation of water from aqueous solutions of LiX salts (X is Cl-, Br-, NO3-, or SCN-) and a surfactant [C12H25(OCH2CH2)10OH, abbreviated as C12E10]. The LiX/C12E10/H2O aqueous solutions have been monitored (during evaporation of their excess water to obtain stable LLC mesophases) by gravimetric, spectroscopic, and conductivity measurements to elucidate the role of water in these mesophases. The water/salt molar ratio in stable mesophases changes from 1.5 to 8.0, depending on the counteranion of the salt and the ambient humidity of the laboratory. The LiX/C12E10/H2O LLC mesophases lose water at lower humidity levels and absorb water at higher humidity levels. The LiCl-containing mesophase holds as few as four structural water molecules per LiCl, whereas the LiNO3 mesophase holds 1.5 waters per salt (least among those assessed). This ratio strongly depends on the atmospheric humidity level; the water/LiX mole ratio increases by 0.08 ± 0.01 H2O in the LLC mesophases per percent humidity unit. Surprisingly, the LLC mesophases are stable (no salt leaching) in broad humidity (10-85%) and salt/surfactant mole ratio (2-10 LiX/C12E10) ranges. Attenuated total reflectance Fourier transform infrared spectroscopic data show that the water molecules in the mesophase interact with salt species more strongly in the LiCl mesophase and more weakly in the case of the nitrate ion, which is evident by the shift of the O-H stretching band of water. The O-H stretching peak position in the mesophases decreases in the order νLiCl > νLiBr > νLiSCN > νLiNO3 and accords well with the H2O/LiX mole ratio. The conductivity of the LLC mesophase also responds to the amount of water as well as the nature of the counteranion (X-). The conductivity decreases in the order σLiCl > σLiBr > σLiNO3 > σLiSCN at low salt mole ratios and in the order σLiBr > σLiCl > σLiNO3 > σLiSCN at higher ratios due to structural changes in the mesophase.
Collapse
Affiliation(s)
| | - Halil I Okur
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Burak Ulgut
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
21
|
1,10-Phenanthroline-based hexacatenar LCs with complex self-assembly, photophysical and binding selectivity behaviors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Ishii Y, Matubayasi N, Watanabe G, Kato T, Washizu H. Molecular insights on confined water in the nanochannels of self-assembled ionic liquid crystal. SCIENCE ADVANCES 2021; 7:eabf0669. [PMID: 34321196 PMCID: PMC8318373 DOI: 10.1126/sciadv.abf0669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/16/2021] [Indexed: 05/07/2023]
Abstract
Self-assembled ionic liquid crystals can transport water and ions via the periodic nanochannels, and these materials are promising candidates as water treatment membranes. Molecular insights on the water transport process are, however, less investigated because of computational difficulties of ionic soft matters and the self-assembly. Here we report specific behavior of water molecules in the nanochannels by using the self-consistent modeling combining density functional theory and molecular dynamics and the large-scale molecular dynamics calculation. The simulations clearly provide the one-dimensional (1D) and 3D-interconnected nanochannels of self-assembled columnar and bicontinuous structures, respectively, with the precise mesoscale order observed by x-ray diffraction measurement. Water molecules are then confined inside the nanochannels with the formation of hydrogen bonding network. The quantitative analyses of free energetics and anisotropic diffusivity reveal that, the mesoscale geometry of 1D nanodomain profits the nature of water transport via advantages of dissolution and diffusion mechanisms inside the ionic nanochannels.
Collapse
Affiliation(s)
- Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
24
|
Wu H, Xu F, Gao G, Feng X. Highly Ordered Interconnected 1 nm Pores in Polymers Fabricated from Easily Accessible Gyroid Liquid Crystals. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Fengxian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Guanzhen Gao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
Takeuchi H, Ichikawa T. Creation of Gyroid Nanostructured Polymer Films from Lyotropic Liquid Crystals Containing a Polymerizable Ionic Liquid as a Solvent. CHEM LETT 2021. [DOI: 10.1246/cl.210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroaki Takeuchi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takahiro Ichikawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
26
|
Park J, Staiger A, Mecking S, Winey KI. Structure–Property Relationships in Single-Ion Conducting Multiblock Copolymers: A Phase Diagram and Ionic Conductivities. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
27
|
Kobayashi T, Li YX, Hirota Y, Maekawa A, Nishiyama N, Zeng XB, Ichikawa T. Gyroid-Nanostructured All-Solid Polymer Films Combining High H + Conductivity with Low H 2 Permeability. Macromol Rapid Commun 2021; 42:e2100115. [PMID: 33960572 DOI: 10.1002/marc.202100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Gyroid-nanostructured all-solid polymer films with exceedingly high proton conductivity and low H2 gas permeability have been created via crosslinking polymerization of mixtures of a zwitterionic amphiphilic monomer and a polymerizable imide-type acid that co-organize into bicontinuous cubic liquid-crystalline phases. The gyroid nanostructures are visualized by reconstructing a 3D electron map from the synchrotron X-ray diffraction patterns. These films exhibit high proton conductivity of the order of 10-1 S cm-1 and extremely low H2 gas permeability of the order of 10-15 mol m m-2 s-1 Pa-1 . These properties can be ascribed to the presence of the ionic liquid-like layer along the gyroid minimal surface. Since these two characteristics are required for improving the performance of proton-exchange membrane fuel cells, the present membrane design represents a promising strategy for the development of advanced devices, pertinent to establishing sustainable energy sources.
Collapse
Affiliation(s)
- Tsubasa Kobayashi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ya-Xin Li
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Yuichiro Hirota
- Division of Chemical Engineering, Osaka University, Osaka, 560-8531, Japan.,Department of Life Science and Applied Chemistry Graduate School of Engineering, Nagoya Institute of Technology, Aichi, 466-8555, Japan
| | - Asako Maekawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Osaka University, Osaka, 560-8531, Japan
| | - Xiang-Bing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Takahiro Ichikawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo, 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| |
Collapse
|
28
|
Hamaguchi K, Ichikawa R, Kajiyama S, Torii S, Hayashi Y, Kumaki J, Katayama H, Kato T. Gemini Thermotropic Smectic Liquid Crystals for Two-Dimensional Nanostructured Water-Treatment Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20598-20605. [PMID: 33836127 DOI: 10.1021/acsami.0c20524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have developed a two-dimensional (2D) liquid-crystalline (LC) nanostructured water-treatment membrane showing high virus rejection ability (over 99.99997% for bacteriophage Qβ) and improved water permeation. Polymerizable gemini amphiphiles have been designed and synthesized. They have H-shaped gemini-type structures of thermotropic smectic liquid crystals composed of cationic imidazolium moieties. One of the gemini amphiphiles shows a smectic A phase with an interdigitated bilayer structure. A cross-linked self-standing 2D nanostructured polymer film has been obtained by in situ photopolymerization of the gemini amphiphile in the smectic phase. The length of linkers in gemini amphiphiles affects the formation of LC phases. The 2D nanostructured membrane also showed selective salt rejection.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rino Ichikawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Hayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Kloos J, Joosten N, Schenning A, Nijmeijer K. Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Kato T, Gupta M, Yamaguchi D, Gan KP, Nakayama M. Supramolecular Association and Nanostructure Formation of Liquid Crystals and Polymers for New Functional Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200304] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Yamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kian Ping Gan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masanari Nakayama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
31
|
Structure and dynamics of a chiral cubanoid complex composed of lithium and salphen. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Maekawa A, Kobayashi T, Ichikawa T. Gyroid nanostructured soft membranes formed by controlling the degree of crosslinking polymerization of bicontinuous cubic liquid-crystalline monomers. Polym J 2020. [DOI: 10.1038/s41428-020-00436-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Salikolimi K, Sudhakar AA, Ishida Y. Functional Ionic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11702-11731. [PMID: 32927953 DOI: 10.1021/acs.langmuir.0c01935] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic liquid crystals have emerged as a new class of functional soft materials in the last two decades, and they exhibit synergistic characteristics of ionic liquids and liquid crystals such as macroscopic orientability, miscibility with various species, phase stability, nanostructural tunability, and polar nanochannel formation. Owing to these characteristics, the structures, properties, and functions of ionic liquid crystals have been a hot topic in materials chemistry, finding various applications including host frameworks for guest binding, separation membranes, ion-/proton-conducting membranes, reaction media, and optoelectronic materials. Although several excellent review articles of ionic liquid crystals have been published recently, they mainly focused on the fundamental aspects, structures, and specific properties of ionic liquid crystals, while these applications of ionic liquid crystals have not yet been discussed at one time. The aim of this feature article is to provide an overview of the applications of ionic liquid crystals in a comprehensive manner.
Collapse
Affiliation(s)
| | | | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Anion exchange membrane electrolyte preserving inverse Ia3‾d bicontinuous cubic phase: Effect of microdomain morphology on selective ion transport. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Bukusoglu E, Koku H, Çulfaz-Emecen PZ. Addressing challenges in the ultrafiltration of biomolecules from complex aqueous environments. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Bicontinuous Cubic and Hexagonal Columnar Liquid Crystalline Ion-Conductors at Room Temperature in Ion-Doped Dendritic Amphiphiles. CRYSTALS 2020. [DOI: 10.3390/cryst10030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A bicontinuous cubic (Cubbi) liquid crystalline (LC) phase consisting of three dimensional (3D) conducting networks is a promising structural platform for ion-conductors. For practical applications using this fascinating LC structure, it is necessary to suppress crystallization at room temperature (RT). Herein, we report the Cubbi structure at RT and the morphology–dependent conduction behavior in ionic samples of a non-crystallizable dendritic amphiphile. In the molecular design, branched alkyl chains were used as an ionophobic part instead of crystallizable linear alkyl chains. Two ionic samples with Cubbi and hexagonal columnar (Colhex) LC phases at RT were prepared by adding different amounts of lithium salt to the amphiphile. Impedance analysis demonstrated that the Cubbi phase contributed to the faster ion-conduction to a larger extent than the Colhex phase due to the 3D ionic networks of the Cubbi phase. In addition, the temperature–dependent impedance and electric modulus data provided information regarding the phase transition from microphase-separated phase to molecularly mixed liquid phase.
Collapse
|
37
|
Huang Z, Yi M, Liu Y, Qi P, Song A, Hao J. Magnetic polymerizable surfactants: thermotropic liquid crystal behaviors and construction of nanostructured films. NEW J CHEM 2020. [DOI: 10.1039/d0nj03029e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two polymerizable surfactants, 3-undecylene-1-vinylimidazolium bromide (C11VIMBr) and 3-dodecyl-1-vinylimidazolium bromide (C12VIMBr), were chosen to prepare magnetic surfactant monomers by introducing Mn2+, Gd3+ and Ho3+.
Collapse
Affiliation(s)
- Zhaohui Huang
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Mengjiao Yi
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Yihan Liu
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| |
Collapse
|
38
|
Yan L, Rank C, Mecking S, Winey KI. Gyroid and Other Ordered Morphologies in Single-Ion Conducting Polymers and Their Impact on Ion Conductivity. J Am Chem Soc 2019; 142:857-866. [DOI: 10.1021/jacs.9b09701] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lu Yan
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christina Rank
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902029. [PMID: 31441147 DOI: 10.1002/adma.201902029] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/28/2019] [Indexed: 05/21/2023]
Abstract
Solid polymer electrolytes (SPEs) have aroused wide interest in lithium batteries because of their sufficient mechanical properties, superior safety performances, and excellent processability. However, ionic conductivity and high-voltage compatibility of SPEs are still yet to meet the requirement of future energy-storage systems, representing significant barriers to progress. In this regard, intermolecular interactions in SPEs have attracted attention, and they can significantly impact on the Li+ motion and frontier orbital energy level of SPEs. Recent advances in improving electrochemcial performance of SPEs are reviewed, and the underlying mechanism of these proposed strategies related to intermolecular interaction is discussed, including ion-dipole, hydrogen bonds, π-π stacking, and Lewis acid-base interactions. It is hoped that this review can inspire a deeper consideration on this critical issue, which can pave new pathway to improve ionic conductivity and high-voltage performance of SPEs.
Collapse
Affiliation(s)
- Qian Zhou
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Jun Ma
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Shanmu Dong
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Xianfeng Li
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Division of Energy Storage, Dalian National Lab for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Guanglei Cui
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| |
Collapse
|
40
|
Cai J, Ma W, Xu L, Hao C, Sun M, Wu X, Colombari FM, Moura AF, Silva MC, Carneiro‐Neto EB, Chaves Pereira E, Kuang H, Xu C. Self‐Assembled Gold Arrays That Allow Rectification by Nanoscale Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiarong Cai
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Felippe Mariano Colombari
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and Materials 13083-970 Campinas, SP Brazil
| | - André Farias Moura
- Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | | | | | | | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| |
Collapse
|
41
|
Cai J, Ma W, Xu L, Hao C, Sun M, Wu X, Colombari FM, Moura AF, Silva MC, Carneiro‐Neto EB, Chaves Pereira E, Kuang H, Xu C. Self‐Assembled Gold Arrays That Allow Rectification by Nanoscale Selectivity. Angew Chem Int Ed Engl 2019; 58:17418-17424. [DOI: 10.1002/anie.201909447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jiarong Cai
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Felippe Mariano Colombari
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and Materials 13083-970 Campinas, SP Brazil
| | - André Farias Moura
- Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | | | | | | | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| |
Collapse
|
42
|
Kubo S, Kumagai M, Kawatsuki N, Nakagawa M. Photoinduced Reorientation in Thin Films of a Nematic Liquid Crystalline Polymer Anchored to Interfaces and Enhancement Using Small Liquid Crystalline Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14222-14229. [PMID: 31592666 DOI: 10.1021/acs.langmuir.9b02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The photoinduced reorientation of the side-chain mesogens in nematic liquid crystalline (LC) polymer thin films triggered by the axis-selective photo-Fries rearrangements of side-chain phenyl benzoate moieties is studied to understand the regulation of the anisotropic nanostructures supported by LC polymers. The influence of the substrate surface in anchoring the side-chain mesogens near the interfaces is examined by comparing the reorientation of 30- and 120-nm-thick films. Irradiation with linearly polarized ultraviolet (UV) light and subsequent annealing causes the side-chain mesogen reorientation to align perpendicular to the electric field of the incident UV light. The inplane order in the 30-nm-thick films is lower than that in the 120-nm ones. On the other hand, the annealing period required for mesogen alignment is independent of the film thickness. It is suggested that the substrate surfaces anchor the LC mesogens to fix their orientation, rather than slowing down the reorientational motion. In addition, it is demonstrated that small LC molecules miscible with the nematic LC polymer enhance photoinduced reorientation through cooperative molecular interaction with the side-chain mesogens, remarkably accelerating the orientation and improving the inplane order of the unidirectionally aligned mesogens.
Collapse
Affiliation(s)
- Shoichi Kubo
- National Institute for Materials Science , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Mari Kumagai
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan
| | - Nobuhiro Kawatsuki
- Department of Applied Chemistry, Graduate School of Engineering , University of Hyogo , 2167 Shosha , Himeji 671-2280 , Japan
| | - Masaru Nakagawa
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan
| |
Collapse
|
43
|
Thermoresponsive liquid crystalline polymer membranes that undergo phase transition at body temperature. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Kobayashi T, Li YX, Ono A, Zeng XB, Ichikawa T. Gyroid structured aqua-sheets with sub-nanometer thickness enabling 3D fast proton relay conduction. Chem Sci 2019; 10:6245-6253. [PMID: 31367299 PMCID: PMC6615241 DOI: 10.1039/c9sc00131j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022] Open
Abstract
A polymerizable amphiphile having two zwitterionic head-groups has been designed. This compound co-organizes with an acid, bis(trifluoromethanesulfonyl)imide (HTf2N), into a gyroid bicontinuous cubic liquid-crystalline phase. In situ polymerization of this phase has been successfully achieved by UV irradiation in the presence of a photoinitiator, yielding a self-standing gyroid-nanostructured polymer film. When the polymer film is placed under different relative humidity conditions or in water, it absorbs water owing to the strong hydration ability of the zwitterionic parts. It has been found that the polymer film preserves the gyroid nanostructure after the water absorption. Based on reconstructed electron density maps, it is assumed that the absorbed water molecules form a 3D continuous network along the gyroid minimal surface, which satisfies several key conditions for inducing fast proton conduction. As expected, such hydrated films show high ionic conductivities in the order of 10-1 S cm-1 when the water content of the film reaches 15.6 wt% at RH = 90%. The high conductivity is attributed to the induction of the Grotthuss mechanism, that is, proton conduction via the hydrogen-bonding network of the incorporated water molecules.
Collapse
Affiliation(s)
- Tsubasa Kobayashi
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Naka-cho, Koganei , Tokyo , 184-8588 , Japan .
| | - Ya-Xin Li
- Department of Materials Science and Engineering , University of Sheffield , Sheffield S1 3JD , UK
| | - Ayaka Ono
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Naka-cho, Koganei , Tokyo , 184-8588 , Japan .
| | - Xiang-Bing Zeng
- Department of Materials Science and Engineering , University of Sheffield , Sheffield S1 3JD , UK
| | - Takahiro Ichikawa
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Naka-cho, Koganei , Tokyo , 184-8588 , Japan .
- JST , PRESTO , 4-1-8 Honcho, Kawaguchi , Saitama , 332-0012 , Japan
| |
Collapse
|
45
|
Nabeel F, Rasheed T, Bilal M, Iqbal HM. Supramolecular membranes: A robust platform to develop separation strategies towards water-based applications. Sep Purif Technol 2019; 215:441-453. [DOI: 10.1016/j.seppur.2019.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Kumar A, Pisula W, Müllen K. One Dimensional Enhanced Anhydrous Proton Conduction in Well Defined Molecular Columns Induced by Non-Covalent Interactions. Chemphyschem 2019; 20:651-654. [PMID: 30702798 DOI: 10.1002/cphc.201801017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/30/2019] [Indexed: 11/11/2022]
Abstract
1D anhydrous proton conduction is enhanced significantly in ionic channels created by self-assembly of functionalized organic phosphonic acid and aromatic heterocyclic 1,2,4-triazole molecules. This study reveals high proton conduction in one dimension through a well-defined supramolecular architecture in which two different molecules undergo host-guest synergy and self-assemble to provide two-fold advantages: 1) formation of the ionic channels and 2) higher proton conduction in the absence of water. A clear correlation is found between the phenomena of ionic channels and anhydrous conductivity in the absolute dry state and we demonstrate that the one-dimensional conductivity can be as high as that recorded for 3D channels in, for instance, Nafion.
Collapse
Affiliation(s)
- Avneesh Kumar
- Institute of Organic Chemistry, L2-02, Room No. 554, TU Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany.,International Center for Materials Science, JNCASR, Jakkur, Bangalore, 650064, India
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
47
|
Preparation of polymer electrolyte membranes with continuous PEG channel via the fusion of self-assembled polycyclooctene-graft-polyethylene glycol copolymer micelles. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Abstract
Ionic liquids have established themselves as promising soft compounds for bringing innovation to materials science. For further developing functions and abilities of ionic liquids, one of the most important challenges is to organize ionic liquids into dimensionally ordered states. In this feature article, we will present the organization of ionic liquids by endowing them with liquid-crystalline properties. In particular, focusing on the specific abilities and properties of functional ionic liquids, a variety of nanostructured ionic materials have been developed and their unique and enhanced functions have been revealed. Some potential uses of organized ionic liquids have also been mentioned.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan. and Functional Ionic Liquid Laboratories (FILL), Nakacho, Koganei, Tokyo 184-8588, Japan and JST, PRESTO, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Ohno
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan. and Functional Ionic Liquid Laboratories (FILL), Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
49
|
Huang Z, Qi P, Liu Y, Chai C, Wang Y, Song A, Hao J. Ionic-surfactants-based thermotropic liquid crystals. Phys Chem Chem Phys 2019; 21:15256-15281. [DOI: 10.1039/c9cp02697e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ionic surfactants can be combined with various functional groups through electrostatic interaction, resulting in a series of thermotropic liquid crystals (TLCs).
Collapse
Affiliation(s)
- Zhaohui Huang
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Yihan Liu
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Chunxiao Chai
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| |
Collapse
|
50
|
Guterman R, Smith CA. Photopolymerization of Ionic Liquids – A Mutually Beneficial Approach for Materials Fabrication. Isr J Chem 2018. [DOI: 10.1002/ijch.201800123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ryan Guterman
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Christene A. Smith
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|