1
|
Marques C, Porcello A, Cerrano M, Hadjab F, Chemali M, Lourenço K, Hadjab B, Raffoul W, Applegate LA, Laurent AE. From Polydeoxyribonucleotides (PDRNs) to Polynucleotides (PNs): Bridging the Gap Between Scientific Definitions, Molecular Insights, and Clinical Applications of Multifunctional Biomolecules. Biomolecules 2025; 15:148. [PMID: 39858543 PMCID: PMC11764130 DOI: 10.3390/biom15010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Polydeoxyribonucleotides (PDRNs) and polynucleotides (PNs) are similar DNA-derived biopolymers that have garnered significant scientific attention since the 1990s for their potential applications in wound healing and skin rejuvenation. These biopolymers exhibit a broad molecular weight (MW) range, typically spanning from 50 to 1500 kDa. However, recent studies have expanded this range to encompass fragments as small as 1 kDa and as large as 10,000 kDa. Clinically, PDRN/PN formulations, commercially available in various galenic forms (gels, creams, serums, masks, and injectables), have demonstrated promising effects in significantly promoting skin regeneration, reducing inflammation, improving skin texture, preventing scar formation, and mitigating wrinkles. Importantly, despite their widespread use in cosmetology and aesthetic dermatology, the interchangeable use of the terms "PDRN" and "PN" in the scientific literature (to describe polymers of varying lengths) has led to considerable confusion within the medical and scientific communities. To specifically address this PDRN/PN ambiguity, this narrative review proposes a standardized structure-based nomenclature for these DNA-derived polymers, the "Marques Polynucleotide Cutoff", set at 1500 kDa. Thus, we propose that the term "PDRN" should be exclusively reserved for small- and medium-chain polymers (MW < 1500 kDa), while the term "PN" should specifically be used to denote longer-chain polymers (MW ≥ 1500 kDa). In a broader perspective, this classification is based on the distinct physicochemical properties and therapeutic effects of these DNA fragments of various MWs, which are comprehensively discussed in the present review.
Collapse
Affiliation(s)
- Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Marco Cerrano
- Aesthetic Surgery Department, Clinique Entourage, CH-1003 Lausanne, Switzerland;
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Michèle Chemali
- Plastic and Aesthetic Surgery Service, Centre Médical Lausanne Ouest, CH-1008 Prilly, Switzerland;
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Basste Hadjab
- Independent Consultant Office, F-74330 Poisy, France;
| | - Wassim Raffoul
- Plastic and Reconstructive Surgery Service, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland;
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis E. Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland;
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
2
|
Zhang J, Yu K, Yu M, Dong X, Tariq Sarwar M, Yang H. Facet-engineering strategy of phosphogypsum for production of mineral slow-release fertilizers with efficient nutrient fixation and delivery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:259-270. [PMID: 38677143 DOI: 10.1016/j.wasman.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Phosphogypsum (PG) presents considerable potential for agricultural applications as a secondary primary resource. However, it currently lacks environmentally friendly, economically viable, efficient, and sustainable reuse protocols. This study firstly developed a PG-based mineral slow-release fertilizer (MSRFs) by internalization and fixation of urea within the PG lattice via facet-engineering strategy. The molecular dynamics simulations demonstrated that the binding energy of urea to the (041) facet of PG surpassed that of the (021) and (020) facets, with urea's desorption energy on the (041) facet notably higher than on the (021) and (020) facets. Guided by these calculations, we selectively exposed the (041) dominant facet of PG, and then achieving complete urea fixation within the PG lattice to form urea-PG (UPG). UPG exhibited a remarkable 48-fold extension in N release longevity in solution and a 45.77% increase in N use efficiency by plants compared to conventional urea. The facet-engineering of PG enhances the internalization and fixation efficiency of urea for slow N delivery, thereby promoting nutrient uptake for plant growth. Furthermore, we elucidated the intricate interplay between urea and PG at the molecular level, revealing the involvement of hydrogen and ionic bonding. This specific bonding structure imparts exceptional thermal stability and water resistance to the urea within UPG under environmental conditions. This study has the potential to provide insights into the high-value utilization of PG and present innovative ideas for designing efficient MSRFs.
Collapse
Affiliation(s)
- Jun Zhang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Kun Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Parikh S, Limbachiya C. Electron interaction with DNA constituents in aqueous phase. Chemphyschem 2024; 25:e202300916. [PMID: 38259215 DOI: 10.1002/cphc.202300916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Electron driven chemistry of biomolecules in aqueous phase presents the realistic picture to study molecular processes. In this study we have investigated the interactions of electrons with the DNA constituents in their aqueous phase in order to obtain the quantities useful for DNA damage assessment. We have computed the inelastic mean free path (IMFP), mass stopping power (MSP) and absorbed dose (D) for the DNA constituents (Adenine, Cytosine, Guanine, Thymine and Uracil) in the aqueous medium from ionisation threshold to 5000 eV. We have modified complex optical potential formalism to include band gap of the systems to calculate inelastic cross sections which are used to estimate these entities. This is the maiden attempt to report these important quantities for the aqueous DNA constituents. We have compared our results with available data in gas and other phase and have observed explicable accord for IMFP and MSP. Since these are the first results of absorbed dose (D) for these compounds, we have explored present results vis-a-vis dose absorption in water.
Collapse
Affiliation(s)
- Smruti Parikh
- The Maharaja Sayajirao University of Baroda, Vadodara, 390 001
| | | |
Collapse
|
4
|
Song M, Wan Y, Si J, Yao Q, Man T, Mu Y, Huang Y, Zhu L, Zhu C, Deng S. Point-of-Care Diagnosis on Selenium Nutrition Based on Time-Resolved Fluorometric Glycoaffinity Chromatography. Anal Chem 2023; 95:14797-14804. [PMID: 37737115 DOI: 10.1021/acs.analchem.3c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Given the lack of timely evaluation of the well-received selenium fortification, a neat lateral-flow chromatographic solution was constructed here by using the recently identified urinary selenosugar (Sel) as a strongly indicative marker. As there are no ready-made receptors for this synthetic standard, phenylboronic acid (PBA) esterification and Dolichos biflorus agglutinin (DBA) affinity joined up to pinch and pin down the analyte into a sandwich-type glycol complex. Pilot lectin screening on homemade glycan microarrays verified such a new pairing between dual recognizers as PBA-Sel-DBA with a firm monosaccharide-binding constant. To quell the sample autofluorescence, europium nanoparticles with efficient long-life afterglow were employed as conjugating probes under 1 μs excitation. After systematic process optimizations, the prepared Sel-dipstick achieved swift and sensitive fluorometry over the physiological level of the target from 0.1 to 10 μM with a detection limit down to 0.06 μM. Further efforts were made to eliminate matrix effects from both temperature and pH via an approximate formula. Upon completion, the test strips managed to quantify the presence of Sel in not just imitated but real human urine, with comparable results to those in the references. As far as we know, this would be the first in-house prototype for user-friendly and facile diagnosis of Se nutrition with fair accuracy as well as selectivity. Future endeavors will be invested to model a more traceable Se-supplementary plan based on the rhythmic feedback of Sel excretion.
Collapse
Affiliation(s)
- Meiyan Song
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yao Mu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Li F, Smoukov SK, Korotkin I, Taiji M, Karabasov S. Interfacial Layer Breaker: A Violation of Stokes' Law in High-Speed Atomic Force Microscope Flows. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:220-226. [PMID: 36537801 PMCID: PMC9835886 DOI: 10.1021/acs.langmuir.2c02418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Structured water near surfaces is important in nonclassical crystallization, biomineralization, and restructuring of cellular membranes. In addition to equilibrium structures, studied by atomic force microscopy (AFM), high-speed AFM (H-S AFM) can now detect piconewton forces in microseconds. With increasing speeds and decreasing tip diameters, there is a danger that continuum water models will not hold, and molecular dynamic (MD) simulations would be needed for accurate predictions. MD simulations, however, can only evolve over tens of nanoseconds due to memory and computational efficiency/speed limitations, so new methods are needed to bridge the gap. Here, we report a hybrid, multiscale simulation method, which can bridge the size and time scale gaps to existing experiments. Structured water is studied between a moving silica AFM colloidal tip and a cleaved mica surface. The computational domain includes 1,472,766 atoms. To mimic the effect of long-range hydrodynamic forces occurring in water, when moving the AFM tip at speeds from 5 × 10-7 to 30 m/s, a hybrid multiscale method with local atomistic resolution is used, which serves as an effective open-domain boundary condition. The multiscale simulation is thus equivalent to using a macroscopically large computational domain with equilibrium boundary conditions. Quantification of the drag force shows the breaking of continuum behavior. Nonmonotonic dependence on both the tip speed and distance from the surface implies breaking of the hydration layer around the moving tip at time scales smaller than water cluster formation and strong water compressibility effects at the highest speeds.
Collapse
Affiliation(s)
- Fan Li
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
| | - Stoyan K. Smoukov
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
| | - Ivan Korotkin
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
- Mathematical
Sciences, University of Southampton, University Road, SO17 1BJSouthampton, United Kingdom
| | - Makoto Taiji
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center
(QBiC), 1-6-5 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo650-0047, Japan
| | - Sergey Karabasov
- The
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1
4NSLondon, United
Kingdom
| |
Collapse
|
6
|
Biedermannová L, Černý J, Malý M, Nekardová M, Schneider B. Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks. Acta Crystallogr D Struct Biol 2022; 78:1032-1045. [PMID: 35916227 PMCID: PMC9344474 DOI: 10.1107/s2059798322006234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Water plays an important role in stabilizing the structure of DNA and mediating its interactions. Here, the hydration of DNA was analyzed in terms of dinucleotide fragments from an ensemble of 2727 nonredundant DNA chains containing 41 853 dinucleotides and 316 265 associated first-shell water molecules. The dinucleotides were classified into categories based on their 16 sequences and the previously determined structural classes known as nucleotide conformers (NtCs). The construction of hydrated dinucleotide building blocks allowed dinucleotide hydration to be calculated as the probability of water density distributions. Peaks in the water densities, known as hydration sites (HSs), uncovered the interplay between base and sugar-phosphate hydration in the context of sequence and structure. To demonstrate the predictive power of hydrated DNA building blocks, they were then used to predict hydration in an independent set of crystal and NMR structures. In ten tested crystal structures, the positions of predicted HSs and experimental waters were in good agreement (more than 40% were within 0.5 Å) and correctly reproduced the known features of DNA hydration, for example the `spine of hydration' in B-DNA. Therefore, it is proposed that hydrated building blocks can be used to predict DNA hydration in structures solved by NMR and cryo-EM, thus providing a guide to the interpretation of experimental data and computer models. The data for the hydrated building blocks and the predictions are available for browsing and visualization at the website https://watlas.datmos.org/watna/.
Collapse
Affiliation(s)
- Lada Biedermannová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jiří Černý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Michal Malý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Michaela Nekardová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
7
|
Hanke M, Dornbusch D, Hadlich C, Rossberg A, Hansen N, Grundmeier G, Tsushima S, Keller A, Fahmy K. Anion-specific structure and stability of guanidinium-bound DNA origami. Comput Struct Biotechnol J 2022; 20:2611-2623. [PMID: 35685373 PMCID: PMC9163702 DOI: 10.1016/j.csbj.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
While the folding of DNA into rationally designed DNA origami nanostructures has been studied extensively with the aim of increasing structural diversity and introducing functionality, the fundamental physical and chemical properties of these nanostructures remain largely elusive. Here, we investigate the correlation between atomistic, molecular, nanoscopic, and thermodynamic properties of DNA origami triangles. Using guanidinium (Gdm) as a DNA-stabilizing but potentially also denaturing cation, we explore the dependence of DNA origami stability on the identity of the accompanying anions. The statistical analyses of atomic force microscopy (AFM) images and circular dichroism (CD) spectra reveals that sulfate and chloride exert stabilizing and destabilizing effects, respectively, already below the global melting temperature of the DNA origami triangles. We identify structural transitions during thermal denaturation and show that heat capacity changes ΔCp determine the temperature sensitivity of structural damage. The different hydration shells of the anions and their potential to form Gdm+ ion pairs in concentrated salt solutions modulate ΔCp by altered wetting properties of hydrophobic DNA surface regions as shown by molecular dynamics simulations. The underlying structural changes on the molecular scale become amplified by the large number of structurally coupled DNA segments and thereby find nanoscopic correlations in AFM images.
Collapse
|
8
|
Yuan Q, Gu Y, Feng S, Song X, Mu J, Li B, Li X, Cai Y, Jiang M, Yan L, Li J, Jiang Z, Wei Y, Ding Y. Sulfur-Promoted Hydrocarboxylation of Olefins on Heterogeneous Single-Rh-Site Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiao Yuan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Gu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siquan Feng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingju Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yutong Cai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingwei Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, and Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Zhang XX, Brantley SL, Corcelli SA, Tokmakoff A. DNA minor-groove binder Hoechst 33258 destabilizes base-pairing adjacent to its binding site. Commun Biol 2020; 3:525. [PMID: 32963293 PMCID: PMC7508854 DOI: 10.1038/s42003-020-01241-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the dynamic interactions of ligands to DNA is important in DNA-based nanotechnologies. By structurally tracking the dissociation of Hoechst 33258-bound DNA (d(CGCAAATTTGCG)2) complex (H-DNA) with T-jump 2D-IR spectroscopy, the ligand is found to strongly disturb the stability of the three C:G base pairs adjacent to A:T the binding site, with the broken base pairs being more than triple at 100 ns. The strong stabilization effect of the ligand on DNA duplex makes this observation quite striking, which dramatically increases the melting temperature and dissociation time. MD simulations demonstrate an important role of hydration water and counter cations in maintaining the separation of terminal base pairs. The hydrogen bonds between the ligand and thymine carbonyls are crucial in stabilizing H-DNA, whose breaking signal appearing prior to the complete dissociation. Thermodynamic analysis informs us that H-DNA association is a concerted process, where H cooperates with DNA single strands in forming H-DNA.
Collapse
Affiliation(s)
- Xin-Xing Zhang
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA.
| | - Shelby L Brantley
- Department of Chemistry and Biochemistry, University of Norte Dame, Notre Dame, IN, 46556, USA
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Norte Dame, Notre Dame, IN, 46556, USA.
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Černý J, Božíková P, Malý M, Tykač M, Biedermannová L, Schneider B. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr D Struct Biol 2020; 76:805-813. [PMID: 32876056 PMCID: PMC7466747 DOI: 10.1107/s2059798320009389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
A detailed description of the dnatco.datmos.org web server implementing the universal structural alphabet of nucleic acids is presented. It is capable of processing any mmCIF- or PDB-formatted files containing DNA or RNA molecules; these can either be uploaded by the user or supplied as the wwPDB or PDB-REDO structural database access code. The web server performs an assignment of the nucleic acid conformations and presents the results for the intuitive annotation, validation, modeling and refinement of nucleic acids.
Collapse
Affiliation(s)
- Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Paulína Božíková
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Michal Malý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Michal Tykač
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Lada Biedermannová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| |
Collapse
|
11
|
Xiang L, Zhang P, Liu C, He X, Li HB, Li Y, Wang Z, Hihath J, Kim SH, Beratan DN, Tao N. Conductance and configuration of molecular gold-water-gold junctions under electric fields. MATTER 2020; 3:166-179. [PMID: 33103114 PMCID: PMC7584381 DOI: 10.1016/j.matt.2020.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Water molecules can mediate charge transfer in biological and chemical reactions by forming electronic coupling pathways. Understanding the mechanism requires a molecular-level electrical characterization of water. Here, we describe the measurement of single water molecular conductance at room temperature, characterize the structure of water molecules using infrared spectroscopy, and perform theoretical studies to assist in the interpretation of the experimental data. The study reveals two distinct states of water, corresponding to a parallel and perpendicular orientation of the molecules. Water molecules switch from parallel to perpendicular orientations on applying an electric field, producing switching from high to low conductance states, thus enabling the determination of single water molecular dipole moments. The work further shows that water-water interactions affect the atomic scale configuration and conductance of water molecules. These findings demonstrate the importance of the discrete nature of water molecules in electron transfer and set limits on water-mediated electron transfer rates.
Collapse
Affiliation(s)
- Limin Xiang
- Biodesign Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- Lead contact
| | - Peng Zhang
- Departments of Chemistry and Physics, Duke University, Durham, North Carolina 27708, USA
| | - Chaoren Liu
- Departments of Chemistry and Physics, Duke University, Durham, North Carolina 27708, USA
| | - Xin He
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Haipeng B. Li
- Department of Electrical and Computing Engineering, University of California, Davis, Davis, California 95616, USA
| | - Yueqi Li
- Biodesign Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Zixiao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Joshua Hihath
- Department of Electrical and Computing Engineering, University of California, Davis, Davis, California 95616, USA
| | - Seong H. Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David N. Beratan
- Departments of Chemistry and Physics, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| | - Nongjian Tao
- Biodesign Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
12
|
Ratner BD, Latour RA. Role of Water in Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Muncan J, Tsenkova R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019; 24:molecules24152742. [PMID: 31357745 PMCID: PMC6695961 DOI: 10.3390/molecules24152742] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Aquaphotomics is a young scientific discipline based on innovative knowledge of water molecular network, which as an intrinsic part of every aqueous system is being shaped by all of its components and the properties of the environment. With a high capacity for hydrogen bonding, water molecules are extremely sensitive to any changes the system undergoes. In highly aqueous systems-especially biological-water is the most abundant molecule. Minute changes in system elements or surroundings affect multitude of water molecules, causing rearrangements of water molecular network. Using light of various frequencies as a probe, the specifics of water structure can be extracted from the water spectrum, indirectly providing information about all the internal and external elements influencing the system. The water spectral pattern hence becomes an integrative descriptor of the system state. Aquaphotomics and the new knowledge of water originated from the field of near infrared spectroscopy. This technique resulted in significant findings about water structure-function relationships in various systems contributing to a better understanding of basic life phenomena. From this foundation, aquaphotomics started integration with other disciplines into systematized science from which a variety of applications ensued. This review will present the basics of this emerging science and its technological potential.
Collapse
Affiliation(s)
- Jelena Muncan
- Biomedical Engineering Department, Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Biomeasurement Technology Laboratory, Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Roumiana Tsenkova
- Biomeasurement Technology Laboratory, Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan.
| |
Collapse
|
14
|
He X, Zhou Y, Wen X, Shpilman AA, Ren Q. Effect of Spin Polarization on the Exclusion Zone of Water. J Phys Chem B 2018; 122:8493-8502. [DOI: 10.1021/acs.jpcb.8b04118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xian He
- Department of Electronics, Peking University, Beijing 100080, China
| | - Yi Zhou
- Department of Electronics, Peking University, Beijing 100080, China
| | - Xing Wen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | | | - Quansheng Ren
- Department of Electronics, Peking University, Beijing 100080, China
| |
Collapse
|
15
|
Benabou S, Ruckebusch C, Sliwa M, Aviñó A, Eritja R, Gargallo R, de Juan A. Study of light-induced formation of photodimers in the i-motif nucleic acid structure by rapid-scan FTIR difference spectroscopy and hybrid hard- and soft-modelling. Phys Chem Chem Phys 2018; 20:19635-19646. [PMID: 30010680 DOI: 10.1039/c8cp00850g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The i-motif is a DNA structure formed by cytosine-rich sequences, very relevant from a biochemical point of view and potentially useful in nanotechnology as pH-sensitive nanodevices or nanomotors. To provide a different view on the structural changes and dynamics of direct excitation processes involving i-motif structures, the use of rapid-scan FTIR spectroscopy is proposed. Hybrid hard- and soft-modelling based on the Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) algorithm has been used for the resolution of rapid-scan FTIR spectra and the interpretation of the photochemically induced time-dependent conformational changes of i-motif structures. The hybrid hard- and soft-modelling version of MCR-ALS (HS-MCR), which allows the introduction of kinetic models to describe process behavior, provides also rate constants associated with the transitions modeled. The results show that UV irradiation does not produce degradation of the studied sequences but induces the formation of photodimers. The presence of these affect much more the stability of i-motif structures formed by short sequences than that of those formed by longer sequences containing additional structural stabilizing elements, such as hairpins.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franquès 1-11, E-08028 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Martín-González N, Guérin Darvas SM, Durana A, Marti GA, Guérin DMA, de Pablo PJ. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:104001. [PMID: 29350623 PMCID: PMC7104708 DOI: 10.1088/1361-648x/aaa944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Sofía M Guérin Darvas
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Aritz Durana
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Fundación Biofísica Bizkaia, Edificio Biblioteca Central UPV/EHU, Bº Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Gerardo A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina
| | - Diego M A Guérin
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
17
|
Sandoval A, Eichler S, Madathil S, Reeves PJ, Fahmy K, Böckmann RA. The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs. Biophys J 2017; 111:79-89. [PMID: 27410736 DOI: 10.1016/j.bpj.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022] Open
Abstract
The disruption of ionic and H-bond interactions between the cytosolic ends of transmembrane helices TM3 and TM6 of class-A (rhodopsin-like) G protein-coupled receptors (GPCRs) is a hallmark for their activation by chemical or physical stimuli. In the bovine photoreceptor rhodopsin, this is accompanied by proton uptake at Glu(134) in the class-conserved D(E)RY motif. Studies on TM3 model peptides proposed a crucial role of the lipid bilayer in linking protonation to stabilization of an active state-like conformation. However, the molecular details of this linkage could not be resolved and have been addressed in this study by molecular dynamics (MD) simulations on TM3 model peptides in a bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We show that protonation of the conserved glutamic acid alters the peptide insertion depth in the membrane, its side-chain rotamer preferences, and stabilizes the C-terminal helical structure. These factors contribute to the rise of the side-chain pKa (> 6) and to reduced polarity around the TM3 C terminus as confirmed by fluorescence spectroscopy. Helix stabilization requires the protonated carboxyl group; unexpectedly, this stabilization could not be evoked with an amide in MD simulations. Additionally, time-resolved Fourier transform infrared (FTIR) spectroscopy of TM3 model peptides revealed a different kinetics for lipid ester carbonyl hydration, suggesting that the carboxyl is linked to more extended H-bond clusters than an amide. Remarkably, this was seen as well in DOPC-reconstituted Glu(134)- and Gln(134)-containing bovine opsin mutants and demonstrates that the D(E)RY motif is a hydrated microdomain. The function of the D(E)RY motif as a proton switch is suggested to be based on the reorganization of the H-bond network at the membrane interface.
Collapse
Affiliation(s)
- Angelica Sandoval
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Eichler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, and Technische Universität Dresden, Dresden, Germany
| | - Sineej Madathil
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, and Technische Universität Dresden, Dresden, Germany.
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
18
|
Stelling AL, Xu Y, Zhou H, Choi SH, Clay MC, Merriman DK, Al-Hashimi HM. Robust IR-based detection of stable and fractionally populated G-C + and A-T Hoogsteen base pairs in duplex DNA. FEBS Lett 2017; 591:1770-1784. [PMID: 28524232 PMCID: PMC5584567 DOI: 10.1002/1873-3468.12681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 11/11/2022]
Abstract
Noncanonical G-C+ and A-T Hoogsteen base pairs can form in duplex DNA and play roles in recognition, damage repair, and replication. Identifying Hoogsteen base pairs in DNA duplexes remains challenging due to difficulties in resolving syn versus antipurine bases with X-ray crystallography; and size limitations and line broadening can make them difficult to characterize by NMR spectroscopy. Here, we show how infrared (IR) spectroscopy can identify G-C+ and A-T Hoogsteen base pairs in duplex DNA across a range of different structural contexts. The utility of IR-based detection of Hoogsteen base pairs is demonstrated by characterizing the first example of adjacent A-T and G-C+ Hoogsteen base pairs in a DNA duplex where severe broadening complicates detection with NMR.
Collapse
Affiliation(s)
- Allison L Stelling
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Yu Xu
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Huiqing Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Seung H Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Mary C Clay
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Kapusuz D, Durucan C. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica. J Biomater Appl 2017; 32:114-125. [PMID: 28566001 DOI: 10.1177/0885328217713104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.
Collapse
Affiliation(s)
- Derya Kapusuz
- 1 Department of Metallurgical and Materials Engineering, Gaziantep University, Gaziantep, Turkey
| | - Caner Durucan
- 2 Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey.,3 BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
20
|
Bonsaii M, Gholivand K, Khosravi M, Abdi K. Negative hyperconjugation effect on the reactivity of phosphoramide mustard derivatives as a DNA alkylating agent: theoretical and experimental insights. NEW J CHEM 2017. [DOI: 10.1039/c7nj01402c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we suggest new factors affecting the reactivity of compounds similar to cyclophosphamide; as their reactivity mainly relies on the frontier molecular orbitals, the factors causing changes in the frontier molecular orbitals, alter the reactivity of these compounds too.
Collapse
Affiliation(s)
- Mahyar Bonsaii
- Department of Chemistry
- Islamic Azad University
- North Tehran Branch
- Tehran
- Iran
| | | | - Morteza Khosravi
- Department of Chemistry
- Islamic Azad University
- North Tehran Branch
- Tehran
- Iran
| | - Khosrou Abdi
- Department of Medicinal Chemistry and Radiopharmacy
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
21
|
Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim Biophys Acta Gen Subj 2016; 1860:1821-35. [PMID: 27241846 DOI: 10.1016/j.bbagen.2016.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Most biological processes involve water, and the interactions of biomolecules with water affect their structure, function and dynamics. SCOPE OF REVIEW This review summarizes the current knowledge of protein and nucleic acid interactions with water, with a special focus on the biomolecular hydration layer. Recent developments in both experimental and computational methods that can be applied to the study of hydration structure and dynamics are reviewed, including software tools for the prediction and characterization of hydration layer properties. MAJOR CONCLUSIONS In the last decade, important advances have been made in our understanding of the factors that determine how biomolecules and their aqueous environment influence each other. Both experimental and computational methods contributed to the gradually emerging consensus picture of biomolecular hydration. GENERAL SIGNIFICANCE An improved knowledge of the structural and thermodynamic properties of the hydration layer will enable a detailed understanding of the various biological processes in which it is involved, with implications for a wide range of applications, including protein-structure prediction and structure-based drug design.
Collapse
|
22
|
Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy. Nat Chem 2015; 7:961-7. [PMID: 26587711 DOI: 10.1038/nchem.2369] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/04/2015] [Indexed: 12/19/2022]
Abstract
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
Collapse
|
23
|
FTIR spectral signature of anticancer drugs. Can drug mode of action be identified? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:85-101. [PMID: 26327318 DOI: 10.1016/j.bbapap.2015.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
Abstract
Infrared spectroscopy has brought invaluable information about proteins and about the mechanism of action of enzymes. These achievements are difficult to transpose to living organisms as all biological molecules absorb in the mid infrared, with usually a high degree of overlap. Deciphering the contribution of each enzyme is therefore almost impossible. On the other hand, small changes in the infrared spectra of cells induced by environmental conditions or drugs may provide an accurate signature of the metabolic shift experienced by the cell as a response to a change in the growth medium. The present paper aims at reviewing the contribution of infrared spectroscopy to the description of small chemical changes that occur in cells when they are exposed to a drug. In particular, this review will focus on cancer cells and anti-cancer drugs. Results accumulated so far tend to demonstrate that infrared spectroscopy could be a very accurate descriptor of the mode of action of anticancer drugs. If confirmed, such a segmentation of potential drugs according to their "mode of action" will be invaluable for the discovery of new therapeutic molecules. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
|
24
|
Dršata T, Lankaš F. Multiscale modelling of DNA mechanics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:323102. [PMID: 26194779 DOI: 10.1088/0953-8984/27/32/323102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.
Collapse
Affiliation(s)
- Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic. Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Prague, Albertov 6, 128 43 Prague, Czech Republic
| | | |
Collapse
|
25
|
Ander M, Subramaniam S, Fahmy K, Stewart AF, Schäffer E. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology. PLoS Biol 2015; 13:e1002213. [PMID: 26271032 PMCID: PMC4535883 DOI: 10.1371/journal.pbio.1002213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/26/2015] [Indexed: 11/24/2022] Open
Abstract
Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recognized by Redβ monomers that weakly hold single DNA strands together. Once annealing begins, dimerization of Redβ clamps the double-stranded region and nucleates nucleoprotein filament growth. In this manner, DNA clamping ensures and secures a successful detection for DNA sequence homology. The clamp is characterized by a structural change of Redβ and a remarkable stability against force up to 200 pN. Our findings not only present a detailed explanation for SSAP action but also identify the DNA clamp as a very stable, noncovalent, DNA-protein interaction.
Collapse
Affiliation(s)
- Marcel Ander
- Nanomechanics Group, Biotechnology Center, TU Dresden, Dresden, Germany
| | | | - Karim Fahmy
- Division of Biophysics, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - A. Francis Stewart
- Department of Genomics, Biotechnology Center, TU Dresden, Dresden, Germany
| | - Erik Schäffer
- Nanomechanics Group, Biotechnology Center, TU Dresden, Dresden, Germany
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), Universität Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. HOMEOPATHY 2015; 104:139-60. [DOI: 10.1016/j.homp.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
27
|
Benedetto A, Bingham RJ, Ballone P. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids. J Chem Phys 2015; 142:124706. [DOI: 10.1063/1.4915918] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin 4, Ireland
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Richard J. Bingham
- York Centre for Complex Systems Analysis, University of York, York YO10 5GE, United Kingdom
| | - Pietro Ballone
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia (IIT), 00185 Roma, Italy
- Department of Physics, Università di Roma “La Sapienza,” 00185 Roma, Italy
| |
Collapse
|
28
|
Abusharkh SE, Erkut C, Oertel J, Kurzchalia TV, Fahmy K. The role of phospholipid headgroup composition and trehalose in the desiccation tolerance of Caenorhabditis elegans. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12897-12906. [PMID: 25290156 DOI: 10.1021/la502654j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic state. Distributed to various taxa of life, these organisms have developed strategies to efficiently protect their cell membranes and proteins against extreme water loss. Recently, we showed that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation to harsh desiccation (preconditioning). Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, dauer larvae dramatically reduce their phosphatidylcholine (PC) content. The chemical composition of the phospholipids (PLs) has key consequences not only for their interaction with trehalose, as we demonstrate with Langmuir-Blodgett monolayers, but also, the kinetic response of PLs to hydration transients is strongly influenced as evidenced by time-resolved FTIR spectroscopy. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates of their lyotropic transitions and sub-headgroup H-bond interactions. The different hydration properties of PC and phosphatidylethanolamine (PE) headgroups are crucial for the hydration-dependent rearrangement of the trehalose-mediated H-bond network. As a consequence, the compressibility modulus of PLs from preconditioned larvae is about 2.6-fold smaller than that from non-preconditioned ones. Thus, the biological relevance of reducing the PC:PE ratio by PL headgroup adaptation should be the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose-containing cells during fast rehydration.
Collapse
Affiliation(s)
- Sawsan E Abusharkh
- Biophysics Division, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf , PF 510119, D-01314 Dresden, Germany
| | | | | | | | | |
Collapse
|
29
|
Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Noda I. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Khuda-Bukhsh AR. Current trends in high dilution research with particular reference to gene regulatory hypothesis. THE NUCLEUS 2014. [DOI: 10.1007/s13237-014-0105-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
32
|
Bellavite P, Marzotto M, Olioso D, Moratti E, Conforti A. High-dilution effects revisited. 2. Pharmacodynamic mechanisms. HOMEOPATHY 2014; 103:22-43. [DOI: 10.1016/j.homp.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
|
33
|
Abstract
While life requires water, many organisms, known as anhydrobiotes, can survive in the absence of water for extended periods of time. Although discovered 300 years ago, we know very little about the fascinating phenomenon of anhydrobiosis. In this paper, we summarize our previous findings on the desiccation tolerance of the Caenorhabditis elegans dauer larva. A special emphasis is given to the role of trehalose in protecting membranes against desiccation. We also propose a simple mechanism for this process.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden, Germany
| | | | | | | |
Collapse
|
34
|
Zhitnikova MY, Boryskina OP, Shestopalova AV. Sequence-specific transitions of the torsion angle gamma change the polar-hydrophobic profile of the DNA grooves: implication for indirect protein-DNA recognition. J Biomol Struct Dyn 2013; 32:1670-85. [PMID: 23998351 DOI: 10.1080/07391102.2013.830579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5'-C5'-C4'-C3') are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein-nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein-DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.
Collapse
Affiliation(s)
- Mariia Yu Zhitnikova
- a O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine , Acad. Proskura Street, 12, Kharkiv , 61085 , Ukraine
| | | | | |
Collapse
|
35
|
Ratner BD. Role of Water in Biomaterials. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J. Electron density shift description of non-bonding intramolecular interactions. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Pramanik S, Nagatoishi S, Saxena S, Bhattacharyya J, Sugimoto N. Conformational flexibility influences degree of hydration of nucleic acid hybrids. J Phys Chem B 2011; 115:13862-72. [PMID: 21992117 DOI: 10.1021/jp207856p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four nucleic acid duplexes-DNA/RNA hybrid, RNA/DNA hybrid, RNA duplex, and DNA duplex-were studied under molecular crowding conditions of osmolytes. Destabilization of duplexes (ΔΔG°(25)) indicated that the ΔΔG°(25) values of hybrids were intermediate between those of DNA and RNA duplexes. In the presence of polyethylene glycol 200, the ΔΔG°(25) values were estimated to be +3.0, +3.5, +3.5, and +4.1 kcal mol(-1) for the DNA duplex, DNA/RNA hybrid, RNA/DNA hybrid, and RNA duplex, respectively. Differences in the number of water molecules taken up (-Δn(w)) upon duplex formations between 0 and 37 °C (Δ(-Δn(w))) were estimated to be 44.8 and 59.7 per duplex structure for the DNA/RNA and RNA/DNA hybrids, respectively. While the Δ(-Δn(w)) value for the DNA/RNA hybrid was intermediate between those of the DNA (26.1) and RNA (59.2) duplexes, the value for RNA/DNA hybrid was close to that of RNA duplex. These differences in the thermodynamic parameters and hydration are probably a consequence of the enhanced global flexibility of the RNA/DNA hybrid structure relative to the DNA/RNA hybrid structure observed in molecular dynamics simulations. This molecular crowding study provides information not only on hydration but also on the flexibility of the conformation of nucleic acid duplexes.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|