1
|
Salafsky J, Johansson PK, Abdelkader E, Otting G. Ligand-induced conformational changes in protein molecules detected by sum-frequency generation. Biophys J 2024; 123:3678-3687. [PMID: 39305014 PMCID: PMC11560303 DOI: 10.1016/j.bpj.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
We present the first demonstration of ligand-induced conformational changes in a biological molecule, a protein, by sum-frequency generation (SFG). Constructs of KRasG12D protein were prepared by selectively deuterating residues of a single amino acid type using isotope-labeled amino acids and cell-free protein synthesis. By attaching labeled protein to a supported bilayer membrane via a His-tag to Ni-NTA-bearing lipids, we ensured that single layers of ordered molecules were formed while preserving the protein's native structure. Exceptionally large SFG amide I signals were produced in both labeled and unlabeled proteins, demonstrating a high degree of orientational order upon attachment to the bilayer. Deuterated protein also produced SFG signals in the CDx spectral region, which were not present in the unlabeled protein. The CDx signals were measured before and after binding a peptide inhibitor, KRpep-2d, revealing shifts in SFG intensity due to conformational changes at the labeled sites. In particular, peaks associated with CDx stretching vibrations for alanine, valine, and glycine changed substantially in amplitude upon inhibitor binding. By inspection of the crystal structure, these three residues are uniquely colocated on the protein surface in and near the nucleotide binding site, which is in allosteric communication with the site of peptide inhibitor binding, suggesting an approach to identify a ligand's binding site. The technique offers a highly sensitive, nonperturbative method of mapping ligand-induced conformational changes and allosteric networks in biological molecules for studies of the relationship between structure and function and mechanisms of action in drug discovery.
Collapse
Affiliation(s)
- Joshua Salafsky
- Department of Pharmaceutical Chemistry, University of California, San Francisco (UCSF), San Francisco, California; Skylight Discovery, Inc., Suite 300, Seattle, Washington.
| | | | - Elwy Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Premadasa UI, Kumar N, Zhu Z, Stamberga D, Li T, Roy S, Carrillo JMY, Einkauf JD, Custelcean R, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Synergistic Assembly of Charged Oligomers and Amino Acids at the Air-Water Interface: An Avenue toward Surface-Directed CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12052-12061. [PMID: 38411063 DOI: 10.1021/acsami.3c18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zewen Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
3
|
Premadasa UI, Dong D, Stamberga D, Custelcean R, Roy S, Ma YZ, Bocharova V, Bryantsev VS, Doughty B. Chemical Feedback in the Self-Assembly and Function of Air-Liquid Interfaces: Insight into the Bottlenecks of CO 2 Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19634-19645. [PMID: 36944180 DOI: 10.1021/acsami.3c00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Stamberga
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Luo Y, Pang AP, Lu X. Liquid-Solid Interfaces under Dynamic Shear Flow: Recent Insights into the Interfacial Slip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4473-4482. [PMID: 35377658 DOI: 10.1021/acs.langmuir.2c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of micro/nanofluidic techniques has recently revived interest in dynamic shear flow at liquid-solid interfaces. When the nature of the liquid-solid boundaries was revisited, the slip of the fluids relative to the solid wall was predicted theoretically and confirmed experimentally. This indicates that the molecular-level structures of the liquid-solid interfaces will be influenced by the liquid flow over certain temporal and spatial criteria. However, the fluid flow at the boundary layer still cannot be precisely predicted and effectively controlled, somehow limiting its practical applications. Here, we summarize the recent advances for the microscopic structures at the liquid-solid interfaces upon shear flow. Special attention was given to a second-order nonlinear optical technique, sum frequency generation vibrational spectroscopy, which is a powerful tool for exploring the molecular-level structures and structural dynamics at the liquid-solid interfaces and offering new insights into the molecular mechanisms of the fluid slip at the interfaces. Moreover, we discuss the possible approaches for controlling the interfacial slip at the molecular level and highlight the current challenges and opportunities. Although the theoretical framework of the slip at the liquid-solid interfaces is still incomplete, we hope that this Perspective will complement and enhance our understanding of various interfacial properties and phenomena with respect to practical non-equilibrium dynamic processes happening at the interfaces.
Collapse
Affiliation(s)
- Yongsheng Luo
- The State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| | - Ai-Ping Pang
- The State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| | - Xiaolin Lu
- The State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| |
Collapse
|
5
|
Rauwolf S, Bag S, Rouqueiro R, Schwaminger SP, Dias-Cabral AC, Berensmeier S, Wenzel W. Insights on Alanine and Arginine Binding to Silica with Atomic Resolution. J Phys Chem Lett 2021; 12:9384-9390. [PMID: 34551250 DOI: 10.1021/acs.jpclett.1c02398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interactions of biomolecules with inorganic oxide surfaces such as silica in aqueous solutions are of profound interest in various research fields, including chemistry, biotechnology, and medicine. While there is a general understanding of the dominating electrostatic interactions, the binding mechanism is still not fully understood. Here, chromatographic zonal elution and flow microcalorimetry experiments were combined with molecular dynamic simulations to describe the interaction of different capped amino acids with the silica surface. We demonstrate that ion pairing is the dominant electrostatic interaction. Surprisingly, the interaction strength is more dependent on the repulsive carboxy group than on the attracting amino group. These findings are essential for conducting experimental and simulative studies on amino acids when transferring the results to biomolecule-surface interactions.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Saientan Bag
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rodrigo Rouqueiro
- Department of Chemistry, CICS-UBI Health Science Research Center, University Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sebastian Patrick Schwaminger
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Ana Cristina Dias-Cabral
- Department of Chemistry, CICS-UBI Health Science Research Center, University Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sonja Berensmeier
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Wolfgang Wenzel
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Maekawa H, Kumar SKK, Mukherjee SS, Ge NH. Phase-Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy in Multiplex Configuration at 80 MHz Repetition Rate. J Phys Chem B 2021; 125:9507-9516. [PMID: 34433279 DOI: 10.1021/acs.jpcb.1c05430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vibrationally resonant sum-frequency generation (VR SFG) microscopy is an advanced imaging technique that can map out the intensity contrast of infrared and Raman active vibrational modes with micron to submicron lateral resolution. To broaden its applications and to obtain a molecular level of understanding, further technical advancement is needed to enable high-speed measurements of VR SFG microspectra at every pixel. In this study, we demonstrate a new VR SFG hyperspectral imaging platform combined with an ultrafast laser system operated at a repetition rate of 80 MHz. The multiplex configuration with broadband mid-infrared pulses makes it possible to measure a single microspectrum of CH/CH2 stretching modes in biological samples, such as starch granules and type I collagen tissue, with an exposure time of hundreds of milliseconds. Switching from the homodyne- to heterodyne-detected VR SFG hyperspectral imaging can be achieved by inserting a pair of optics into the beam path for local oscillator generation and delay time adjustment, which enables self-phase-stabilized spectral interferometry. We investigate the relationship between phase images of several different C-H modes and the relative orientation of collagen triple-helix in fibril bundles. The results show that the new multiplex VR SFG microscope operated at a high repetition rate is a powerful approach to probe the structural features and spatial arrangements of biological systems in detail.
Collapse
Affiliation(s)
- Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, United States
| | - S K Karthick Kumar
- Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, United States
| | - Sudipta S Mukherjee
- Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
7
|
Lu H, Ng DYW, Lieberwirth I, Weidner T, Bonn M. Intrinsically Disordered Osteopontin Fragment Orders During Interfacial Calcium Oxalate Mineralization. Angew Chem Int Ed Engl 2021; 60:18577-18581. [PMID: 34118104 PMCID: PMC8457088 DOI: 10.1002/anie.202105768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Indexed: 11/11/2022]
Abstract
Calcium oxalate (CaC2 O4 ) is the major component of kidney stone. The acidic osteopontin (OPN) protein in human urine can effectively inhibit the growth of CaC2 O4 crystals, thereby acting as a potent stone preventer. Previous studies in bulk solution all attest to the importance of binding and recognition of OPN at the CaC2 O4 mineral surface, yet molecular level insights into the active interface during CaC2 O4 mineralization are still lacking. Here, we probe the structure of the central OPN fragment and its interaction with Ca2+ and CaC2 O4 at the water-air interface using surface-specific non-linear vibrational spectroscopy. While OPN peptides remain largely disordered in solution, our results reveal that the bidentate binding of Ca2+ ions refold the interfacial peptides into well-ordered and assembled β-turn motifs. One critical intermediate directs mineralization by releasing structural freedom of backbone and binding side chains. These insights into the mineral interface are crucial for understanding the pathological development of kidney stones and possibly relevant for calcium oxalate biomineralization in general.
Collapse
Affiliation(s)
- Hao Lu
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - David Yuen Wah Ng
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Ingo Lieberwirth
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tobias Weidner
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Mischa Bonn
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
8
|
Lu H, Ng DYW, Lieberwirth I, Weidner T, Bonn M. Intrinsisch ungeordnete Osteopontin‐Fragmente ordnen sich während der interfazialen Calciumoxalat‐Mineralisierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Lu
- Abteilung für Molekülspektroskopie Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - David Yuen Wah Ng
- Abteilung für Molekülspektroskopie Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Ingo Lieberwirth
- Abteilung für Molekülspektroskopie Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Tobias Weidner
- Fakultät für Chemie Universität Aarhus Langelandsgade 140 8000 Aarhus C Dänemark
| | - Mischa Bonn
- Abteilung für Molekülspektroskopie Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
9
|
Lu H, Huang YC, Hunger J, Gebauer D, Cölfen H, Bonn M. Role of Water in CaCO 3 Biomineralization. J Am Chem Soc 2021; 143:1758-1762. [PMID: 33471507 PMCID: PMC7877725 DOI: 10.1021/jacs.0c11976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Biomineralization occurs in aqueous
environments. Despite the ubiquity
and relevance of CaCO3 biomineralization, the role of water
in the biomineralization process has remained elusive. Here, we demonstrate
that water reorganization accompanies CaCO3 biomineralization
for sea urchin spine generation in a model system. Using surface-specific
vibrational spectroscopy, we probe the water at the interface of the
spine-associated protein during CaCO3 mineralization. Our
results show that, while the protein structure remains unchanged,
the structure of interfacial water is perturbed differently in the
presence of both Ca2+ and CO32– compared to the addition of only Ca2+. This difference
is attributed to the condensation of prenucleation mineral species.
Our findings are consistent with a nonclassical mineralization pathway
for sea urchin spine generation and highlight the importance of protein
hydration in biomineralization.
Collapse
Affiliation(s)
- Hao Lu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yu-Chieh Huang
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Gebauer
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany.,Institute of Inorganic Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Integrating the Fields of Catalysis: Active Site Engineering in Metal Cluster, Metal Organic Framework and Metal Single Site. Top Catal 2020. [DOI: 10.1007/s11244-020-01248-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Perets EA, Videla PE, Yan ECY, Batista VS. Chiral Inversion of Amino Acids in Antiparallel β-Sheets at Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem B 2019; 123:5769-5781. [PMID: 31194546 PMCID: PMC9059514 DOI: 10.1021/acs.jpcb.9b04029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A parallel study of protein variants with all (l-), all (d-), or mixed (l-)/(d-) amino acids can be used to assess how backbone architecture versus side chain identity determines protein structure. Here, we investigate the secondary structure and side chain orientation dynamics of the antiparallel β-sheet peptide LK7β (Ac-Leu-Lys-Leu-Lys-Leu-Lys-Leu-NH2) composed of all (l-), all (d-), or alternating (l-Leu)/(d-Lys) amino acids. Using interface-selective vibrational sum frequency generation spectroscopy (VSFG), we observe that the alternating (l-)/(d-) peptide lacks a resonant C-H stretching mode compared to the (l-) and (d-) variants and does not form antiparallel β-sheets. We rationalize our observations on the basis of density functional theory calculations and molecular dynamics (MD) simulations of LK7β at the air-water interface. Irrespective of the handedness of the amino acids, leucine side chains prefer to orient toward the hydrophobic air phase while lysine side chains prefer the hydrophilic water phase. These preferences dictate the backbone configuration of LK7β and thereby the folding of the peptide. Our MD simulations show that the preferred side chain orientations can force the backbone of a single strand of (l-) LK7β at the air-water interface to adopt β-sheet Ramachandran angles. However, denaturation of the β-sheets at pH = 2 results in a negligible chiral VSFG amide I response. The combined computational and experimental results lend critical support to the theory that a chiral VSFG response requires macroscopic chirality, such as in β-sheets. Our results can guide expectations about the VSFG optical responses of proteins and should improve understanding of how amino acid chirality modulates the structure and function of natural and de novo proteins at biological interfaces.
Collapse
Affiliation(s)
- Ethan A. Perets
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
| | - Pablo E. Videla
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
| | - Victor S. Batista
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516
| |
Collapse
|
13
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
14
|
Surface Science Approach to the Molecular Level Integration of the Principles in Heterogeneous, Homogeneous, and Enzymatic Catalysis. Top Catal 2018. [DOI: 10.1007/s11244-018-0975-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Sanders SE, Vanselous H, Petersen PB. Water at surfaces with tunable surface chemistries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:113001. [PMID: 29393860 DOI: 10.1088/1361-648x/aaacb5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.
Collapse
Affiliation(s)
- Stephanie E Sanders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | | | | |
Collapse
|
16
|
Zhang J, Yang W, Tan J, Ye S. In situ examination of a charged amino acid-induced structural change in lipid bilayers by sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys 2018; 20:5657-5665. [PMID: 29412195 DOI: 10.1039/c7cp07389e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interactions between amino acids (AAs) and membranes represent various short-range and long-range interactions for biological phenomena; however, they are still poorly understood. In this study, we used cationic lysine and arginine as AA models, and systematically investigated the interactions between charged AAs and lipid bilayers using sum frequency generation vibrational spectroscopy (SFG-VS) in situ and in real time. The AA-induced dynamic structural changes of the lipid bilayer were experimentally monitored using the spectral features of CD2, CD3, the lipid head phosphate, and carbonyl groups in real time. Time-dependent SFG changes in the structure of the lipid bilayer provide direct evidence for the different interactions of lysine and arginine with the membrane. It was found that the discrepancy between lysine and arginine in binding with the lipid bilayer is due to the nature of the terminal functional groups. Arginine exhibits a more drastic impact on the membrane than lysine. SFG responses of the acyl chains, phosphate groups, and carbonyl groups provide evidence that the interaction between AAs and the membrane most likely follows an electrostatics and hydrogen bond-induced defect model. This work presents an exemplary method for comprehensive investigations of interactions between membranes and other functionally significant substances.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|
17
|
Schwaminger S, Blank‐Shim SA, Borkowska‐Panek M, Anand P, Fraga‐García P, Fink K, Wenzel W, Berensmeier S. Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials. Eng Life Sci 2018; 18:84-100. [PMID: 32624891 PMCID: PMC6999452 DOI: 10.1002/elsc.201700019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Inspired by nature, many applications and new materials benefit from the interplay of inorganic materials and biomolecules. A fundamental understanding of complex organic-inorganic interactions would improve the controlled production of nanomaterials and biosensors to the development of biocompatible implants for the human body. Although widely exploited in applications, the interaction of amino acids and peptides with most inorganic surfaces is not fully understood. To date, precisely characterizing complex surfaces of inorganic materials and analyzing surface-biomolecule interactions remain challenging both experimentally and computationally. This article reviews several approaches to characterizing biomolecule-surface interactions and illustrates the advantages and disadvantages of the methods presented. First, we explain how the adsorption mechanism of amino acids/peptides to inorganic surfaces can be determined and how thermodynamic and kinetic process constants can be obtained. Second, we demonstrate how this data can be used to develop models for peptide-surface interactions. The understanding and simulation of such interactions constitute a basis for developing molecules with high affinity binding domains in proteins for bioprocess engineering and future biomedical technologies.
Collapse
Affiliation(s)
| | | | | | - Priya Anand
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Paula Fraga‐García
- Bioseparation Engineering GroupTechnical University of MunichMünchenGermany
| | - Karin Fink
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Wolfgang Wenzel
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Sonja Berensmeier
- Bioseparation Engineering GroupTechnical University of MunichMünchenGermany
| |
Collapse
|
18
|
Donovan MA, Lutz H, Yimer YY, Pfaendtner J, Bonn M, Weidner T. LK peptide side chain dynamics at interfaces are independent of secondary structure. Phys Chem Chem Phys 2017; 19:28507-28511. [DOI: 10.1039/c7cp05897g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time observation of the ultrafast motions of leucine side chains within model peptides at the water–air interface with representative folds – α-helix, 310-helix, β-strand – show that interfacial dynamics are mostly determined by surface interactions.
Collapse
Affiliation(s)
| | - Helmut Lutz
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Yeneneh Y. Yimer
- Department of Chemical Engineering
- University of Washington
- 105 Benson Hall
- Seattle
- USA
| | - Jim Pfaendtner
- Department of Chemical Engineering
- University of Washington
- 105 Benson Hall
- Seattle
- USA
| | - Mischa Bonn
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Department of Chemical Engineering
- University of Washington
| |
Collapse
|
19
|
Zhang LB, Fang H, Chen SL, Zhu XF, Gan W. Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1605111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Lin FY, Daley C, Flannery J, Zhang S, Chai Y, Forrest JA. Nanoporous polystyrene prepared via the selective removal of the low Mw component in polystyrene blends. Polym J 2016. [DOI: 10.1038/pj.2016.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Molecular catalysis science: Perspective on unifying the fields of catalysis. Proc Natl Acad Sci U S A 2016; 113:5159-66. [PMID: 27114536 DOI: 10.1073/pnas.1601766113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.
Collapse
|
22
|
Donovan MA, Yimer YY, Pfaendtner J, Backus EHG, Bonn M, Weidner T. Ultrafast Reorientational Dynamics of Leucine at the Air–Water Interface. J Am Chem Soc 2016; 138:5226-9. [DOI: 10.1021/jacs.6b01878] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michael A. Donovan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yeneneh Y. Yimer
- Department
of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - Ellen H. G. Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
23
|
Leng C, Buss HG, Segalman RA, Chen Z. Surface Structure and Hydration of Sequence-Specific Amphiphilic Polypeptoids for Antifouling/Fouling Release Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9306-11. [PMID: 26245923 DOI: 10.1021/acs.langmuir.5b01440] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Amphiphilic polypeptoids can be designed with specific sequences of hydrophilic and hydrophobic units, which determine their surface properties for antifouling/fouling release purposes. Although the sequence-dependent surface structures of polypeptoids have been extensively investigated, e.g., with X-ray spectroscopy, their molecular structures under the aqueous conditions relevant to marine fouling have not been studied. In this work, we applied sum frequency generation (SFG) vibrational spectroscopy to study the surface structures and hydration of a series of amphiphilic polypeptoid coatings with different sequences in air and water. SFG spectra, in agreement with X-ray spectroscopy studies, revealed that the surface coverage of the hydrophilic N-(2-methoxyethyl)glycine (Nme) units in air is affected by both the number and position of the hydrophobic N-(heptafluorobutyl)glycine (NF) units in the peptoid chain and is negatively correlated with the surface concentration of the fluorine element. Our ability to probe the SFG signals of water molecules at the peptoid surface provides new information on the hydrated film properties. From these SFG signals and the time evolution of water contact angles on the polymers, we see that the hydrated film properties are also dependent upon the peptoid sequence. This work indicates that the surface presence of the Nme groups and the ability of the polymers to order and strongly hydrogen bond with interfacial water molecules determine their antifouling properties, whereas the surface restructuring rate upon contact with water affects their fouling release behaviors.
Collapse
Affiliation(s)
- Chuan Leng
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hilda G Buss
- Department of Chemical Engineering, University of California , Berkeley, California 94720, United States
| | - Rachel A Segalman
- Departments of Materials and Chemical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Advanced experimental methods toward understanding biophysicochemical interactions of interfacial biomolecules by using sum frequency generation vibrational spectroscopy. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5233-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Lis D, Backus EHG, Hunger J, Parekh SH, Bonn M. Liquid flow along a solid surface reversibly alters interfacial chemistry. Science 2014; 344:1138-42. [DOI: 10.1126/science.1253793] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Roy S, Covert PA, FitzGerald WR, Hore DK. Biomolecular Structure at Solid–Liquid Interfaces As Revealed by Nonlinear Optical Spectroscopy. Chem Rev 2014; 114:8388-415. [DOI: 10.1021/cr400418b] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sandra Roy
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Paul A. Covert
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - William R. FitzGerald
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Dennis K. Hore
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| |
Collapse
|
27
|
Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 2013; 113:4216-313. [PMID: 23289428 DOI: 10.1021/cr3003054] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | |
Collapse
|
28
|
Fears KP, Clark TD, Petrovykh DY. Residue-Dependent Adsorption of Model Oligopeptides on Gold. J Am Chem Soc 2013; 135:15040-52. [DOI: 10.1021/ja404346p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kenan P. Fears
- Division
of Chemistry, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Thomas D. Clark
- Division
of Chemistry, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Dmitri Y. Petrovykh
- Division
of Chemistry, Naval Research Laboratory, Washington, D.C. 20375, United States
- Department
of Physics, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
29
|
Liu Y, Leng C, Chisholm B, Stafslien S, Majumdar P, Chen Z. Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2897-2905. [PMID: 23394402 DOI: 10.1021/la304571u] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) materials have been extensively shown to function as excellent fouling-release (FR) coatings in the marine environment. The incorporation of biocide moieties, such as quaternary ammonium salts (QAS), can impart additional antibiofouling properties to PDMS-based FR coating systems. In this study, the molecular surface structures of two different types of QAS-incorporated PDMS systems were investigated in different chemical environments using sum frequency generation vibrational spectroscopy (SFG). Specifically, a series of PDMS coatings containing either a QAS with a single ammonium salt group per molecule or a quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane (Q-POSS) were measured with SFG in air, water, and artificial seawater (ASW) to investigate the relationships between the interfacial surface structures of these materials and their antifouling properties. Although previous studies have shown that the above-mentioned materials are promising contact-active antifouling coatings, slight variations of the QAS structure can lead to substantial differences in the antifouling performance. Indeed, the SFG results presented here indicated that the surface structures of these materials depend on several factors, such as the extent of quaternization, the molecular weight of the PDMS component, and the functional groups of the QAS used for incorporation into the PDMS matrix. It was concluded that in aqueous environments a lower extent of Q-POSS quaternization and the use of ethoxy (instead of methoxy) functional groups for QAS incorporation facilitated the extension of the alkyl chains away from the nitrogen atom of the QAS on the surface. The SFG results correlated well with the antifouling activity studies that indicated that the coatings exhibiting a lower concentration of longer alkyl chains protruding out of the surface can neutralize microorganisms more effectively, ultimately leading to better antifouling performance. Furthermore, the results of this study provide additional evidence that incorporated QAS exert their antimicrobial activity through a two-step interaction. The first step is the adsorption of the bacteria on the surface as a result of the electrostatic attraction between the negatively charged microorganisms and the positively charged QAS nitrogen atoms on the surface. The second step is the disruption of the cell membranes by the penetration of the QAS long, extended alkyl chains.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Chiu CY, Ruan L, Huang Y. Biomolecular specificity controlled nanomaterial synthesis. Chem Soc Rev 2013; 42:2512-27. [DOI: 10.1039/c2cs35347d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Wright LB, Walsh TR. First-principles molecular dynamics simulations of NH 4+ and CH3COO− adsorption at the aqueous quartz interface. J Chem Phys 2012; 137:224702. [DOI: 10.1063/1.4769727] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
32
|
Zhang C, Hankett J, Chen Z. Molecular level understanding of adhesion mechanisms at the epoxy/polymer interfaces. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3730-7. [PMID: 22709337 DOI: 10.1021/am300854g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is important to understand the buried interfacial structures containing epoxy underfills as such structures determine the interfacial adhesion properties. Weak adhesion or delamination at such interfaces leads to failure of microelectronic devices. Sum frequency generation (SFG) vibrational spectroscopy was used to examine buried interfaces at polymer/model epoxy and polymer/commercial epoxy resins (used as underfills in flip chip devices) at the molecular level. We investigated a model epoxy: bisphenol A digylcidyl ether (BADGE) at the interfaces of poly (ethylene terephthalate) (PET) before and after curing. Furthermore, small amounts of different silanes including (3-glycidoxypropyl) trimethoxysilane (γ-GPS), (3-Aminopropyl)trimethoxysilane (ATMS), Octadecyltrimethoxysilane (OTMS(18C)), and Octyltrimethoxysilane (OTMS(8C)) were mixed with BADGE. Silane influences on the polymer/epoxy interfacial structures were studied. SFG was also used to study molecular interfacial structures between polymers and two commercial epoxy resins. The interfacial structures probed by SFG were correlated to the adhesion strengths measured for corresponding interfaces. The results indicated that a small amount of silane molecules added to epoxy could substantially change the polymer/epoxy interfacial structure, greatly affecting the adhesion strength at the interface. It was found that ordered methyl groups at the interface lead to weak adhesion, and disordered interfaces lead to strong adhesion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
33
|
Padermshoke A, Konishi S, Ara M, Tada H, Ishibashi TA. Novel SiO2-deposited CaF2 substrate for vibrational sum-frequency generation (SFG) measurements of chemisorbed monolayers in an aqueous environment. APPLIED SPECTROSCOPY 2012; 66:711-718. [PMID: 22732544 DOI: 10.1366/11-06583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel SiO(2)-deposited CaF(2) (SiO(2)/CaF(2)) substrate for measuring vibrational sum-frequency generation (SFG) spectra of silane-based chemisorbed monolayers in aqueous media has been developed. The substrate is suitable for silanization and transparent over a broad range of the infrared (IR) probe. The present work demonstrates the practical application of the SiO(2)/CaF(2) substrate and, to our knowledge, the first SFG spectrum at the solid/water interface of a silanized monolayer observed over the IR fingerprint region (1780-1400 cm(-1)) using a back-side probing geometry. This new substrate can be very useful for SFG studies of various chemisorbed organic molecules, particularly biological compounds, in aqueous environments.
Collapse
Affiliation(s)
- Adchara Padermshoke
- Center for Quantum Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
34
|
Zhang C, Shephard NE, Rhodes SM, Chen Z. Headgroup effect on silane structures at buried polymer/silane and polymer/polymer interfaces and their relations to adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6052-6059. [PMID: 22424184 DOI: 10.1021/la300004x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy was used to study the effect of silane headgroups on the molecular interactions that occur between poly(ethylene terephthalate) (PET) and various epoxy silanes at the PET/silane and PET/silicone interfaces. Three different silanes were investigated: (3-glycidoxypropyl) trimethoxysilane (γ-GPS), (3-glycidoxypropyl) methyl-dimethoxysilane (γ-GPMS), and (3-glycidoxypropyl) dimethyl-methoxysilane (γ-GPDMS). These silanes share the same backbone and epoxy end group but have different headgroups. SFG was used to examine the interfaces between PET and each of these silanes, as well as silanes mixed with methylvinylsiloxanol (MVS). We also examined the interfaces between PET and uncured or cured silicone with silanes or silane-MVS mixtures. Silanes with different headgroups were found to exhibit a variety of methoxy group interfacial segregation and ordering behaviors at various interfaces. The effect of MVS was also dependent upon silane headgroup choice, and the interfacial molecular structures of silane methoxy headgroups were found to differ at PET/silane and PET/silicone interfaces. Epoxy silanes have been widely used as adhesion promoters for polymer adhesives; therefore, the molecular structures probed using SFG were correlated to adhesion testing results to understand the molecular mechanisms of silicone-polymer adhesion. Our results demonstrated that silane methoxy headgroups play important roles in adhesion at the PET/silicone interfaces. The presence of MVS can change interfacial methoxy segregation and ordering, leading to different adhesion strengths.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
35
|
Bai Y, Abbott NL. Enantiomeric interactions between liquid crystals and organized monolayers of tyrosine-containing dipeptides. J Am Chem Soc 2012; 134:548-58. [PMID: 22091988 PMCID: PMC3257416 DOI: 10.1021/ja2089475] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the orientational ordering of nematic liquid crystals (LCs) supported on organized monolayers of dipeptides with the goal of understanding how peptide-based interfaces encode intermolecular interactions that are amplified into supramolecular ordering. By characterizing the orientations of nematic LCs (4-cyano-4'-pentylbiphenyl and TL205 (a mixture of mesogens containing cyclohexane-fluorinated biphenyls and fluorinated terphenyls)) on monolayers of l-cysteine-l-tyrosine, l-cysteine-l-phenylalanine, or l-cysteine-l-phosphotyrosine formed on crystallographically textured films of gold, we conclude that patterns of hydrogen bonds generated by the organized monolayers of dipeptides are transduced via macroscopic orientational ordering of the LCs. This conclusion is supported by the observation that the ordering exhibited by the achiral LCs is specific to the enantiomers used to form the dipeptide-based monolayers. The dominant role of the -OH group of tyrosine in dictating the patterns of hydrogen bonds that orient the LCs was also evidenced by the effects of phosphorylation of the tyrosine on the ordering of the LCs. Overall, these results reveal that crystallographic texturing of gold films can direct the formation of monolayers of dipeptides with long-range order, thus unmasking the influence of hydrogen bonding, chirality, and phosphorylation on the macroscopic orientational ordering of LCs supported on these surfaces. These results suggest new approaches based on supramolecular assembly for reporting the chemical functionality and stereochemistry of synthetic and biological peptide-based molecules displayed at surfaces.
Collapse
Affiliation(s)
- Yiqun Bai
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53705, United States
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53705, United States
| |
Collapse
|
36
|
In vitroobservation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases 2011; 6:171-9. [DOI: 10.1116/1.3651142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|