1
|
Dong T, Yu P, Zhao J, Wang J. Site specifically probing the unfolding process of human telomere i-motif DNA using vibrationally enhanced alkynyl stretch. Phys Chem Chem Phys 2024; 26:3857-3868. [PMID: 38224126 DOI: 10.1039/d3cp05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The microscopic unfolding process of a cytosine-rich DNA forming i-motif by hemi-protonated base pairs is related to gene regulation. However, the detailed thermal unfolding mechanism and the protonation/deprotonation status of site-specific cytosine in DNA in a physiological environment are still obscure. To address this issue, a vibration-enhanced CC probe tagged on 5'E terminal cytosine of human telomere i-motif DNA was examined using linear and nonlinear infrared (IR) spectroscopies and quantum-chemistry calculations. The CC probe extended into the major groove of the i-motif was found using nonlinear IR results only to introduce a minor steric effect on both steady-state structure and local structure dynamics; however, its IR absorption profile effectively reports the cleavage of the hemi-protonated base pair of C1-C13 upon the unfolding with C1 remaining protonated. The temperature mid-point (Tm) of the local transition reported using the CC tag was slightly lower than the Tm of global transition, and the enthalpy of the former exceeds 60% of the global transition. It is shown that the base-pair unraveling is noncooperative, with outer base pairs breaking first and being likely the rate limiting step. Our results offered an in-depth understanding of the macroscopic unfolding characteristics of the i-motif DNA and provided a nonlinear IR approach to monitoring the local structural transition and dynamics of DNA and its complexes.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Tejaswi Naidu K, Prakash Prabhu N. An able-cryoprotectant and a moderate denaturant: distinctive character of ethylene glycol on protein stability. J Biomol Struct Dyn 2022; 40:820-832. [DOI: 10.1080/07391102.2020.1819422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. Tejaswi Naidu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - N. Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Thielges MC. Transparent window 2D IR spectroscopy of proteins. J Chem Phys 2021; 155:040903. [PMID: 34340394 PMCID: PMC8302233 DOI: 10.1063/5.0052628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
Proteins are complex, heterogeneous macromolecules that exist as ensembles of interconverting states on a complex energy landscape. A complete, molecular-level understanding of their function requires experimental tools to characterize them with high spatial and temporal precision. Infrared (IR) spectroscopy has an inherently fast time scale that can capture all states and their dynamics with, in principle, bond-specific spatial resolution. Two-dimensional (2D) IR methods that provide richer information are becoming more routine but remain challenging to apply to proteins. Spectral congestion typically prevents selective investigation of native vibrations; however, the problem can be overcome by site-specific introduction of amino acid side chains that have vibrational groups with frequencies in the "transparent window" of protein spectra. This Perspective provides an overview of the history and recent progress in the development of transparent window 2D IR of proteins.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry, Indiana University, Bloomington,
Indiana 47405, USA
| |
Collapse
|
4
|
Ma H, Han XX, Zhao B. Enhanced Raman spectroscopic analysis of protein post-translational modifications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Schmidt-Engler JM, Zangl R, Guldan P, Morgner N, Bredenbeck J. Exploring the 2D-IR repertoire of the -SCN label to study site-resolved dynamics and solvation in the calcium sensor protein calmodulin. Phys Chem Chem Phys 2020; 22:5463-5475. [PMID: 32096510 DOI: 10.1039/c9cp06808b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The calcium sensor protein calmodulin is ubiquitous among eukaryotes. It translates intracellular Ca2+ influx (by a decrease of conformational flexibility) into increased target recognition affinity. Here we demonstrate that by using the IR reporter -SCN in combination with 2D-IR spectroscopy, global structure changes and local dynamics, degree of solvent exposure and protein-ligand interaction can be characterised in great detail. The long vibrational lifetime of the -SCN label allows for centerline slope analysis of the 2D-IR line shape up to 120 ps to deduce the frequency-frequency correlation function (FFCF) of the -SCN label in various states and label positions in the protein. Based on that we show clear differences between a solvent exposed site, the environment close to the Ca2+ binding motif and three highly conserved positions for ligand binding. Furthermore, we demonstrate how these dynamics are affected by conformational change induced by the addition of Ca2+ ions and by interaction with a short helical peptide mimicking protein binding. We show that the binding mode is strongly heterogeneous among the probed key binding methionine residues. SCN's vibrational relaxation is dominated by intermolecular contributions. Changes in the vibrational lifetime upon changing between H2O and D2O buffer therefore provide a robust measure for water accessibility of the label. Characterising -SCN's extinction coefficient, vibrational lifetime in light and heavy water and its FFCF we demonstrate the vast potential it has as a label especially for nonlinear spectroscopies, such as 2D-IR spectroscopy.
Collapse
Affiliation(s)
- Julian M Schmidt-Engler
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | - Rene Zangl
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Patrick Guldan
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | - Nina Morgner
- Johann Wolfgang Goethe-University, Institute of Physical and Theoretical Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Schmidt-Engler JM, Blankenburg L, Zangl R, Hoffmann J, Morgner N, Bredenbeck J. Local dynamics of the photo-switchable protein PYP in ground and signalling state probed by 2D-IR spectroscopy of –SCN labels. Phys Chem Chem Phys 2020; 22:22963-22972. [DOI: 10.1039/d0cp04307a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ 2D-IR spectroscopy of the protein label –SCN to describe the local dynamics in the photo-switchable protein PYP in its dark state (pG) and after photoactivation, concomitant with vast structural rearrangements, in its signalling state (pB).
Collapse
Affiliation(s)
| | - Larissa Blankenburg
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Rene Zangl
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jan Hoffmann
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Nina Morgner
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
7
|
Le Sueur AL, Ramos S, Ellefsen JD, Cook S, Thielges MC. Evaluation of p-(13C,15N-Cyano)phenylalanine as an Extended Time Scale 2D IR Probe of Proteins. Anal Chem 2017; 89:5254-5260. [DOI: 10.1021/acs.analchem.6b04650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda L. Le Sueur
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sashary Ramos
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Silas Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Wei W, Liu D, Wei Z, Zhu Y. Short-Range π–π Stacking Assembly on P25 TiO2 Nanoparticles for Enhanced Visible-Light Photocatalysis. ACS Catal 2016. [DOI: 10.1021/acscatal.6b03064] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Weiqin Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Di Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Zhen Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| |
Collapse
|
9
|
Abstract
Two-dimensional infrared (2D IR) spectroscopy has recently emerged as a powerful tool with applications in many areas of scientific research. The inherent high time resolution coupled with bond-specific spatial resolution of IR spectroscopy enable direct characterization of rapidly interconverting species and fast processes, even in complex systems found in chemistry and biology. In this minireview, we briefly outline the fundamental principles and experimental procedures of 2D IR spectroscopy. Using illustrative example studies, we explain the important features of 2D IR spectra and their capability to elucidate molecular structure and dynamics. Primarily, this minireview aims to convey the scope and potential of 2D IR spectroscopy by highlighting select examples of recent applications including the use of innate or introduced vibrational probes for the study of nucleic acids, peptides/proteins, and materials.
Collapse
Affiliation(s)
- Amanda L Le Sueur
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA.
| | | | | |
Collapse
|
10
|
Sokolowsky KP, Bailey HE, Fayer MD. New divergent dynamics in the isotropic to nematic phase transition of liquid crystals measured with 2D IR vibrational echo spectroscopy. J Chem Phys 2014; 141:194502. [DOI: 10.1063/1.4901081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Heather E. Bailey
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
11
|
Sokolowsky KP, Fayer MD. Dynamics in the isotropic phase of nematogens using 2D IR vibrational echo measurements on natural-abundance 13CN and extended lifetime probes. J Phys Chem B 2013; 117:15060-71. [PMID: 24156524 DOI: 10.1021/jp4071955] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The long time scale orientational relaxation of nematogens in the isotropic phase is associated with the randomization of pseudonematic domains, which have a correlation length that grows as the isotropic-to-nematic phase transition temperature is approached from above. Here we begin to address the fast dynamics of the nematogen molecules within the domains using two-dimensional infrared (2D IR) vibrational echo experiments. The problems of performing ultrafast IR experiments in pure liquids are discussed, and solutions are presented. In addition, the issue of short vibrational lifetimes, which limit the ability of 2D IR experiments to examine dynamics over a wide range of times, is addressed. The experiments were performed on the nematogen 4-cyano-4'-pentylbiphenyl (5CB), with the CN stretch initially used as the vibrational probe. Although the CN stretch has a small transition dipole, because the sample is a pure liquid it is necessary to use an exceedingly thin sample to perform the experiments. The small sample volume leads to massive heating effects that distort the results. In addition, the high concentration in the pure liquid can result in vibrational excitation transfer that interferes with the measurements of structural dynamics, and the CN vibrational lifetime is very short (3.6 ps). These problems were overcome by performing the experiments on the natural-abundance (13)CN stretch (5(13)CB), which greatly reduced the absorbance, eliminating the heating problems; also, this stretch has a longer lifetime (7.9 ps). Experiments were also performed on benzonitrile, which showed that the heating problems associated with pure liquids are not unique to 5CB. Again, the problems were eliminated by conducting measurements on the (13)CN stretch, which has an even longer lifetime (20.2 ps) compared with the (12)CN stretch (5.6 ps). Finally, to extend the range of the dynamical measurements, 4-pentyl-4'-thiocyanobiphenyl (5SCB) was synthesized and studied as a dilute solute in 5CB. The CN stretch of 5SCB has a vibrational lifetime of 103 ps, which permits dynamical measurements to 200 ps, revealing the full range of fast structural dynamics in the isotropic phase of 5CB. It is shown that the 5SCB probe reports essentially the same dynamics as 5(13)CB on the short time scale that is observable with the 5(13)CB vibrational probe.
Collapse
Affiliation(s)
- Kathleen P Sokolowsky
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | |
Collapse
|
12
|
Kim J, Park J, Lee T, Pak Y, Lim M. Dynamics of geminate rebinding of CO to cytochrome c in guanidine HCl probed by femtosecond vibrational spectroscopy. J Phys Chem B 2013; 117:4934-44. [PMID: 23590118 DOI: 10.1021/jp401481q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Femtosecond vibrational spectroscopy was used to probe the rebinding dynamics of CO to cytochrome c (Cytc) in 1.8 and 7 M guanidine HCl (GdnHCl) after photodeligation of the corresponding CO-bound protein in D2O buffer (pD = 7.4) at 283 K. Geminate rebinding (GR) dynamics of CO to the folded Cytc in 1.8 M GdnHCl (nCytc) is similar to that to chemically modified cytochrome c (cCytc), suggesting that the overall conformations of nCytcCO and cCytcCO are similar. About 86% of the dissociated CO molecules were geminately rebound to nCytc nonexponentially within 1 ns. The efficient GR of CO to the folded Cytc can be attributed to the organized protein matrix near the active site of nCytc that provides an efficient trap for the diffusing CO ligand after photodissociation. Although the concentration of nCytc did not affect its GR yield of CO, GR yield of CO to the unfolded Cytc in 7 M GdnHCl (uCytc) increased from 5 to 30% as the protein concentration increased from 0.3 to 9 mM. Time-resolved spectra of the (13)CO dissociated from both 9 mM nCytc(13)CO and 9 mM uCytc(13)CO showed a growing band with a peak at 2090 cm(-1) on the picosecond time scale, which was assigned to (13)CO in D2O solvent. At 1 ns, the fraction of the CO band in the solvent was about 10% of the nascent photodeligated protein in nCytc and more than 50% in the concentrated uCytc. Whereas a small opening in the active site of nCytc is responsible for the ultrafast escape of CO to solution in the folded protein, a large fraction of the CO escape to the solvent in uCytc results from the denatured structure of the active site in the unfolded protein. The spectrum of the CO dissociated from the concentrated uCytcCO contained a band that decayed as efficiently as that for the folded protein, suggesting that some fraction of uCytcCO might form aggregates even in 7 M denaturant, such that the aggregate acts as an efficient trap for the diffusing CO after deligation. No hint of precipitate in the concentrated uCytcCO and protein refolding upon dilution of the GdnHCl indicate that the aggregate does not grow continuously but remains as a soluble oligomer. The delayed appearance of the solvated CO and the inefficient GR of CO in uCytcCO suggest that the monomeric unfolded CytcCO so loosely arranged that the protein matrix cannot trap CO efficiently but the bound CO is still buried within hydrophobic residues even under the harsh denaturation condition.
Collapse
Affiliation(s)
- Jooyoung Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 609-735 Korea
| | | | | | | | | |
Collapse
|
13
|
Cheatum CM, Kohen A. Relationship of femtosecond-picosecond dynamics to enzyme-catalyzed H-transfer. Top Curr Chem (Cham) 2013; 337:1-39. [PMID: 23539379 PMCID: PMC4699684 DOI: 10.1007/128_2012_407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C-H → C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes.
Collapse
|
14
|
Thielges MC, Fayer MD. Protein dynamics studied with ultrafast two-dimensional infrared vibrational echo spectroscopy. Acc Chem Res 2012; 45:1866-74. [PMID: 22433178 DOI: 10.1021/ar200275k] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins, enzymes, and other biological molecules undergo structural dynamics as an intrinsic part of their biological functions. While many biological processes occur on the millisecond, second, and even longer time scales, the fundamental structural dynamics that eventually give rise to such processes occur on much faster time scales. Many decades ago, chemical kineticists focused on the inverse of the reaction rate constant as the important time scale for a chemical reaction. However, through transition state theory and a vast amount of experimental evidence, we now know that the key events in a chemical reaction can involve structural fluctuations that take a system of reactants to its transition state, the crossing of a barrier, and the eventual relaxation to product states. Such dynamics occur on very fast time scales. Today researchers would like to investigate the fast structural fluctuations of biological molecules to gain an understanding of how biological processes proceed from simple structural changes in biomolecules to the final, complex biological function. The study of the fast structural dynamics of biological molecules requires experiments that operate on the appropriate time scales, and in this Account, we discuss the application of ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy to the study of protein dynamics. The 2D IR vibrational echo experiment is akin to 2D NMR, but it operates on time scales many orders of magnitude faster. In the experiments, a particular vibrational oscillator serves as a vibrational dynamics probe. As the structure of the protein evolves in time, the structural changes are manifested as time-dependent changes in the frequency of the vibrational dynamics probe. The 2D IR vibrational echo experiments can track the vibrational frequency evolution, which we then relate to the time evolution of the protein structure. In particular, we measured protein substate interconversion for mutants of myoglobin using 2D IR chemical exchange spectroscopy and observed well-defined substate interconversion on a sub-100 ps time scale. In another study, we investigated the influence of binding five different substrates to the enzyme cytochrome P450(cam). The various substrates affect the enzyme dynamics differently, and the observed dynamics are correlated with the enzyme's selectivity of hydroxylation of the substrates and with the substrate binding affinity.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Chung JK, Thielges MC, Lynch SR, Fayer MD. Fast dynamics of HP35 for folded and urea-unfolded conditions. J Phys Chem B 2012; 116:11024-31. [PMID: 22909017 DOI: 10.1021/jp304058x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The changes in fast dynamics of HP35 with a double CN vibrational dynamics label (HP35-P(2)) as a function of the extent of denaturation by urea were investigated with two-dimensional infrared (2D IR) vibrational echo spectroscopy. Cyanophenylalanine (PheCN) replaces the native phenylalanine at two residues in the hydrophobic core of HP35, providing vibrational probes. NMR data show that HP35-P(2) maintains the native folded structure similar to wild type and that both PheCN residues share essentially the same environment within the peptide. A series of time-dependent 2D IR vibrational echo spectra were obtained for the folded peptide and the increasingly unfolded peptide. Analysis of the time dependence of the 2D spectra yields the system's spectral diffusion, which is caused by the sampling of accessible structures of the peptide under thermal equilibrium conditions. The structural dynamics become faster as the degree of unfolding is increased.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
16
|
Wang L, Skinner JL. Thermally induced protein unfolding probed by isotope-edited IR spectroscopy. J Phys Chem B 2012; 116:9627-34. [PMID: 22853174 PMCID: PMC3463243 DOI: 10.1021/jp304613b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infrared (IR) spectroscopy has been widely utilized for the study of protein folding, unfolding, and misfolding processes. We have previously developed a theoretical method for calculating IR spectra of proteins in the amide I region. In this work, we apply this method, in combination with replica-exchange molecular dynamics simulations, to study the equilibrium thermal unfolding transition of the villin headpiece subdomain (HP36). Temperature-dependent IR spectra and spectral densities are calculated. The spectral densities correctly reflect the unfolding conformational changes in the simulation. With the help of isotope labeling, we are able to capture the feature that helix 2 of HP36 loses its secondary structure before global unfolding occurs, in agreement with experiment.
Collapse
Affiliation(s)
- Lu Wang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 53706 USA
| | - James L. Skinner
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
17
|
Rosenfeld DE, Fayer MD. Excitation transfer induced spectral diffusion and the influence of structural spectral diffusion. J Chem Phys 2012; 137:064109. [DOI: 10.1063/1.4742762] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Bagchi S, Boxer SG, Fayer MD. Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy. J Phys Chem B 2012; 116:4034-42. [PMID: 22417088 PMCID: PMC3354990 DOI: 10.1021/jp2122856] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A nitrile-labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1-20, the S-peptide, and a larger fragment including residues 21-124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile-labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
19
|
Fenn EE, Fayer MD. Extracting 2D IR frequency-frequency correlation functions from two component systems. J Chem Phys 2011; 135:074502. [PMID: 21861571 DOI: 10.1063/1.3625278] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The center line slope (CLS) method is often used to extract the frequency-frequency correlation function (FFCF) from 2D IR spectra to delineate dynamics and to identify homogeneous and inhomogeneous contributions to the absorption line shape of a system. While the CLS method is extremely efficient, quite accurate, and immune to many experimental artifacts, it has only been developed and properly applied to systems that have a single vibrational band, or to systems of two species that have spectrally resolved absorption bands. In many cases, the constituent spectra of multiple component systems overlap and cannot be distinguished from each other. This situation creates ambiguity when analyzing 2D IR spectra because dynamics for different species cannot be separated. Here a mathematical formulation is presented that extends the CLS method for a system consisting of two components (chemically distinct uncoupled oscillators). In a single component system, the CLS corresponds to the time-dependent portion of the normalized FFCF. This is not the case for a two component system, as a much more complicated expression arises. The CLS method yields a series of peak locations originating from slices taken through the 2D spectra. The slope through these peak locations yields the CLS value for the 2D spectra at a given T(w). We derive analytically that for two component systems, the peak location of the system can be decomposed into a weighted combination of the peak locations of the constituent spectra. The weighting depends upon the fractional contribution of each species at each wavelength and also on the vibrational lifetimes of both components. It is found that an unknown FFCF for one species can be determined as long as the peak locations (referred to as center line data) of one of the components are known, as well as the vibrational lifetimes, absorption spectra, and other spectral information for both components. This situation can arise when a second species is introduced into a well characterized single species system. An example is a system in which water exists in bulk form and also as water interacting with an interface. An algorithm is presented for back-calculating the unknown FFCF of the second component. The accuracy of the algorithm is tested with a variety of model cases in which all components are initially known. The algorithm successfully reproduces the FFCF for the second component within a reasonable degree of error.
Collapse
Affiliation(s)
- Emily E Fenn
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
20
|
Rosenfeld DE, Gengeliczki Z, Smith BJ, Stack TDP, Fayer MD. Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes. Science 2011; 334:634-9. [DOI: 10.1126/science.1211350] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Zsolt Gengeliczki
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Brian J. Smith
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - T. D. P. Stack
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Thielges MC, Axup JY, Wong D, Lee HS, Chung JK, Schultz PG, Fayer MD. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. J Phys Chem B 2011; 115:11294-304. [PMID: 21823631 PMCID: PMC3261801 DOI: 10.1021/jp206986v] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Y. Axup
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Daryl Wong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Korea
| | - Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Peter G. Schultz
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|