1
|
Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Comput Biol Med 2024; 175:108468. [PMID: 38657469 DOI: 10.1016/j.compbiomed.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Rossi S, Tudino V, Carullo G, Butini S, Campiani G, Gemma S. Metalloenzyme Inhibitors against Zoonotic Infections: Focus on Leishmania and Schistosoma. ACS Infect Dis 2024; 10:1520-1535. [PMID: 38669567 DOI: 10.1021/acsinfecdis.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The term "zoonosis" denotes diseases transmissible among vertebrate animals and humans. These diseases constitute a significant public health challenge, comprising 61% of human pathogens and causing an estimated 2.7 million deaths annually. Zoonoses not only affect human health but also impact animal welfare and economic stability, particularly in low- and middle-income nations. Leishmaniasis and schistosomiasis are two important neglected tropical diseases with a high prevalence in tropical and subtropical areas, imposing significant burdens on affected regions. Schistosomiasis, particularly rampant in sub-Saharan Africa, lacks alternative treatments to praziquantel, prompting concerns regarding parasite resistance. Similarly, leishmaniasis poses challenges with unsatisfactory treatments, urging the development of novel therapeutic strategies. Effective prevention demands a One Health approach, integrating diverse disciplines to enhance diagnostics and develop safer drugs. Metalloenzymes, involved in parasite biology and critical in different biological pathways, emerged in the last few years as useful drug targets for the treatment of human diseases. Herein we have reviewed recent reports on the discovery of inhibitors of metalloenzymes associated with zoonotic diseases like histone deacetylases (HDACs), carbonic anhydrase (CA), arginase, and heme-dependent enzymes.
Collapse
Affiliation(s)
- Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Valeria Tudino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
3
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Esther Rubavathy SM, Rajapandian V, Prakash M. Exploration of novel hydroxamate zinc binding group inhibitors against HDAC-1-3 enzymes by AI-based virtual screening: atomistic insights from steered molecular dynamics. J Biomol Struct Dyn 2024:1-12. [PMID: 38456827 DOI: 10.1080/07391102.2024.2325104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Overexpression of histone deacetylase (HDAC) enzymes is linked to a wide variety of illnesses, including malignancies and neurological disorders, which makes HDAC inhibitors potentially therapeutic. However, most HDAC inhibitors lack subclass or isoform selectivity, which can be dangerous. Featuring both enhanced selectivity and toxicity profiles, slow-binding HDAC inhibitors offer promising treatment options for a variety of disorders. Diseases like cardiac, neurodegenerative disorders and diabetes are mainly associated with the HDAC1, HDAC2 and HDAC3 enzymes. The AI-based virtual screening tool PyRMD is implemented to identify the potential inhibitors from ∼2 million compounds. Based on the IC50 values, the top 10 compounds were selected for molecular docking. From the docking and ADMET study, the top-ranked three compounds were selected for molecular dynamics (MD) simulations. Further, to get more insights into the binding/unbinding mechanism of the ligand, we have employed the steered molecular dynamics (SMD) simulations. This study assists in developing Amber force field parameters for the HDAC1, HDAC2 and HDAC3 proteins and sheds light on the discovery of a potent drug. Our study suggests that hydroxamic acid derivative (i.e. referred to as Comp-1, CHEMBL600072) is the potential inhibitor for the series of HDAC-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S M Esther Rubavathy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - V Rajapandian
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - M Prakash
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
5
|
Han H, Feng X, He T, Wu Y, He T, Yue Z, Zhou W. Discussion on structure classification and regulation function of histone deacetylase and their inhibitor. Chem Biol Drug Des 2024; 103:e14366. [PMID: 37776270 DOI: 10.1111/cbdd.14366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Epigenetic regulation of genes through posttranslational regulation of proteins is a well-explored approach for disease treatment, particularly in cancer chemotherapy. Histone deacetylases have shown significant potential as effective drug targets in therapeutic studies aiming to restore epigenetic normality in oncology. Besides their role in modifying histones, histone deacetylases can also catalyze the deacetylation of various nonhistone proteins and participate in the regulation of multiple biological processes. This paper provides a review of the classification, structure, and functional characteristics of the four classes of human histone deacetylases. The increasing abundance of structural information on HDACs has led to the gradual elucidation of structural differences among subgroups and subtypes. This has provided a reasonable explanation for the selectivity of certain HDAC inhibitors. Currently, the US FDA has approved a total of six HDAC inhibitors for marketing, primarily for the treatment of various hematological tumors and a few solid tumors. These inhibitors all have a common pharmacodynamic moiety consisting of three parts: CAP, ZBG, and Linker. In this paper, the structure-effect relationship of HDAC inhibitors is explored by classifying the six HDAC inhibitors into three main groups: isohydroxamic acids, benzamides, and cyclic peptides, based on the type of inhibitor ZBG. However, there are still many questions that need to be answered in this field. In this paper, the structure-functional characteristics of HDACs and the structural information of the pharmacophore model and enzyme active region of HDAC is are considered, which can help to understand the inhibition mechanism of the compounds as well as the rational design of HDACs. This paper integrates the structural-functional characteristics of HDACs as well as the pharmacophore model of HDAC is and the structural information of the enzymatic active region, which not only contributes to the understanding of the inhibition mechanism of the compounds, but also provides a basis for the rational design of HDAC inhibitors.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ziwen Yue
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| |
Collapse
|
6
|
Drakontaeidi A, Pontiki E. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals (Basel) 2023; 16:1639. [PMID: 38139766 PMCID: PMC10746130 DOI: 10.3390/ph16121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents. A critical aspect of their inhibition is to achieve selectivity in terms of enzyme isoforms, which is essential to improve treatment efficacy while reducing undesirable pleiotropic effects. The development of computational chemistry tools, particularly molecular docking, is greatly enhancing the precision of designing molecules with inherent potential for specific activity. Therefore, it was considered necessary to review the molecular docking studies conducted on the major isozymes of the enzyme in order to identify the specific interactions associated with each selective HDAC inhibitor. In particular, the most critical isozymes of HDAC (1, 2, 3, 6, and 8) have been thoroughly investigated within the scope of this review.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Wang KN, Liu LY, Mao D, Hou MX, Tan CP, Mao ZW, Liu B. A Nuclear-Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022; 61:e202114600. [PMID: 35132748 DOI: 10.1002/anie.202114600] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.
Collapse
Affiliation(s)
- Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ming-Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
8
|
Wang K, Liu L, Mao D, Hou M, Tan C, Mao Z, Liu B. A Nuclear‐Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ming‐Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
9
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
10
|
Rehman AU, Zhen G, Zhong B, Ni D, Li J, Nasir A, Gabr MT, Rafiq H, Wadood A, Lu S, Zhang J, Chen HF. Mechanism of zinc ejection by disulfiram in nonstructural protein 5A. Phys Chem Chem Phys 2021; 23:12204-12215. [PMID: 34008604 DOI: 10.1039/d0cp06360f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) is a notorious member of the Flaviviridae family of enveloped, positive-strand RNA viruses. Non-structural protein 5A (NS5A) plays a key role in HCV replication and assembly. NS5A is a multi-domain protein which includes an N-terminal amphipathic membrane anchoring alpha helix, a highly structured domain-1, and two intrinsically disordered domains 2-3. The highly structured domain-1 contains a zinc finger (Zf)-site, and binding of zinc stabilizes the overall structure, while ejection of this zinc from the Zf-site destabilizes the overall structure. Therefore, NS5A is an attractive target for anti-HCV therapy by disulfiram, through ejection of zinc from the Zf-site. However, the zinc ejection mechanism is poorly understood. To disclose this mechanism based on three different states, A-state (NS5A protein), B-state (NS5A + Zn), and C-state (NS5A + Zn + disulfiram), we have performed molecular dynamics (MD) simulation in tandem with DFT calculations in the current study. The MD results indicate that disulfiram triggers Zn ejection from the Zf-site predominantly through altering the overall conformation ensemble. On the other hand, the DFT assessment demonstrates that the Zn adopts a tetrahedral configuration at the Zf-site with four Cys residues, which indicates a stable protein structure morphology. Disulfiram binding induces major conformational changes at the Zf-site, introduces new interactions of Cys39 with disulfiram, and further weakens the interaction of this residue with Zn, causing ejection of zinc from the Zf-site. The proposed mechanism elucidates the therapeutic potential of disulfiram and offers theoretical guidance for the advancement of drug candidates.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China. and State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China and Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Guodong Zhen
- Department of VIP Clinic, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Bozitao Zhong
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdul Nasir
- Synthetic Protein Engineering Lab, Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Humaira Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Hai-Feng Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China. and Shanghai Center for Bioinformation Technology, Shanghai, 200235, China
| |
Collapse
|
11
|
Campiani G, Cavella C, Osko JD, Brindisi M, Relitti N, Brogi S, Saraswati AP, Federico S, Chemi G, Maramai S, Carullo G, Jaeger B, Carleo A, Benedetti R, Sarno F, Lamponi S, Rottoli P, Bargagli E, Bertucci C, Tedesco D, Herp D, Senger J, Ruberti G, Saccoccia F, Saponara S, Gorelli B, Valoti M, Kennedy B, Sundaramurthi H, Butini S, Jung M, Roach KM, Altucci L, Bradding P, Christianson DW, Gemma S, Prasse A. Harnessing the Role of HDAC6 in Idiopathic Pulmonary Fibrosis: Design, Synthesis, Structural Analysis, and Biological Evaluation of Potent Inhibitors. J Med Chem 2021; 64:9960-9988. [PMID: 34251197 PMCID: PMC8300879 DOI: 10.1021/acs.jmedchem.1c00184] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novel hHDAC6 inhibitors, having low inhibitory potency over hHDAC1 and hHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with low in vitro and in vivo toxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-β1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.
Collapse
Affiliation(s)
- Giuseppe Campiani
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Caterina Cavella
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Margherita Brindisi
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - A. Prasanth Saraswati
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Federico
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Chemi
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Samuele Maramai
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Benedikt Jaeger
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Alfonso Carleo
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Federica Sarno
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Stefania Lamponi
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Paola Rottoli
- University of Siena, Specialization School of Respiratory Diseases, Department of Medical Sciences, Surgery and Neurosciences, Centro didattico Le Scotte, , 53100, Siena, Italy
| | - Elena Bargagli
- University of Siena, Department of Medical Sciences, Surgery and Neurosciences, Respiratory Diseases Unit, AOUS, Centro didattico Le Scotte, 53100, Siena, Italy
| | - Carlo Bertucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro, 6, Bologna 40126, Italy
| | - Daniele Tedesco
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro, 6, Bologna 40126, Italy
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Johanna Senger
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Breándan Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Stefania Butini
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Katy M. Roach
- Department of Respiratory Sciences, University of Leicester, UK, Institute of Lung Health and NIHR Leicester BRC-Respiratory, LE5 4PW, Leicester, UK
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, UK, Institute of Lung Health and NIHR Leicester BRC-Respiratory, LE5 4PW, Leicester, UK
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Sandra Gemma
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Antje Prasse
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| |
Collapse
|
12
|
Histone deacetylase 10, a potential epigenetic target for therapy. Biosci Rep 2021; 41:228655. [PMID: 33997894 PMCID: PMC8182986 DOI: 10.1042/bsr20210462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase (HDAC) 10, a class II family, has been implicated in various tumors and non-tumor diseases, which makes the discovery of biological functions and novel inhibitors a fundamental endeavor. In cancers, HDAC10 plays crucial roles in regulating various cellular processes through its epigenetic functions or targeting some decisive molecular or signaling pathways. It also has potential clinical utility for targeting tumors and non-tumor diseases, such as renal cell carcinoma, prostate cancer, immunoglobulin A nephropathy (IgAN), intracerebral hemorrhage, human immunodeficiency virus (HIV) infection and schizophrenia. To date, relatively few studies have investigated HDAC10-specific inhibitors. Therefore, it is important to study the biological functions of HDAC10 for the future development of specific HDAC10 inhibitors. In this review, we analyzed the biological functions, mechanisms and inhibitors of HDAC10, which makes HDAC10 an appealing therapeutic target.
Collapse
|
13
|
Fragment-Based Drug Design of Selective HDAC6 Inhibitors. Methods Mol Biol 2021; 2266:155-170. [PMID: 33759126 DOI: 10.1007/978-1-0716-1209-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Medicinal chemistry society has enough arguments to justify the usage of fragment-based drug design (FBDD) methodologies for the identification of lead compounds. Since the FDA approval of three kinase inhibitors - vemurafenib, venetoclax, and erdafitinib, FBDD has become a challenging alternative to high-throughput screening methods in drug discovery. The following protocol presents in silico drug design of selective histone deacetylase 6 (HDAC6) inhibitors through a fragment-based approach. To date, structural motifs that are important for HDAC inhibitory activity and selectivity are described as: surface recognition group (CAP group), aliphatic or aromatic linker, and zinc-binding group (ZBG). The main idea of this FBDD method is to identify novel and target-selective CAP groups by virtual scanning of publicly available fragment databases. Template structure used to search for novel heterocyclic and carbocyclic fragments is 1,8-naphthalimide (CAP group of scriptaid, a potent HDAC inhibitor). Herein, the design of HDAC6 inhibitors is based on linking the identified fragments with the aliphatic or aromatic linker and hydroxamic acid (ZBG) moiety. Final selection of potential selective HDAC6 inhibitors is based on combined structure-based (molecular docking) and ligand-based (three-dimensional quantitative structure-activity relationships, 3D-QSAR) techniques. Designed compounds are docked in the active site pockets of human HDAC1 and HDAC6 isoforms, and their docking conformations used to predict their HDAC inhibitory and selectivity profiles through two developed 3D-QSAR models (describing HDAC1 and HDAC6 inhibitory activities).
Collapse
|
14
|
Anh D, Hai PT, Huy LD, Ngoc HB, Ngoc TTM, Dung DTM, Park EJ, Song IK, Kang JS, Kwon JH, Tung TT, Han SB, Nam NH. Novel 4-Oxoquinazoline-Based N-Hydroxypropenamides as Histone Deacetylase Inhibitors: Design, Synthesis, and Biological Evaluation. ACS OMEGA 2021; 6:4907-4920. [PMID: 33644598 PMCID: PMC7905942 DOI: 10.1021/acsomega.0c05870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 05/05/2023]
Abstract
Two series of novel 4-oxoquinazoline-based N-hydroxypropenamides (9a-m and 10a-m) were designed, synthesized, and evaluated for their inhibitory and cytotoxicity activities against histone deacetylase (HDAC). The compounds showed good to potent HDAC inhibitory activity and cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). In this series, compounds with the N-hydroxypropenamide functionality impeded at position 7 on the 4-oxoquinazoline skeleton (10a-m) were generally more potent than compounds with the N-hydroxypropenamide moiety at position 6 (9a-m). Also, the N 3-benzyl-substituted derivatives (9h-m, 10h-m) exhibited stronger bioactivity than the N 3-alkyl-substituted ones (9a-e, 10a-e). Two compounds 10l and 10m were the most potent ones. Their HDAC inhibitory activity (IC50 values, 0.041-0.044 μM) and cytotoxicity (IC50 values, 0.671-1.211 μM) were approximately 2- to 3-fold more potent than suberoylanilide hydroxamic acid (SAHA). Some compounds showed up to 10-fold more potent HDAC6 inhibition compared to their inhibitory activity in total HDAC extract assay. Analysis of selected compounds 10l and 10m revealed that these compounds strongly induced both early and late apoptosis and arrested SW620 cells at the G2/M phase. Docking studies were carried out on the HDAC6 isoform for series 10a-m and revealed some important features contributing to the inhibitory activity of synthesized compounds.
Collapse
Affiliation(s)
- Duong
T. Anh
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Pham-The Hai
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Le D. Huy
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Hoang B. Ngoc
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Trinh T. M. Ngoc
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Do T. M. Dung
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Eun J. Park
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - In K. Song
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jong S. Kang
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Joo-Hee Kwon
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Truong T. Tung
- Faculty
of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA
Institute for Advanced Study (PIAS), PHENIKAA
University, Hanoi 12116, Vietnam
| | - Sang-Bae Han
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
- . Tel: +84-4-39330531. Fax: +84-4-39332332
| |
Collapse
|
15
|
Arun Y, Daifa M, Domb AJ. Polyhydroxamic acid as an efficient metal chelator and flocculant for wastewater treatment. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuvaraj Arun
- Institute of Drug Research, School of Pharmacy‐Faculty of Medicine, The Alex Grass center for Drug Design and Synthesis and Center for Cannabis Research The Hebrew University of Jerusalem Jerusalem Israel
| | - Mahran Daifa
- Institute of Drug Research, School of Pharmacy‐Faculty of Medicine, The Alex Grass center for Drug Design and Synthesis and Center for Cannabis Research The Hebrew University of Jerusalem Jerusalem Israel
| | - Abraham J. Domb
- Institute of Drug Research, School of Pharmacy‐Faculty of Medicine, The Alex Grass center for Drug Design and Synthesis and Center for Cannabis Research The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
16
|
Vu TK, Thanh NT, Minh NV, Linh NH, Thao NTP, Nguyen TTB, Hien DT, Chinh LV, Duc TH, Anh LD, Hai PT. Novel Conjugated Quinazolinone-Based Hydroxamic Acids: Design, Synthesis and Biological Evaluation. Med Chem 2021; 17:732-749. [PMID: 32310052 DOI: 10.2174/1573406416666200420081540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. AIMS This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. METHODS A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin- 4(3H)-ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structureactivity relationships. RESULTS It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 μM, and HDAC inhibition with IC50 value of 6.36 μM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. CONCLUSION The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.
Collapse
Affiliation(s)
- Tran Khac Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Thanh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Van Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Huong Linh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Phương Thao
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Trương Thuc Bao Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Doan Thi Hien
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Luu Van Chinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet-Cau Giay, Hanoi, Vietnam
| | - Ta Hong Duc
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Lai Duc Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham-The Hai
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| |
Collapse
|
17
|
Molecular Docking Simulations on Histone Deacetylases (HDAC)-1 and -2 to Investigate the Flavone Binding. Biomedicines 2020; 8:biomedicines8120568. [PMID: 33291755 PMCID: PMC7761979 DOI: 10.3390/biomedicines8120568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Histone modifications through acetylation are fundamental for remodelling chromatin and consequently activating gene expression. The imbalance between acetylation and deacetylation activity causes transcriptional dysregulation associated with several disorders. Flavones, small molecules of plant origin, are known to interfere with class I histone deacetylase (HDAC) enzymes and to enhance acetylation, restoring cell homeostasis. To investigate the possible physical interactions of flavones on human HDAC1 and 2, we carried out in silico molecular docking simulations. Our data have revealed how flavone, and other two flavones previously investigated, i.e., apigenin and luteolin, can interact as ligands with HDAC1 and 2 at the active site binding pocket. Regulation of HDAC activity by dietary flavones could have important implications in developing epigenetic therapy to regulate the cell gene expression.
Collapse
|
18
|
Asadi N, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B. Theoretical MD/DFT computer explorations and surface-electrochemical investigations of the zinc/iron metal cations interactions with highly active molecules from Lemon balm extract toward the steel corrosion retardation in saline solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Hughes RR, Shaaban KA, Ponomareva LV, Horn J, Zhang C, Zhan CG, Voss SR, Leggas M, Thorson JS. OleD Loki as a Catalyst for Hydroxamate Glycosylation. Chembiochem 2020; 21:952-957. [PMID: 31621997 PMCID: PMC7124993 DOI: 10.1002/cbic.201900601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Herein we describe the ability of the permissive glycosyltransferase (GT) OleD Loki to convert a diverse set of >15 histone deacetylase (HDAC) inhibitors (HDACis) into their corresponding hydroxamate glycosyl esters. Representative glycosyl esters were subsequently evaluated in assays for cancer cell line cytotoxicity, chemical and enzymatic stability, and axolotl embryo tail regeneration. Computational substrate docking models were predictive of enzyme-catalyzed turnover and suggest certain HDACis may form unproductive, potentially inhibitory, complexes with GTs.
Collapse
Affiliation(s)
- Ryan R Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jamie Horn
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chunhui Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - S Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, Ambystoma Genetic Stock Center, University of Kentucky, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Markos Leggas
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| |
Collapse
|
20
|
A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med 2020; 52:204-212. [PMID: 32071378 PMCID: PMC7062823 DOI: 10.1038/s12276-020-0382-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/27/2019] [Indexed: 01/07/2023] Open
Abstract
The interaction between histones and DNA is important for eukaryotic gene expression. A loose interaction caused, for example, by the neutralization of a positive charge on the histone surface by acetylation, induces a less compact chromatin structure, resulting in feasible accessibility of RNA polymerase and increased gene expression. In contrast, the formation of a tight chromatin structure due to the deacetylation of histone lysine residues on the surface by histone deacetylases enforces the interaction between the histones and DNA, which minimizes the chance of RNA polymerases contacting DNA, resulting in decreased gene expression. Therefore, the balance of the acetylation of histones mediated by histone acetylases (HATs) and histone deacetylases (HDACs) is an issue of transcription that has long been studied in relation to posttranslational modification. In this review, current knowledge of HDACs is briefly described with an emphasis on recent progress in research on HDACs, especially on class IIa HDACs. Targeting specific structural and functional features of enzymes involved in regulating the interactions between DNA and the histone proteins associated with it could lead to the development of more effective cancer therapeutics. Histone deacetylases (HDACs), enzymes which remove acetyl groups from histones, make the histones wrap more tightly around the DNA so that it becomes inaccessible to the initial steps in gene expression. Drugs that target these enzymes have shown limited efficacy due to lack of specificity and off-target toxicity. Jeong-Sun Kim at Chonnam National University, Gwangju, and Suk-Youl Park at Pohang Accelerator Laboratory, Pohang University of Science and Technology, South Korea, review the latest knowledge about class II HDACs. They suggest that their unique structural features and low enzymatic activity are important features to consider when designing new, more selective HDAC inhibitors.
Collapse
|
21
|
Li Z, Zhao Y, Zhou H, Luo HB, Zhan CG. Catalytic Roles of Coenzyme Pyridoxal-5'-phosphate (PLP) in PLP-dependent Enzymes: Reaction Pathway for Methionine-γ-lyase-catalyzed L-methionine Depletion. ACS Catal 2020; 10:2198-2210. [PMID: 33344000 DOI: 10.1021/acscatal.9b03907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pyridoxal-5'-phosphate (PLP), the active form of vitamin B6, is an important and versatile coenzyme involved in a variety of enzymatic reactions, accounting for about 4% of all classified activities. However, the detailed catalytic reaction pathways for PLP-dependent enzymes remain to be explored. Methionine-γ-lyase (MGL), a promising alternative anti-tumor agent to conventional chemotherapies whose catalytic mechanism is highly desired for guiding further development of re-engineered enzymes, was used as a representative PLP-dependent enzyme, and the catalytic mechanism for L-Met elimination by MGL was explored at the first-principles quantum mechanical/molecular mechanical (QM/MM) level with umbrella sampling. The QM/MM calculations revealed that the enzymatic reaction pathway consists of 4 stages for a total of 19 reaction steps with five intermediates captured in available crystal structures. Furthermore, the more comprehensive role of PLP was revealed. Besides the commonly known role of "electron sink", coenzyme PLP can also assist proton transfer and temporarily store the excess proton generated in some intermediate states by using its hydroxyl group and phosphate group. Thus, PLP is participated in most of the 19 steps. This study not only provided a theoretical basis for further development and re-engineering MGL as a potential anti-tumor agent, but also revealed the comprehensive role of PLP which could be used to explore the mechanisms of other PLP-dependent enzymes.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Yunsong Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
| | - Huifang Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People’s Republic of China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
22
|
Combined molecular simulation, DFT computation and electrochemical studies of the mild steel corrosion protection against NaCl solution using aqueous Eucalyptus leaves extract molecules linked with zinc ions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111550] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Krishna S, Lakra AD, Shukla N, Khan S, Mishra DP, Ahmed S, Siddiqi MI. Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation. J Biomol Struct Dyn 2019; 38:3280-3295. [DOI: 10.1080/07391102.2019.1654925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shagun Krishna
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amar Deep Lakra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nidhi Shukla
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Khan
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Durga Prasad Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakil Ahmed
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
24
|
Liu H, Zhang F, Wang K, Tang X, Wu R. Conformational dynamics and allosteric effect modulated by the unique zinc-binding motif in class IIa HDACs. Phys Chem Chem Phys 2019; 21:12173-12183. [PMID: 31144693 DOI: 10.1039/c9cp02261a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Class IIa histone deacetylases (HDACs) have been considered as potential targets for the treatment of several diseases. Compared to other HDACs, class IIa HDACs have an additional second zinc binding motif. So far, the function of the unique zinc-binding motif is still not very clear. In this work, extensive classical molecular dynamics (MD) simulations were employed to illuminate the conformational change modulated by the unique zinc-binding motif. It has been revealed that the unique zinc-binding motif is a crucial structural stabilization factor in retaining the catalytic activity of the enzyme and the stability of the multi-protein complex, by remotely modulating the active site pocket in a "closed" conformation. Moreover, it is also revealed that the Loop2 motion in HDAC4 is less flexible than that in HDAC7, which opens a new avenue to design selective inhibitors by utilizing the local conformational dynamics difference between the structurally highly similar HDAC4 and HDAC7. Finally, by comparative studies with class I HDACs (HDAC1-3), it is found that the reversible "in-out" conformational transformation of the binding rail (highly conserved both in class I and IIa HDACs) occurs spontaneously in HDAC1-3, whereas the binding rail is trapped in an "in" conformation owing to the strong metal coordination interaction of the unique CCHC zinc-binding motif in class IIa HDACs. Thus, the CCHC zinc-binding motif may be a feasible allosteric site for the development of class IIa-selective inhibitors.
Collapse
Affiliation(s)
- Huawei Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Kai Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Xiaowen Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
25
|
Wei W, Chen Y, Xie D, Zhou Y. Molecular insight into chymotrypsin inhibitor 2 resisting proteolytic degradation. Phys Chem Chem Phys 2019; 21:5049-5058. [PMID: 30762035 DOI: 10.1039/c8cp07784c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chymotrypsin inhibitor 2 (CI2) is a special serine protease inhibitor which can resist hydrolysis for several days with a rapid equilibrium between the Michaelis complex and acyl-enzyme intermediate. The energies and conformational changes for subtilisin-catalyzed proteolysis of CI2 were examined in this paper for the first time by employing pseudo bond ab initio QM/MM MD simulations. In the acylation reaction, a low-barrier hydrogen bond between His64 and Asp32 in the transition state together with the lack of covalent backbone constraints makes the peptide bonds of CI2 break more easily than in other serine protease inhibitors. After acyl-enzyme formation, molecular dynamics simulations showed that the access of hydrolytic water to the active site requires partial dissociation of the leaving group. However, retention of the leaving group mainly by the intra- and inter-molecular H-bonding networks hinders the access of water and retards the deacylation reaction. Instead of the dissociation constant of inhibitors, we suggest employing the free energy at the acyl-enzyme state to predict the relative hydrolysis rates of CI2 mutants, which are testified by the experimental relative hydrolysis rates.
Collapse
Affiliation(s)
- Wanqing Wei
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
26
|
Hieu DT, Anh DT, Hai PT, Thuan NT, Huong LTT, Park EJ, Young Ji A, Soon Kang J, Phuong Dung PT, Han SB, Nam NH. Quinazolin-4(3H)-one-Based Hydroxamic Acids: Design, Synthesis and Evaluation of Histone Deacetylase Inhibitory Effects and Cytotoxicity. Chem Biodivers 2019; 16:e1800502. [PMID: 30653817 DOI: 10.1002/cbdv.201800502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin-4(3H)-ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N-hydroxy-7-(7-methyl-4-oxoquinazolin-3(4H)-yl)heptanamide (5b) and N-hydroxy-7-(6-methyl-4-oxoquinazolin-3(4H)-yl)heptanamide (5c) (IC50 values, 0.10-0.16 μm) were found to be approximately 30-fold more cytotoxic than SAHA (IC50 values of 3.29-3.67 μm). N-Hydroxy-7-(4-oxoquinazolin-3(4H)-yl)heptanamide (5a; IC50 values of 0.21-0.38 μm) was approximately 10- to 15-fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub-micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c, strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.
Collapse
Affiliation(s)
- Doan Thanh Hieu
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Pham-The Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Nguyen Thi Thuan
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Le-Thi-Thu Huong
- School of Medicine and Pharmacy, Vietnam National University, 144 Xuan Thuy, Hanoi, 100000, Vietnam
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - A Young Ji
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jong Soon Kang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28160, Republic of Korea
| | | | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| |
Collapse
|
27
|
Adams MK, Banks CA, Miah S, Killer M, Washburn MP. Purification and enzymatic assay of class I histone deacetylase enzymes. Methods Enzymol 2019; 626:23-40. [PMID: 31606077 PMCID: PMC6839770 DOI: 10.1016/bs.mie.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reversible acetylation of histones has a profound influence on transcriptional status. Histone acetyltransferases catalyze the addition of these chemical modifications to histone lysine residues. Conversely, histone deacetylases (HDACs) catalyze the removal of these acetyl groups from histone lysine residues. As modulators of transcription, HDACs have found themselves as targets of several FDA-approved chemotherapeutic compounds which aim to inhibit enzyme activity. The ongoing efforts to develop targeted and isoform-specific HDAC inhibitors necessitates tools to study these modifications and the enzymes that maintain an equilibrium of these modifications. In this chapter, we present an optimized workflow for the isolation of recombinant protein and subsequent assay of class I HDAC activity. We demonstrate the application of this assay by assessing the activities of recombinant HDAC1, HDAC2, and SIN3B. This assay system utilizes readily available reagents and can be used to assess the activity and responsiveness of class I HDAC complexes to HDAC inhibitors.
Collapse
Affiliation(s)
- Mark K. Adams
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | - Sayem Miah
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Maxime Killer
- Stowers Institute for Medical Research, Kansas City, MO 64110,Current address: Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110,Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160,Correspondence:
| |
Collapse
|
28
|
Novel spiroindoline HDAC inhibitors: Synthesis, molecular modelling and biological studies. Eur J Med Chem 2018; 157:127-138. [DOI: 10.1016/j.ejmech.2018.07.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 02/08/2023]
|
29
|
Walton JW, Cross JM, Riedel T, Dyson PJ. Perfluorinated HDAC inhibitors as selective anticancer agents. Org Biomol Chem 2018; 15:9186-9190. [PMID: 29072756 DOI: 10.1039/c7ob02339a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of potent histone deacetylase inhibitors is presented that incorporate alkyl or perfluorinated alkyl chains. Several new compounds show greater in vitro antiproliferative activity than the clinically approved inhibitor, SAHA. Furthermore, the new compounds show up to 5-fold greater activity against cancer cells than healthy cells. This selectivity is in contrast to SAHA, which is more active against the healthy cell line than the cancer cell line tested. Finally, we report an increase in activity for SAHA under mild hyperthermia, indicating that it could be an interesting candidate to use in combination with thermal therapy.
Collapse
Affiliation(s)
- James W Walton
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | | | |
Collapse
|
30
|
Hieu DT, Anh DT, Tuan NM, Hai PT, Huong LTT, Kim J, Kang JS, Vu TK, Dung PTP, Han SB, Nam NH, Hoa ND. Design, synthesis and evaluation of novel N -hydroxybenzamides/ N -hydroxypropenamides incorporating quinazolin-4(3 H )-ones as histone deacetylase inhibitors and antitumor agents. Bioorg Chem 2018; 76:258-267. [DOI: 10.1016/j.bioorg.2017.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/28/2017] [Accepted: 12/03/2017] [Indexed: 01/26/2023]
|
31
|
Kollar J, Frecer V. How accurate is the description of ligand–protein interactions by a hybrid QM/MM approach? J Mol Model 2017; 24:11. [DOI: 10.1007/s00894-017-3537-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
|
32
|
Yu LJ, Golden E, Chen N, Zhao Y, Vrielink A, Karton A. Computational insights for the hydride transfer and distinctive roles of key residues in cholesterol oxidase. Sci Rep 2017; 7:17265. [PMID: 29222497 PMCID: PMC5722936 DOI: 10.1038/s41598-017-17503-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022] Open
Abstract
Cholesterol oxidase (ChOx), a member of the glucose-methanol-choline (GMC) family, catalyzes the oxidation of the substrate via a hydride transfer mechanism and concomitant reduction of the FAD cofactor. Unlike other GMC enzymes, the conserved His447 is not the catalytic base that deprotonates the substrate in ChOx. Our QM/MM MD simulations indicate that the Glu361 residue acts as a catalytic base facilitating the hydride transfer from the substrate to the cofactor. We find that two rationally chosen point mutations (His447Gln and His447Asn) cause notable decreases in the catalytic activity. The binding free energy calculations show that the Glu361 and His447 residues are important in substrate binding. We also performed high-level double-hybrid density functional theory simulations using small model systems, which support the QM/MM MD results. Our work provides a basis for unraveling the substrate oxidation mechanism in GMC enzymes in which the conserved histidine does not act as a base.
Collapse
Affiliation(s)
- Li-Juan Yu
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Emily Golden
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nanhao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
33
|
Zhou J, Huang Y, Cheng C, Wang K, Wu R. Intrinsic Dynamics of the Binding Rail and Its Allosteric Effect in the Class I Histone Deacetylases. J Chem Inf Model 2017; 57:2309-2320. [PMID: 28805377 DOI: 10.1021/acs.jcim.7b00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of novel isoform/class-selective inhibitors is still of great biological and medical significance to conquer the continuously reported side effects for the histone deacetylase (HDAC) drugs. The first potent HDAC allosteric inhibitor was discovered last year, and this allosteric inhibitor design is thought to be a promising strategy to overcome the current challenges in HDAC inhibitor design. However, the detailed allosteric mechanism and its remote regulatory effects on the catalytic/inhibitor activity of HDAC are still unclear. In this work, on the basis of microsecond-time-scale all-atom molecular dynamics (MD) simulations and picosecond-time-scale density functional theory/molecular mechanics MD simulations on HDAC8, we propose that the allostery is achieved by the intrinsic conformational flexibility of the binding rail (constituted by a highly conserved X-D residue dyad), which steers the loop-loop motion and creates the diverse shapes of the allosteric sites in different HDAC isoforms. Additionally, the rotatability of the binding rail is an inherent structural feature that regulates the hydrophobicity of the linker binding channel and thus further affects the HDAC enzyme inhibitory/catalytic activity by utilizing the promiscuity of X-D dyad. Since the plastic X residue is different among class I HDACs, these new findings provide a deeper understanding of the allostery, which is guidable for the design of new allosteric inhibitors toward the allosteric site and structure modifications on the conventional inhibitors binding into the active pocket by exploiting the intrinsic dynamic features of the conserved X-D dyad.
Collapse
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, P. R. China
| | - Yue Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, P. R. China
| | - Chunyan Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, P. R. China
| | - Kai Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, P. R. China
| |
Collapse
|
34
|
Huong TTL, Van Cuong L, Huong PT, Thao TP, Huong LTT, Dung PTP, Oanh DTK, Huong NTM, Quan HV, Vu TK, Kim J, Lee JH, Han SB, Hai PT, Nam NH. Exploration of some indole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Novel N -hydroxybenzamides incorporating 2-oxoindoline with unexpected potent histone deacetylase inhibitory effects and antitumor cytotoxicity. Bioorg Chem 2017; 71:160-169. [DOI: 10.1016/j.bioorg.2017.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
|
36
|
Zhang X, Zhao Y, Duan X, Zhang HN, Cao Z, Mo Y. Mechanisms for the deamination reaction of 8-oxoguanine catalyzed by 8-oxoguanine deaminase: A combined QM/MM molecular dynamics study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The deamination reaction of 8-oxoguanine (8-oxoG) catalyzed by 8-oxoguanine deaminase (8-oxoGD) plays a critically important role in the DNA repair activity for oxidative damage. In order to elucidate the complete enzymatic catalysis mechanism at the stages of 8-oxoguanine binding, departure of 2-hydroxy-1H-purine-6,8(7H,9H)-dione from the active site, and formation of 8-oxoxanthine, extensive combined QM(PM3)/MM molecular dynamics simulations have been performed. Computations show that the rate-limiting step corresponds to the nucleophilic attack from zinc-coordinate hydroxide group to free 8-oxoguanine. Through conformational analyses, we demonstrate that Trp115, Trp123 and Leu119 connect to O8@8-oxoguanine with hydrogen bonds, and we suggest that mutations of tryptophan (115 and 123) to histidine or phenylalanine and mutation of leucine (119) to alanine could potentially lead to a mutant with enhanced activity. On this ground, a proton transfer mechanism for the formation of 8-oxoxanthine was further discussed. Both Glu218 and water molecule could be used as proton shuttles, and water molecule plays a major role in proton transfer in substrate. On the other hand, comparative simulations on the deamination of guanine and isocytosine reveal that, for the helping of hydrogen bonds between O8@8-oxoguanine and enzyme, O8@8-oxoguanine is the fastest to be deaminated among the three substrates which are also supported by the experimental kinetic constants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Yuan Zhao
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xinli Duan
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hui N. Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| |
Collapse
|
37
|
Jadhavar PS, Ramachandran SA, Riquelme E, Gupta A, Quinn KP, Shivakumar D, Ray S, Zende D, Nayak AK, Miglani SK, Sathe BD, Raja M, Farias O, Alfaro I, Belmar S, Guerrero J, Bernales S, Chakravarty S, Hung DT, Lindquist JN, Rai R. Targeting prostate cancer with compounds possessing dual activity as androgen receptor antagonists and HDAC6 inhibitors. Bioorg Med Chem Lett 2016; 26:5222-5228. [PMID: 27717544 DOI: 10.1016/j.bmcl.2016.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/19/2023]
Abstract
While enzalutamide and abiraterone are approved for treatment of metastatic castration-resistant prostate cancer (mCRPC), approximately 20-40% of patients have no response to these agents. It has been stipulated that the lack of response and the development of secondary resistance to these drugs may be due to the presence of AR splice variants. HDAC6 has a role in regulating the androgen receptor (AR) by modulating heat shock protein 90 (Hsp90) acetylation, which controls the nuclear localization and activation of the AR in androgen-dependent and independent scenarios. With dual-acting AR-HDAC6 inhibitors it should be possible to target patients who don't respond to enzalutamide. Herein, we describe the design, synthesis and biological evaluation of dual-acting compounds which target AR and are also specific towards HDAC6. Our efforts led to compound 10 which was found to have potent dual activity (HDAC6 IC50=0.0356μM and AR binding IC50=<0.03μM). Compound 10 was further evaluated for antagonist and other cell-based activities, in vitro stability and pharmacokinetics.
Collapse
Affiliation(s)
- Pradeep S Jadhavar
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Sreekanth A Ramachandran
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Eduardo Riquelme
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Ashu Gupta
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Kevin P Quinn
- Medivation, 525 Market Street, 36th Floor, San Francisco, CA 94105, USA
| | | | | | - Dnyaneshwar Zende
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Anjan K Nayak
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Sandeep K Miglani
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Balaji D Sathe
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Mohd Raja
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Olivia Farias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Ivan Alfaro
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Sebastián Belmar
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Javier Guerrero
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | | | | | - David T Hung
- Medivation, 525 Market Street, 36th Floor, San Francisco, CA 94105, USA
| | | | - Roopa Rai
- Medivation, 525 Market Street, 36th Floor, San Francisco, CA 94105, USA.
| |
Collapse
|
38
|
Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med Chem 2016; 8:1609-34. [PMID: 27572818 DOI: 10.4155/fmc-2016-0117] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Histone deacetylase 8 (HDAC8), a unique class I zinc-dependent HDAC, is an emerging target in cancer and other diseases. Its substrate repertoire extends beyond histones to many nonhistone proteins. Besides being a deacetylase, HDAC8 also mediates signaling via scaffolding functions. Aberrant expression or deregulated interactions with transcription factors are critical in HDAC8-dependent cancers. Many potent HDAC8-selective inhibitors with cellular activity and anticancer effects have been reported. We present HDAC8 as a druggable target and discuss inhibitors of different chemical scaffolds with cellular effects. Furthermore, we review HDAC8 activators that revert activity of mutant enzymes. Isotype-selective HDAC8 targeting in patients with HDAC8-relevant cancers is challenging, however, is promising to avoid adverse side effects as observed with pan-HDAC inhibitors.
Collapse
|
39
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
40
|
Zhao Y, Chen N, Wang C, Cao Z. A Comprehensive Understanding of Enzymatic Catalysis by Hydroxynitrile Lyases with S Stereoselectivity from the α/β-Hydrolase Superfamily: Revised Role of the Active-Site Lysine and Kinetic Behavior of Substrate Delivery and Sequential Product Release. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Zhao
- The Key Laboratory of Natural Medicine
and Immuno-Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine
and Immuno-Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and
Fujian Provincial Key Laboratory of Theoretical and Computational
Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| |
Collapse
|
41
|
Zhang X, Zhao Y, Yan H, Cao Z, Mo Y. Combined QM(DFT)/MM molecular dynamics simulations of the deamination of cytosine by yeast cytosine deaminase (yCD). J Comput Chem 2016; 37:1163-74. [DOI: 10.1002/jcc.24306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology; Beijing 100029 China
- Department of Chemistry; Western Michigan University; Kalamazoo Michigan 49008
| | - Yuan Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 360015 China
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University; Kaifeng 475004 China
| | - Honggao Yan
- Department of Biochemistry; The Center for Biological Modeling, Michigan State University; East Lansing Michigan 48824
- Department of Chemistry; The Center for Biological Modeling, Michigan State University; East Lansing Michigan 48824
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 360015 China
| | - Yirong Mo
- Department of Chemistry; Western Michigan University; Kalamazoo Michigan 49008
| |
Collapse
|
42
|
Ballante F, Marshall GR. An Automated Strategy for Binding-Pose Selection and Docking Assessment in Structure-Based Drug Design. J Chem Inf Model 2016; 56:54-72. [PMID: 26682916 DOI: 10.1021/acs.jcim.5b00603] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular docking is a widely used technique in drug design to predict the binding pose of a candidate compound in a defined therapeutic target. Numerous docking protocols are available, each characterized by different search methods and scoring functions, thus providing variable predictive capability on a same ligand-protein system. To validate a docking protocol, it is necessary to determine a priori the ability to reproduce the experimental binding pose (i.e., by determining the docking accuracy (DA)) in order to select the most appropriate docking procedure and thus estimate the rate of success in docking novel compounds. As common docking programs use generally different root-mean-square deviation (RMSD) formulas, scoring functions, and format results, it is both difficult and time-consuming to consistently determine and compare their predictive capabilities in order to identify the best protocol to use for the target of interest and to extrapolate the binding poses (i.e., best-docked (BD), best-cluster (BC), and best-fit (BF) poses) when applying a given docking program over thousands/millions of molecules during virtual screening. To reduce this difficulty, two new procedures called Clusterizer and DockAccessor have been developed and implemented for use with some common and "free-for-academics" programs such as AutoDock4, AutoDock4(Zn), AutoDock Vina, DOCK, MpSDockZn, PLANTS, and Surflex-Dock to automatically extrapolate BD, BC, and BF poses as well as to perform consistent cluster and DA analyses. Clusterizer and DockAccessor (code available over the Internet) represent two novel tools to collect computationally determined poses and detect the most predictive docking approach. Herein an application to human lysine deacetylase (hKDAC) inhibitors is illustrated.
Collapse
Affiliation(s)
- Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| |
Collapse
|
43
|
Zhou J, Yang Z, Zhang F, Luo HB, Li M, Wu R. A salt bridge turns off the foot-pocket in class-II HDACs. Phys Chem Chem Phys 2016; 18:21246-50. [DOI: 10.1039/c6cp03144g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is for the first time revealed that a conserved R–E salt bridge turns off the foot-pocket in class-II HDACs.
Collapse
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Zuolong Yang
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Min Li
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
44
|
Chen J, Wang J, Zhang Q, Chen K, Zhu W. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation. Sci Rep 2015; 5:17421. [PMID: 26616018 PMCID: PMC4663504 DOI: 10.1038/srep17421] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250014, China
| | - Jinan Wang
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Kaixian Chen
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Weiliang Zhu
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
45
|
Abstract
SAHA (vorinostat, Merck) is a famous clinical drug for zinc-containing histone deacetylase (HDAC) targets against cancer and several other human disorders, whose inhibition mechanism (namely the protonation mechanism) upon binding to HDAC has been debated for more than ten years. It is very challenging to verify experimentally and is still controversial theoretically. The popular "Class-dependent" (namely "Tyr-dependent") hypothesis is that the deprotonation of SAHA is mostly regulated by the conserved Tyr308 in class I HDAC while it is replaced by the His843 in class IIa HDAC. Herein, by elaborate QM(DFT)/MM MD simulations, we exclude the prevalent "Class-dependent" mechanism and advance a novel "Metal-dependent" mechanism, where the remote second metal site (K(+) in most HDAC and Ca(2+) in HDAC2) determines the protonation of SAHA. This proof-of-principle "Metal-dependent" mechanism opens up a new avenue to utilize the second metal site for isoform-selective inhibitor design.
Collapse
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | | | | |
Collapse
|
46
|
Gong W, Wu R, Zhang Y. Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study. J Comput Chem 2015; 36:2228-35. [PMID: 26452222 DOI: 10.1002/jcc.24203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 08/30/2015] [Indexed: 12/21/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs.
Collapse
Affiliation(s)
- Wenjing Gong
- Department of Chemistry, New York University, New York, New York, 10003
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York, 10003.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
47
|
Kuang M, Zhou J, Wang L, Liu Z, Guo J, Wu R. Binding Kinetics versus Affinities in BRD4 Inhibition. J Chem Inf Model 2015; 55:1926-35. [DOI: 10.1021/acs.jcim.5b00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ming Kuang
- Guangdong
Metabolic Diseases Research Center of Integrated Chinese and Western
Medicine, Guangdong TCM Key Laboratory against Metabolic Diseases,
Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Laiyou Wang
- Guangdong
Metabolic Diseases Research Center of Integrated Chinese and Western
Medicine, Guangdong TCM Key Laboratory against Metabolic Diseases,
Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zhihong Liu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiao Guo
- Guangdong
Metabolic Diseases Research Center of Integrated Chinese and Western
Medicine, Guangdong TCM Key Laboratory against Metabolic Diseases,
Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
48
|
Zhou J, Wang X, Kuang M, Wang L, Luo HB, Mo Y, Wu R. Protonation-Triggered Carbon-Chain Elongation in Geranyl Pyrophosphate Synthase (GPPS). ACS Catal 2015. [DOI: 10.1021/acscatal.5b00947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaoming Wang
- Program in Public Health, College of Healthy Sciences, University of California—Irvine, Irvine, California 92697,United States
| | - Ming Kuang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Laiyou Wang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
49
|
Gupta SP. QSAR Studies on Hydroxamic Acids: A Fascinating Family of Chemicals with a Wide Spectrum of Activities. Chem Rev 2015; 115:6427-90. [DOI: 10.1021/cr500483r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Satya P. Gupta
- Department of Applied Sciences, National Institute of Technical Teachers’ Training and Research, Shamla
Hills, Bhopal-462002, India
| |
Collapse
|
50
|
Zhou J, Li M, Chen N, Wang S, Luo HB, Zhang Y, Wu R. Computational design of a time-dependent histone deacetylase 2 selective inhibitor. ACS Chem Biol 2015; 10:687-92. [PMID: 25546141 PMCID: PMC4372102 DOI: 10.1021/cb500767c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Development of isoform-selective
histone deacetylase (HDAC) inhibitors is of great biological and medical
interest. Among 11 zinc-dependent HDAC isoforms, it is particularly
challenging to achieve isoform inhibition selectivity between HDAC1
and HDAC2 due to their very high structural similarities. In this
work, by developing and applying a novel de novo reaction-mechanism-based
inhibitor design strategy to exploit the reactivity difference, we
have discovered the first HDAC2-selective inhibitor, β-hydroxymethyl
chalcone. Our bioassay experiments show that this new compound has
a unique time-dependent selective inhibition on HDAC2, leading to
about 20-fold isoform-selectivity against HDAC1. Furthermore, our
ab initio QM/MM molecular dynamics simulations, a state-of-the-art
approach to study reactions in biological systems, have elucidated
how the β-hydroxymethyl chalcone can achieve the distinct time-dependent
inhibition toward HDAC2.
Collapse
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Min Li
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Nanhao Chen
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shenglong Wang
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Hai-Bin Luo
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|