1
|
Gallmetzer HG, Sangiogo Gil E, González L. Photoisomerization Dynamics of Azo-Escitalopram Using Surface Hopping and a Semiempirical Method. J Phys Chem B 2024. [PMID: 39707901 DOI: 10.1021/acs.jpcb.4c06924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The photoisomerization dynamics of azo-escitalopram, a synthetic photoswitchable inhibitor of the human serotonin transporter, is investigated in both gas-phase and water. We use the trajectory surface hopping method─as implemented in SHARC─interfaced with the floating occupation molecular orbital-configuration interaction semiempirical method to calculate on-the-fly energies, forces, and couplings. The inclusion of explicit water molecules is enabled using an electrostatic quantum mechanics/molecular mechanics framework. We find that the photoisomerization quantum yield of trans-azo-escitalopram is wavelength- and environment-dependent, with n → π* excitation yielding higher quantum yields than π → π* excitation. Additionally, we observe the formation of two distinct cis-isomers in the photoisomerization from the most thermodynamically stable trans-isomer, with formation rates influenced by both the excitation window and the surrounding environment. We predict longer excited-state lifetimes than those reported for azobenzene, suggesting that the escitalopram moiety contributes to prolonged lifetimes and slower torsional motions.
Collapse
Affiliation(s)
- Hans Georg Gallmetzer
- Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Eduarda Sangiogo Gil
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna Research Platform in Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
2
|
Huang H, Peng J, Zhang Y, Gu FL, Lan Z, Xu C. The development of the QM/MM interface and its application for the on-the-fly QM/MM nonadiabatic dynamics in JADE package: Theory, implementation, and applications. J Chem Phys 2024; 160:234101. [PMID: 38884395 DOI: 10.1063/5.0215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
Collapse
Affiliation(s)
- Haiyi Huang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
3
|
Petrikat RI, Hornbogen J, Schmitt MJP, Resmann E, Wiedemann C, Dilmen NI, Schneider H, Pick AM, Riehn C, Diller R, Becker S. A Photoswitchable Metallocycle Based on Azobenzene: Synthesis, Characterization, and Ultrafast Dynamics. Chemistry 2024; 30:e202400205. [PMID: 38526989 DOI: 10.1002/chem.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The novel photoswitchable ligand 3,3'-Azobenz(metPA)2 (1) is used to prepare a [Cu2(1)2](BF4)2 metallocycle (2), whose photoisomerization was characterized using static and time-resolved spectroscopic methods. Optical studies demonstrate the highly quantitative and reproducible photoinduced cyclic E/Z switching without decay of the complex. Accordingly and best to our knowledge, [Cu2(1)2](BF4)2 constitutes the first reversibly photoswitchable (3d)-metallocycle based on azobenzene. The photoinduced multiexponential dynamics in the sub-picosecond to few picosecond time domain of 1 and 2 have been assessed. These ultrafast dynamics as well as the yield of the respective photostationary state (PSSZ = 65 %) resemble the behavior of archetypical azobenzene. Also, the innovative pump-probe laser technique of gas phase transient photodissociation (τ-PD) in a mass spectrometric ion trap was used to determine the intrinsic relaxation dynamics for the isolated complex. These results are consistent with the results from femtosecond UV/Vis transient absorption (fs-TA) in solution, emphasizing the azobenzene-like dynamics of 2. This unique combination of fs-TA and τ-PD enables valuable insights into the prevailing interplay of dynamics and solvation. Both analyses (in solution and gas phase) and quantum chemical calculations reveal a negligible effect of the metal coordination on the switching mechanism and electronic pathway, which suggests a non-cooperative isomerization process.
Collapse
Affiliation(s)
- Raphael I Petrikat
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Justin Hornbogen
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Marcel J P Schmitt
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Emma Resmann
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Christina Wiedemann
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Nesrin I Dilmen
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Heinrich Schneider
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Annika M Pick
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
- Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Sabine Becker
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| |
Collapse
|
4
|
Xu C, Lin C, Peng J, Zhang J, Lin S, Gu FL, Gelin MF, Lan Z. On-the-fly simulation of time-resolved fluorescence spectra and anisotropy. J Chem Phys 2024; 160:104109. [PMID: 38477337 DOI: 10.1063/5.0201204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
We combine on-the-fly trajectory surface hopping simulations and the doorway-window representation of nonlinear optical response functions to create an efficient protocol for the evaluation of time- and frequency-resolved fluorescence (TFRF) spectra and anisotropies of the realistic polyatomic systems. This approach gives the effective description of the proper (e.g., experimental) pulse envelopes, laser field polarizations, and the proper orientational averaging of TFRF signals directly from the well-established on-the-fly nonadiabatic dynamic simulations without extra computational cost. To discuss the implementation details of the developed protocol, we chose cis-azobenzene as a prototype to simulate the time evolution of the TFRF spectra governed by its nonadiabatic dynamics. The results show that the TFRF is determined by the interplay of several key factors, i.e., decays of excited-state populations, evolution of the transition dipole moments along with the dynamic propagation, and scaling factor of the TFRF signals associated with the cube of emission frequency. This work not only provides an efficient and effective approach to simulate the TFRF and anisotropies of realistic polyatomic systems but also discusses the important relationship between the TFRF signals and the underlining nonadiabatic dynamics.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Congru Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiawei Peng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Juanjuan Zhang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shichen Lin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhenggang Lan
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
5
|
Hao Y, Han R, Li S, Liu L, Fang WH. A Complete Unveiling of the Mechanism and Chirality in Photoisomerization of Arylazopyrazole 3pzH: Combined Electronic Structure Calculations and AIMS Dynamic Simulations. J Phys Chem A 2024; 128:528-538. [PMID: 38215031 DOI: 10.1021/acs.jpca.3c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The arylazopyrazole 3pzH as a novel photoswitch exhibits quantitative switching and high thermal stability. In this work, combined electronic structure calculations and ab initio multiple spawning (AIMS) dynamic simulations were performed to systemically investigate the cis ↔ trans photoisomerization mechanism and the chiral preference after photoexcitation of 3pzH to the first excited singlet state (S1). Unlike most of the azoheteroarene photoswitches reported previously, many twisted and T-shaped cis isomers were found to be stable for 3pzH in the S0 state, owing to the moderate interaction between the hydrogen atom and π electrons of the aromatic ring. Two twisted cis isomers with different chirality ((M)-Z1 and (P)-Z1), the most stable T-shaped cis isomer ((T)-Z2), and the most stable planar trans isomer (E2) were selected as the initial structures to carry out the AIMS nonadiabatic dynamic simulations. Following excitation to the S1 state, all of the cis isomers decayed to conical intersection (CI) regions via the same bicycle pedal mechanism, while the evolution of the trans isomers to their CI regions was achieved via rotation around the N═N bond. More importantly, chiral preferences were found for the twisted cis isomers in the S1 state through the AIMS dynamic simulations due to the steric effect and static electronic repulsion. Notably, chirality was also observed in S1 isomerization starting from the planar E2 isomer because of the dynamic effect. After the nonadiabatic transition to the S0 state, the bicycle pedal mechanism was found to play a crucial role in cis ↔ trans photoisomerization. The simulated photoisomerization productivities were generally consistent with past experimental observations. Our calculations not only uncover the underlying reason for the excellent photoswitching properties of 3pzH but also enrich the knowledge of photoisomerization for azoheteroarene photoswitches, which will surely benefit their rational design.
Collapse
Affiliation(s)
- Yuxia Hao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruinong Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuai Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Pieroni C, Sangiogo Gil E, Ibele LM, Persico M, Granucci G, Agostini F. Investigating the Photodynamics of trans-Azobenzene with Coupled Trajectories. J Chem Theory Comput 2024; 20:580-596. [PMID: 38177105 DOI: 10.1021/acs.jctc.3c00978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this work, we present the first implementation of coupled-trajectory Tully surface hopping (CT-TSH) suitable for applications to molecular systems. We combine CT-TSH with the semiempirical floating occupation molecular orbital-configuration interaction electronic structure method to investigate the photoisomerization dynamics of trans-azobenzene. Our study shows that CT-TSH can capture correctly decoherence effects in this system, yielding consistent electronic and nuclear dynamics in agreement with (standard) decoherence-corrected TSH. Specifically, CT-TSH is derived from the exact factorization and the electronic coefficients' evolution is directly influenced by the coupling of trajectories, resulting in the improvement of internal consistency if compared to standard TSH.
Collapse
Affiliation(s)
- Carlotta Pieroni
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Eduarda Sangiogo Gil
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Lea M Ibele
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
7
|
do Casal MT, Veys K, Bousquet MHE, Escudero D, Jacquemin D. First-Principles Calculations of Excited-State Decay Rate Constants in Organic Fluorophores. J Phys Chem A 2023; 127:10033-10053. [PMID: 37988002 DOI: 10.1021/acs.jpca.3c06191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In this Perspective, we discuss recent advances made to evaluate from first-principles the excited-state decay rate constants of organic fluorophores, focusing on the so-called static strategy. In this strategy, one essentially takes advantage of Fermi's golden rule (FGR) to evaluate rate constants at key points of the potential energy surfaces, a procedure that can be refined in a variety of ways. In this way, the radiative rate constant can be straightforwardly obtained by integrating the fluorescence line shape, itself determined from vibronic calculations. Likewise, FGR allows for a consistent calculation of the internal conversion (related to the non-adiabatic couplings) in the weak-coupling regime and intersystem crossing rates, therefore giving access to estimates of the emission yields when no complex photophysical phenomenon is at play. Beyond outlining the underlying theories, we summarize here the results of benchmarks performed for various types of rates, highlighting that both the quality of the vibronic calculations and the accuracy of the relative energies are crucial to reaching semiquantitative estimates. Finally, we illustrate the successes and challenges in determining the fluorescence quantum yields using a series of organic fluorophores.
Collapse
Affiliation(s)
- Mariana T do Casal
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Koen Veys
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | | | - Daniel Escudero
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), FR-75005 Paris, France
| |
Collapse
|
8
|
Bousquet MHE, Papineau TV, Veys K, Escudero D, Jacquemin D. Extensive Analysis of the Parameters Influencing Radiative Rates Obtained through Vibronic Calculations. J Chem Theory Comput 2023; 19:5525-5547. [PMID: 37494031 DOI: 10.1021/acs.jctc.3c00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Defining a theoretical model systematically delivering accurate ab initio predictions of the fluorescence quantum yields of organic dyes is highly desirable for designing improved fluorophores in a systematic rather than trial-and-error way. To this end, the first required step is to obtain reliable radiative rates (kr), as low kr typically precludes effective emission. In the present contribution, using a series of 10 substituted phenyls with known experimental kr, we analyze the impact of the computational protocol on the kr determined through the thermal vibration correlation function (TVCF) approach on the basis of time-dependent density functional theory (TD-DFT) calculations of the energies, structures, and vibrational parameters. Both the electronic structure (selected exchange-correlation functional, application or not of the Tamm-Dancoff approximation) and the vibronic parameters (line-shape formalism, coordinate system, potential energy surface model, and dipole expansion) are tackled. Considering all possible combinations yields more than 3500 cases, allowing to extract statistically-relevant information regarding the impact of each computational parameter on the magnitude of the estimated kr. It turns out that the selected vibronic model can have a significant impact on the computed kr, especially the potential energy surface model. This effect is of the same order of magnitude as the difference noted between B3LYP and CAM-B3LYP estimates. For the treated compounds, all evaluated functionals do deliver reasonable trends, fitting the experimental values.
Collapse
Affiliation(s)
| | | | - Koen Veys
- Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | | | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
9
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
10
|
Osella S, Granucci G, Persico M, Knippenberg S. Dual photoisomerization mechanism of azobenzene embedded in a lipid membrane. J Mater Chem B 2023; 11:2518-2529. [PMID: 36852914 DOI: 10.1039/d2tb02767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The photoisomerization of chromophores embedded in biological environments is of high importance for biomedical applications, but it is still challenging to define the photoisomerization mechanism both experimentally and computationally. We present here a computational study of the azobenzene molecule embedded in a DPPC lipid membrane, and assess the photoisomerization mechanism by means of the quantum mechanics/molecular mechanics surface hopping (QM/MM-SH) method. We observe that while the trans-to-cis isomerization is a slow process governed by a torsional mechanism due to the strong interaction with the environment, the cis-to-trans mechanism is completed in sub-ps time scale and is governed by a pedal-like mechanism in which both weaker interactions with the environment and a different geometry of the potential energy surface play a key role.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland. .,Materials and Process Simulation Center (MSC), California Institute of Technology, MC 139-74, Pasadena, CA, 91125, USA
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, v. Moruzzi 13, I-56124 Pisa, Italy
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, v. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefan Knippenberg
- Hasselt University, Theory Lab, Agoralaan Building D, 3590 Diepenbeek, Belgium.,Université Libre de Bruxelles, Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium.
| |
Collapse
|
11
|
Wei J, Cao L, Li Z, Wang Y, Jin B, Zhang S. Investigation on the ultrafast relaxation dynamics of the S1 state of 3,4-difluoroaniline. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
12
|
Vong A, Mei KJ, Widmer DR, Schwartz BJ. Solvent Control of Chemical Identity Can Change Photodissociation into Photoisomerization. J Phys Chem Lett 2022; 13:7931-7938. [PMID: 35980729 DOI: 10.1021/acs.jpclett.2c01955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In solution-phase chemistry, the solvent is often considered to be merely a medium that allows reacting solutes to encounter each other. In this work, however, we show that moderate locally specific solute-solvent interactions can affect not only the nature of the solute but also the types of reactive chemistry. We use quantum simulation methods to explore how solvent participation in solute chemical identity alters reactions involving the breaking of chemical bonds. In particular, we explore the photoexcitation dynamics of Na2+ dissolved in liquid tetrahydrofuran. In the gas phase, excitation of Na2+ directly leads to dissociation, but in solution, photoexcitation leads to an isomerization reaction involving rearrangement of the first-shell solvent molecules; this isomerization must go to completion before the solute can dissociate. Despite the complexity, the solution-phase reaction dynamics can be captured by a two-dimensional energy surface where one dimension involves only the isomerization of the first-shell solvent molecules.
Collapse
Affiliation(s)
- Andy Vong
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kenneth J Mei
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Devon R Widmer
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
13
|
Ibele LM, Curchod BFE, Agostini F. A Photochemical Reaction in Different Theoretical Representations. J Phys Chem A 2022; 126:1263-1281. [PMID: 35157450 PMCID: PMC8883471 DOI: 10.1021/acs.jpca.1c09604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The Born–Oppenheimer
picture has forged our representation
and interpretation of photochemical processes, from photoexcitation
down to the passage through a conical intersection, a funnel connecting
different electronic states. In this work, we analyze a full in silico
photochemical experiment, from the explicit electronic excitation
by a laser pulse to the formation of photoproducts following a nonradiative
decay through a conical intersection, by contrasting the picture offered
by Born–Oppenheimer and that proposed by the exact factorization.
The exact factorization offers an alternative understanding of photochemistry
that does not rely on concepts such as electronic states, nonadiabatic
couplings, and conical intersections. On the basis of nonadiabatic
quantum dynamics performed for a two-state 2D model system, this work
allows us to compare Born–Oppenheimer and exact factorization
for (i) an explicit photoexcitation with and without the Condon approximation,
(ii) the passage of a nuclear wavepacket through a conical intersection,
(iii) the formation of excited stationary states in the Franck–Condon
region, and (iv) the use of classical and quantum trajectories in
the exact factorization picture to capture nonadiabatic processes
triggered by a laser pulse.
Collapse
Affiliation(s)
- Lea M Ibele
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Basile F E Curchod
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
14
|
Xu C, Lin K, Hu D, Gu FL, Gelin MF, Lan Z. Ultrafast Internal Conversion Dynamics through the on-the-Fly Simulation of Transient Absorption Pump-Probe Spectra with Different Electronic Structure Methods. J Phys Chem Lett 2022; 13:661-668. [PMID: 35023755 DOI: 10.1021/acs.jpclett.1c03373] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An on-the-fly surface-hopping simulation protocol is developed for the evaluation of transient absorption (TA) pump-probe (PP) signals of molecular systems exhibiting internal conversion to the electronic ground state. We study the nonadiabatic dynamics of azomethane and the associating TA PP spectra at three levels of the electronic-structure theory, OM2/MRCI, SA-CASSCF, and XMS-CASPT2. The impact of these methods on the population dynamics and time-resolved TA PP signals is substantially different. This difference is attributed to the strong non-Condon effects that must be taken into account for the proper understanding and interpretation of time-resolved TA PP signals of nonadiabatic polyatomic systems. This shows that the combination of the dynamical and spectral simulations definitely provides more accurate and detailed information on the microscopic mechanisms of photophysical and photochemical processes. Hence the simulation of time-resolved spectroscopic signals provides another important dimension to examine the accuracy of quantum chemistry methods.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Kunni Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Deping Hu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou, 510006, P. R. China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
15
|
Braver Y, Valkunas L, Gelzinis A. Quantum-Classical Approach for Calculations of Absorption and Fluorescence: Principles and Applications. J Chem Theory Comput 2021; 17:7157-7168. [PMID: 34618457 PMCID: PMC8719324 DOI: 10.1021/acs.jctc.1c00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Absorption and fluorescence spectroscopy techniques provide a wealth of information on molecular systems. The simulations of such experiments remain challenging, however, despite the efforts put into developing the underlying theory. An attractive method of simulating the behavior of molecular systems is provided by the quantum-classical theory─it enables one to keep track of the state of the bath explicitly, which is needed for accurate calculations of fluorescence spectra. Unfortunately, until now there have been relatively few works that apply quantum-classical methods for modeling spectroscopic data. In this work, we seek to provide a framework for the calculations of absorption and fluorescence lineshapes of molecular systems using the methods based on the quantum-classical Liouville equation, namely, the forward-backward trajectory solution (FBTS) and the non-Hamiltonian variant of the Poisson bracket mapping equation (PBME-nH). We perform calculations on a molecular dimer and the photosynthetic Fenna-Matthews-Olson complex. We find that in the case of absorption, the FBTS outperforms PBME-nH, consistently yielding highly accurate results. We next demonstrate that for fluorescence calculations, the method of choice is a hybrid approach, which we call PBME-nH-Jeff, that utilizes the effective coupling theory [Gelzinis, A.; J. Chem. Phys. 2020, 152, 051103] to estimate the excited state equilibrium density operator. Thus, we find that FBTS and PBME-nH-Jeff are excellent candidates for simulating, respectively, absorption and fluorescence spectra of real molecular systems.
Collapse
Affiliation(s)
- Yakov Braver
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Leonas Valkunas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9-III, LT-10222 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
16
|
Grebenkin S, Syutkin VM. Isomerization and reorientation of Disperse Red 1 in poly(ethyl methacrylate). J Chem Phys 2021; 155:164901. [PMID: 34717357 DOI: 10.1063/5.0063031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Irradiation of azobenzene-containing polymer materials with light causes cis-trans isomerization and reorientation of azobenzene moieties and thereby changes in the optical properties of the materials. In this study, the film of poly(ethyl methacrylate) doped with the azobenzene derivative Disperse Red 1 (DR1) has been irradiated with the linearly polarized light of 546 nm. The time profiles of optical anisotropy and absorbance measured during irradiation have been analyzed using a kinetic model. Based on the analysis of the time profiles, we conclude that the light-induced reorientation of DR1 molecules occurs in confined environments where trans → cis isomerization is hindered, while in roomy environments, there is no reorientation. In the confined environment, reorientation occurs due to the environmental changes caused by the isomerization attempts of the DR1 molecule. The polymer environment affects thermal cis → trans and light-induced trans → cis isomerizations of the DR1 molecule differently, suggesting that the spatial requirements for these processes to proceed are different. The thermal isomerization does not result in the reorientation of DR1 molecules in roomy environments.
Collapse
Affiliation(s)
- S Grebenkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russian Federation
| | - V M Syutkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russian Federation
| |
Collapse
|
17
|
Silanteva IA, Komolkin AV, Mamontova VV, Gabrusenok PV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. J Phys Chem B 2021; 125:11197-11207. [PMID: 34586822 DOI: 10.1021/acs.jpcb.1c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA.
Collapse
Affiliation(s)
- Irina A Silanteva
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V Mamontova
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel V Gabrusenok
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel N Vorontsov-Velyaminov
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A Kasyanenko
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|
18
|
Hu D, Peng J, Chen L, Gelin MF, Lan Z. Spectral Fingerprint of Excited-State Energy Transfer in Dendrimers through Polarization-Sensitive Transient-Absorption Pump-Probe Signals: On-the-Fly Nonadiabatic Dynamics Simulations. J Phys Chem Lett 2021; 12:9710-9719. [PMID: 34590858 DOI: 10.1021/acs.jpclett.1c02640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The time-resolved polarization-sensitive transient-absorption (TA) pump-probe (PP) spectra are simulated using on-the-fly surface-hopping nonadiabatic dynamics and the doorway-window representation of nonlinear spectroscopy. A dendrimer model system composed of two linear phenylene ethynylene units (2-ring and 3-ring) is taken as an example. The ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions as well as the total TA PP signals are obtained and carefully analyzed. It is shown that intramolecular excited-state energy transfer from the 2-ring unit to the 3-ring unit can be conveniently identified by employing pump and probe pulses with different polarizations. Our results demonstrate that time-resolved polarization-sensitive TA PP signals provide a powerful tool for the elucidation of excited-state energy-transfer pathways, notably in molecular systems possessing several optically bright nonadiabatically coupled electronic states with different orientations of transition dipole moments.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
19
|
Zobel JP, González L. The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. JACS AU 2021; 1:1116-1140. [PMID: 34467353 PMCID: PMC8397362 DOI: 10.1021/jacsau.1c00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 05/15/2023]
Abstract
This Perspective describes current computational efforts in the field of simulating photodynamics of transition metal complexes. We present the typical workflows and feature the strengths and limitations of the different contemporary approaches. From electronic structure methods suitable to describe transition metal complexes to approaches able to simulate their nuclear dynamics under the effect of light, we give particular attention to build a bridge between theory and experiment by critically discussing the different models commonly adopted in the interpretation of spectroscopic experiments and the simulation of particular observables. Thereby, we review all the studies of excited-state dynamics on transition metal complexes, both in gas phase and in solution from reduced to full dimensionality.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| |
Collapse
|
20
|
Titov E, Hummert J, Ikonnikov E, Mitrić R, Kornilov O. Electronic relaxation of aqueous aminoazobenzenes studied by time-resolved photoelectron spectroscopy and surface hopping TDDFT dynamics calculations. Faraday Discuss 2021; 228:226-241. [PMID: 33586720 DOI: 10.1039/d0fd00111b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of ultrafast relaxation of molecular chromophores are complicated by the fact that most chromophores of biological and technological importance are rather large molecules and are strongly affected by their environment, either solvent or a protein cage. Here we present an approach which allows us to follow transient electronic structure of complex photoexcited molecules. We use the method of time-resolved photoelectron spectroscopy in solution to follow relaxation of two prototypical aqueous chromophores, Methyl Orange and Metanil Yellow, both of which are aminoazobenzene derivatives. Using excitation by 400 nm laser pulses and ionization by wavelength-selected 46.7 nm XUV pulses from high-order harmonic generation we follow relaxation of both molecules via the dark S1 state. The photoelectron spectra yield binding energies of both ground and excited states. We combine the experimental results with surface hopping time-dependent density functional theory (TDDFT) calculations employing B3LYP+D3 and ωB97X-D functionals. The results demonstrate that the method is generally suitable for description of ultrafast dynamics in these molecules and can recover absolute binding energies observed in the experiment. The B3LYP+D3 functional appears to be better suited for these systems, especially in the case of Metanil Yellow, where it indicates the importance of an intramolecular charge transfer state. Our results pave the way towards quantitative understanding of evolving electronic structure in photo-induced relaxation processes.
Collapse
Affiliation(s)
- Evgenii Titov
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | - Johan Hummert
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| | | | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | - Oleg Kornilov
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| |
Collapse
|
21
|
Liang R. First-Principles Nonadiabatic Dynamics Simulation of Azobenzene Photodynamics in Solutions. J Chem Theory Comput 2021; 17:3019-3030. [PMID: 33882676 DOI: 10.1021/acs.jctc.1c00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoisomerization of azobenzene is a prototypical reaction of various light-activated processes in material and biomedical sciences. However, its reaction mechanism has been under debate for decades, partly due to the challenges in computational simulations to accurately describe the molecule's photodynamics. A recent study (J. Am. Chem. Soc. 2020, 142 (49), 20,680-20,690) addressed the challenges by combining the hole-hole Tamm-Dancoff Approximated (hh-TDA) density functional theory (DFT) method with the ab initio multiple spawning (AIMS) algorithm. The hh-TDA-DFT/AIMS method was applied to first-principles nonadiabatic dynamics simulation of azobenzene's photodynamics in the vacuum. However, it remains necessary to benchmark this new method in realistic molecular environments against experimental data. In the current work, the hh-TDA-DFT/AIMS method was employed in a quantum mechanics/molecular mechanics setting to characterize the trans azobenzene's photodynamics in explicit methanol and n-hexane solvents, following both the S1 (nπ*) and S2 (ππ*) excitations. The simulated absorption and fluorescence spectra following the S2 excitation quantitatively agree with the experiments. However, the hh-TDA-DFT method overestimates the torsional barrier on the S1 state, leading to an overestimation of the S1 state lifetime. The excited-state population decays to the ground state through two competing channels. The reactive channel partially yields the cis azobenzene photoproduct, and the unreactive channel exclusively leads to the reactant. The S2 excitation increases the decay through the unreactive channel and thus decreases the isomerization quantum yield compared to the S1 excitation. The solvent slows down the azobenzene's torsional dynamics on the S1 state, but its polarity minimally affects the reaction kinetics and quantum yields. Interestingly, the dynamics of the central torsion and angles of azobenzene play a critical role in determining the final isomer of the azobenzene. This benchmark study validates the hh-TDA-DFT/AIMS method's accuracy for simulating the azobenzene's photodynamics in realistic molecular environments.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
22
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
23
|
Gelin MF, Huang X, Xie W, Chen L, Došlić NA, Domcke W. Ab Initio Surface-Hopping Simulation of Femtosecond Transient-Absorption Pump-Probe Signals of Nonadiabatic Excited-State Dynamics Using the Doorway-Window Representation. J Chem Theory Comput 2021; 17:2394-2408. [PMID: 33755464 DOI: 10.1021/acs.jctc.1c00109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An ab initio theoretical framework for the simulation of femtosecond time-resolved transient absorption (TA) pump-probe (PP) spectra with quasi-classical trajectories is presented. The simulations are based on the classical approximation to the doorway-window (DW) representation of third-order four-wave-mixing signals. The DW formula accounts for the finite duration and spectral shape of the pump and probe pulses. In the classical DW formalism, classical trajectories are stochastically sampled from a positive definite doorway distribution, and the signals are evaluated by averaging over a positive definite window distribution. Nonadiabatic excited-state dynamics is described by a stochastic surface-hopping algorithm. The method has been implemented for the pyrazine molecule with the second-order algebraic-diagrammatic construction (ADC(2)) ab initio electronic-structure method. The methodology is illustrated by ab initio simulations of the ground-state bleach, stimulated emission, and excited-state absorption contributions to the TA PP spectrum of gas-phase pyrazine.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| | - Nad A Došlić
- Department of Physical Chemistry, Ruder Boscovic Institute, HR-10000 Zagreb, Croatia
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
24
|
Gholamjani Moghaddam K, Giudetti G, Sipma W, Faraji S. Theoretical insights into the effect of size and substitution patterns of azobenzene derivatives on the DNA G-quadruplex. Phys Chem Chem Phys 2020; 22:26944-26954. [PMID: 33206064 DOI: 10.1039/d0cp04392c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introducing photoswitches into the DNA G-quadruplex provides excellent opportunities to control folding and unfolding of these assemblies, demonstrating their potential in the development of novel nanodevices with medical and nanotechnology applications. Using a quantum mechanics/molecular mechanics (QM/MM) scheme, we carried out a series of simulations to identify the effect of the size and substitution patterns of three azobenzene derivatives (AZ1, AZ2 and AZ3) on the excitation energies of the two lowest excited states of the smallest photoswitchable G-quadruplex reported to date. We demonstrated that the size and the substitution pattern do not affect the ultrafast cis-trans photoiomerization mechanism of the azobenzene derivatives significantly, in agreement with the experiment. However, molecular dynamics simulations revealed that while AZ2 and AZ3 G-quadruplexes are structurally stable during the simulations, the AZ1 G-quadruplex undergoes larger structural changes and shows two ground state populations that differ in the azobenzene backbone adopting two different conformations. AZ1, with para-para substitution pattern, provides more flexibility to the whole G-quadruplex structure compared to AZ2 and AZ3, and can thus facilitate the photoisomerization reaction between a nonpolymorphic, stacked, tetramolecular G-quadruplex and an unstructured state after trans-cis isomerization occurring in a longer time dynamics, in agreement with the experimental findings. The QM/MM simulations of the absorption spectra indicated that the thermal fluctuation plays a more crucial role in the main absorption band of the azobenzene derivatives than the inclusion of the G-quadruplex, implying that the influence of the G-quadruplex environment is minimal. We propose that the latter is attributed to the position of the azobenzene linkers in the G-quadruplexes, i.e. the edgewise loops containing the azobenzene moieties that are located above the G-quartets, not being fully embedded inside or involved in the stacked structure. Our theoretical findings provide support to a recent study of the photoresponsive formation of photoswitchable G-quadruplex motifs.
Collapse
|
25
|
Osella S, Knippenberg S. The influence of lipid membranes on fluorescent probes' optical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183494. [PMID: 33129783 DOI: 10.1016/j.bbamem.2020.183494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Organic fluorophores embedded in lipid bilayers can nowadays be described by a multiscale computational approach. Combining different length and time scales, a full characterization of the probe localization and optical properties led to novel insight into the effect of the environments. SCOPE OF REVIEW Following an introduction on computational advancements, three relevant probes are reviewed that delineate how a multiscale approach can lead to novel insight into the probes' (non) linear optical properties. Attention is paid to the quality of the theoretical description of the optical techniques. MAJOR CONCLUSIONS Computation can assess a priori novel probes' optical properties and guide the analysis and interpretation of experimental data in novel studies. The properties can be used to gain information on the phase and condition of the surrounding biological environment. GENERAL SIGNIFICANCE Computation showed that a canonical view on some of the probes should be revisited and adapted.
Collapse
Affiliation(s)
- Silvio Osella
- Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Stefan Knippenberg
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; Theoretical Physics, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
26
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
27
|
Osella S, Paloncýová M, Sahi M, Knippenberg S. Influence of Membrane Phase on the Optical Properties of DPH. Molecules 2020; 25:E4264. [PMID: 32957614 PMCID: PMC7570797 DOI: 10.3390/molecules25184264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
| | - Maryam Sahi
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
| | - Stefan Knippenberg
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
- Theory Lab, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
28
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
29
|
|
30
|
Osella S, Knippenberg S. Laurdan as a Molecular Rotor in Biological Environments. ACS APPLIED BIO MATERIALS 2019; 2:5769-5778. [DOI: 10.1021/acsabm.9b00789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Stefan Knippenberg
- RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, 771 46 Olomouc, Czech Republic
- Theoretical Physics, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
31
|
Roy S, Ardo S, Furche F. 5-Methoxyquinoline Photobasicity Is Mediated by Water Oxidation. J Phys Chem A 2019; 123:6645-6651. [DOI: 10.1021/acs.jpca.9b05341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane Ardo
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
32
|
Zhang TS, Li ZW, Fang Q, Barbatti M, Fang WH, Cui G. Stereoselective Excited-State Isomerization and Decay Paths in cis-Cyclobiazobenzene. J Phys Chem A 2019; 123:6144-6151. [DOI: 10.1021/acs.jpca.9b04372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | | | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
33
|
MacDonell RJ, Schuurman MS. Site-Selective Isomerization of Cyano-Substituted Butadienes: Chemical Control of Nonadiabatic Dynamics. J Phys Chem A 2019; 123:4693-4701. [DOI: 10.1021/acs.jpca.9b02446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ryan J. MacDonell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Michael S. Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- National Research of Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
34
|
Amirjalayer S, Buma WJ. Light on the Structural Evolution of Photoresponsive Molecular Switches in Electronically Excited States. Chemistry 2019; 25:6252-6258. [PMID: 30576061 DOI: 10.1002/chem.201805810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Indexed: 11/08/2022]
Abstract
Stimuli-responsive materials are attracting extensive interest as they offer the opportunity to transform external inputs such as light into a functionality by control at the molecular level. As a result, a large number of molecular building units have been developed that enable switching between two or more states. Since the trajectory describing the transition between the various states defines the efficiency of the usually immobilized unit and the resulting functionality, it does not suffice to merely consider the initial and final states of the switching process. A key challenge is in fact to decipher at the atomic scale the actual motion that takes place after photoexcitation. Understanding and being able to manipulate this trajectory is crucial for an efficient implementation of photoactive molecular switches into functional materials, as well as to rationally develop novel tailor-made materials. In this Concept article, we highlight the potential to characterize in detail photoinitiated switching mechanisms by combining quantum chemical calculations with advanced laser spectroscopic techniques that probe the vibrational manifold of electronically excited states and its evolution.
Collapse
Affiliation(s)
- Saeed Amirjalayer
- Physikalisches Institut and Center for Multiscale Theory &, Computation (CMTC), Westfälische Wilhelms-Universität Münster, Willhelm-Klemm-Strasse 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Martins GF, Cabral BJC. Electron Propagator Theory Approach to the Electron Binding Energies of a Prototypical Photo-Switch Molecular System: Azobenzene. J Phys Chem A 2019; 123:2091-2099. [PMID: 30779578 DOI: 10.1021/acs.jpca.9b00532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electron binding energies for the trans and cis conformers of azobenzene (AB), a prototypical photoswitch, were investigated by electron propagator theory (EPT). The EPT results are compared with data from photoelectron and electron transmission spectroscopies and complemented by the calculation of the differences between vertical and adiabatic ionization energies and electron affinities of the AB conformers. These differences are discussed in terms of the geometry changes associated with the processes of ionization and electron attachment. The results pointed out a major difference between these processes when we compare trans-AB and cis-AB. For trans-AB, electron attachment leads to a small geometry change, whereas for cis-AB, it is the ionized structure that keeps some similarity with the neutral species. We emphasize the interest of the present results for a better understanding of recent experiments on the dark cis-trans isomerization in different environments, specifically for azobenzenes in interaction with gold nanoparticles, where the proposed cis-trans isomerization mechanism relies on electron transfer induced isomerization.
Collapse
Affiliation(s)
- Gabriel F Martins
- Biosystems and Integrative Sciences Institute (BioISI) , Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa , Portugal
| | - Benedito J C Cabral
- Biosystems and Integrative Sciences Institute (BioISI) , Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa , Portugal.,Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa , Portugal
| |
Collapse
|
36
|
Aguilera-Porta N, Granucci G, Munoz-Muriedas J, Corral I. Unveiling the photophysics of thiourea from CASPT2/CASSCF potential energy surfaces and singlet/triplet excited state molecular dynamics simulations. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Aguilera-Porta N, Corral I, Munoz-Muriedas J, Granucci G. Excited state dynamics of some nonsteroidal anti-inflammatory drugs: A surface-hopping investigation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Nonadiabatic dynamics simulation of photoisomerization mechanism of photoswitch azodicarboxamide: Hydrogen bonding effects. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Raeker T, Jansen B, Behrens D, Hartke B. Simulations of optically switchable molecular machines for particle transport. J Comput Chem 2018; 39:1433-1443. [PMID: 29573268 DOI: 10.1002/jcc.25212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
A promising application for design and deployment of molecular machines is nanoscale transport, driven by artificial cilia. In this contribution, we present several further steps toward this goal, beyond our first-generation artificial cilium (Raeker et al., J. Phys. Chem. A 2012, 116, 11241). Promising new azobenzene-derivatives were tested for use as cilium motors. Using a QM/MM partitioning in on-the-fly photodynamics, excited-state surface-hopping trajectories were calculated for each isomerization direction and each motor version. The methods used were reparametrized semiempirical quantum chemistry together with floating-occupation configuration interaction as the QM part and the OPLSAA-L forcefield as MM part. In addition, we simulated actual particle transport by a single cilium attached to a model surface, with varying attachment strengths and modes, and with transport targets ranging from single atoms to multi-molecule arrangements. Our results provide valuable design guidelines for cilia-driven nanoscale transport and emphasize the need to carefully select the whole setup (not just the cilium itself, but also its surface attachment and the dynamic cilium-target interaction) to achieve true transport. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tim Raeker
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, Kiel, D-24098, Germany
| | - Björn Jansen
- Institut für Pharmazeutische Chemie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, Kiel, D-24118, Germany
| | - Dominik Behrens
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, Kiel, D-24098, Germany
| | - Bernd Hartke
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, Kiel, D-24098, Germany
| |
Collapse
|
40
|
Abstract
We show that the importance sampling technique can effectively augment the range of problems where the nuclear ensemble approach can be applied. A sampling probability distribution function initially determines the collection of initial conditions for which calculations are performed, as usual. Then, results for a distinct target distribution are computed by introducing compensating importance sampling weights for each sampled point. This mapping between the two probability distributions can be performed whenever they are both explicitly constructed. Perhaps most notably, this procedure allows for the computation of temperature dependent observables. As a test case, we investigated the UV absorption spectra of phenol, which has been shown to have a marked temperature dependence. Application of the proposed technique to a range that covers 500 K provides results that converge to those obtained with conventional sampling. We further show that an overall improved rate of convergence is obtained when sampling is performed at intermediate temperatures. The comparison between calculated and the available measured cross sections is very satisfactory, as the main features of the spectra are correctly reproduced. As a second test case, one of Tully's classical models was revisited, and we show that the computation of dynamical observables also profits from the importance sampling technique. In summary, the strategy developed here can be employed to assess the role of temperature for any property calculated within the nuclear ensemble method, with the same computational cost as doing so for a single temperature.
Collapse
Affiliation(s)
- Fábris Kossoski
- Instituto de Fı́sica "Gleb Wataghin" , Universidade Estadual de Campinas , 13083-859 Campinas , São Paulo , Brazil.,Aix Marseille Univ , CNRS, ICR , Marseille , France
| | | |
Collapse
|
41
|
Mondal P, Granucci G, Rastädter D, Persico M, Burghardt I. Azobenzene as a photoregulator covalently attached to RNA: a quantum mechanics/molecular mechanics-surface hopping dynamics study. Chem Sci 2018; 9:4671-4681. [PMID: 29899961 PMCID: PMC5969502 DOI: 10.1039/c8sc00072g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Abstract
Azobenzene covalently attached to RNA undergoes trans-to-cis photo-switching on a time scale of ∼15 picoseconds – 30 times slower than in vacuo.
The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA–azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a β-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans-to-cis isomerization is slowed down to a time scale of ∼10–15 picoseconds, in contrast to 500 femtoseconds in vacuo, with a quantum yield reduced by a factor of two. By contrast, cis-to-trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis-azobenzene chromophore in the two RNA–azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.
Collapse
Affiliation(s)
- Padmabati Mondal
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany . ;
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale , Università di Pisa , v. Moruzzi 13 , I-56124 Pisa , Italy .
| | - Dominique Rastädter
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany . ;
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale , Università di Pisa , v. Moruzzi 13 , I-56124 Pisa , Italy .
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany . ;
| |
Collapse
|
42
|
Wu D, Wang YT, Fang WH, Cui G, Thiel W. QM/MM Studies on Photoisomerization Dynamics of Azobenzene Chromophore Tethered to a DNA Duplex: Local Unpaired Nucleobase Plays a Crucial Role. Chem Asian J 2018; 13:780-784. [PMID: 29446260 DOI: 10.1002/asia.201800006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/07/2018] [Indexed: 01/10/2023]
Abstract
The photoresponsive azobenzene-tethered DNAs have received growing experimental attention because of their potential applications in biotechnology and nanotechnology; however, little is known about the initial photoisomerization of azobenzene in these systems. Herein we have employed quantum mechanics/molecular mechanics (QM/MM) methods to explore the photoisomerization dynamics of an azobenzene-tethered DNA duplex. We find that in the S1 state the trans-cis photoisomerization path is much steeper in DNA than in vacuo, which makes the photoisomerization much faster in the DNA environment. This acceleration is primarily caused by complex steric interactions between azobenzene and the nearby unpaired thymine nucleobase, which also change the photoisomerization mechanism of azobenzene in the DNA duplex.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ya-Ting Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Okuda M, Ohta K, Tominaga K. Rotational Dynamics of Solutes with Multiple Single Bond Axes Studied by Infrared Pump-Probe Spectroscopy. J Phys Chem A 2018; 122:946-954. [PMID: 29278912 DOI: 10.1021/acs.jpca.7b09939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the relationship between the structural degrees of freedom around a vibrational probe and the rotational relaxation process of a solute in solution, we studied the anisotropy decays of three different N3-derivatized amino acids in primary alcohol solutions. By performing polarization-controlled IR pump-probe measurements, we reveal that the anisotropy decays of the vibrational probe molecules in 1-alcohol solutions possess two decay components, at subpicosecond and picosecond time scales. On the basis of results showing that the fast relaxation component is insensitive to the vibrational probe molecule, we suggest that the anisotropy decay of the N3 group on a subpicosecond time scale results from a local, small-amplitude fluctuation of the flexible vibrational probe, which does not depend on the details of its molecular structure. However, the slow relaxation component depends on the solute: with longer alkyl chains attached to the N3 group, the anisotropy decay of the slow component is faster. Consequently, we conclude that the slow relaxation component corresponds to the reorientational motion of the N3 group correlated with other intramolecular rotational motions (e.g., rotational motions of the neighboring alkyl chain). Our experimental results provide important insight into understanding the rotational dynamics of solutes with multiple single bond axes in solution.
Collapse
Affiliation(s)
- Masaki Okuda
- Molecular Photoscience Research Center and ‡Graduate School of Science, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Molecular Photoscience Research Center and ‡Graduate School of Science, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Molecular Photoscience Research Center and ‡Graduate School of Science, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
44
|
Wang X, Vapaavuori J, Bazuin CG, Pellerin C. Molecular-Level Study of Photoorientation in Hydrogen-Bonded Azopolymer Complexes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaoxiao Wang
- Département de chimie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Jaana Vapaavuori
- Département de chimie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - C. Geraldine Bazuin
- Département de chimie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Christian Pellerin
- Département de chimie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
45
|
Yue L, Liu Y, Zhu C. Performance of TDDFT with and without spin-flip in trajectory surface hopping dynamics: cis–trans azobenzene photoisomerization. Phys Chem Chem Phys 2018; 20:24123-24139. [DOI: 10.1039/c8cp03851a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum yields simulated by LR-TDDFT and SF-TDDFT methods for azobenzene photoisomerizations.
Collapse
Affiliation(s)
- Ling Yue
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao-Tung University
- Hsinchu 30010
- Taiwan
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
| | - Yajun Liu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao-Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| |
Collapse
|
46
|
Suchan J, Hollas D, Curchod BFE, Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss 2018; 212:307-330. [DOI: 10.1039/c8fd00088c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The vast majority of ab initio excited-state simulations are performed within semiclassical, trajectory-based approaches. Apart from the underlying electronic-structure theory, the reliability of the simulations is controlled by a selection of initial conditions for the classical trajectories. We discuss appropriate choices of initial conditions for simulations of different experimental arrangements: dynamics initiated by continuum-wave (CW) laser fields or triggered by ultrashort laser pulses.
Collapse
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry
- University of Chemistry and Technology, Prague
- 16628 Prague
- Czech Republic
| | - Daniel Hollas
- Department of Physical Chemistry
- University of Chemistry and Technology, Prague
- 16628 Prague
- Czech Republic
| | | | - Petr Slavíček
- Department of Physical Chemistry
- University of Chemistry and Technology, Prague
- 16628 Prague
- Czech Republic
| |
Collapse
|
47
|
Pang X, Jiang C, Qi Y, Yuan L, Hu D, Zhang X, Zhao D, Wang D, Lan Z, Li F. Ultrafast unidirectional chiral rotation in the Z–E photoisomerization of two azoheteroarene photoswitches. Phys Chem Chem Phys 2018; 20:25910-25917. [DOI: 10.1039/c8cp04762f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Based on a large number of trajectories starting from the Z-isomer, for both azoheteroarenes, more than 99% of the trajectories decay through conical intersections with the same helicities as their initial geometries.
Collapse
Affiliation(s)
- Xiaojuan Pang
- Key Laboratory for Quantum Information and Quantum Optoelectronic Devices Shaanxi, and Department of Applied Physics
- Xi’an Jiaotong University
- Xi’an 710049
- China
| | - Chenwei Jiang
- Key Laboratory for Quantum Information and Quantum Optoelectronic Devices Shaanxi, and Department of Applied Physics
- Xi’an Jiaotong University
- Xi’an 710049
- China
| | - Yongnan Qi
- Key Laboratory for Quantum Information and Quantum Optoelectronic Devices Shaanxi, and Department of Applied Physics
- Xi’an Jiaotong University
- Xi’an 710049
- China
| | - Ling Yuan
- Key Laboratory for Quantum Information and Quantum Optoelectronic Devices Shaanxi, and Department of Applied Physics
- Xi’an Jiaotong University
- Xi’an 710049
- China
| | - Deping Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Xiuxing Zhang
- Department of Physics
- Weinan Normal University
- Weinan 714000
- China
| | - Di Zhao
- Key Laboratory for Quantum Information and Quantum Optoelectronic Devices Shaanxi, and Department of Applied Physics
- Xi’an Jiaotong University
- Xi’an 710049
- China
| | - Dongdong Wang
- Department of Applied Chemistry
- School of Science
- Xi’an Jiaotong University
- Xi’an 710049
- China
| | - Zhenggang Lan
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Fuli Li
- Key Laboratory for Quantum Information and Quantum Optoelectronic Devices Shaanxi, and Department of Applied Physics
- Xi’an Jiaotong University
- Xi’an 710049
- China
| |
Collapse
|
48
|
Xu C, Yu L, Gu FL, Zhu C. Probing the π → π* photoisomerization mechanism of trans-azobenzene by multi-state ab initio on-the-fly trajectory dynamics simulations. Phys Chem Chem Phys 2018; 20:23885-23897. [DOI: 10.1039/c8cp02767f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Global nonadiabatic switching on-the-fly trajectory surface hopping simulations at the 5SA-CASSCF(6,6)/6-31G quantum level have been employed to probe the photoisomerization mechanism of trans-azobenzene upon ππ* excitation within four coupled singlet low-lying electronic states (S0, S1, S2, and S3).
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry & Materials Science and Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- Northwest University
- Xi’an 710069
- China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| |
Collapse
|
49
|
Grebenkin S, Meshalkin AB. Wavelength Dependence of the Reorientation Efficiency of Azo Dyes in Polymer Matrixes. J Phys Chem B 2017; 121:8377-8384. [PMID: 28783332 DOI: 10.1021/acs.jpcb.7b03171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Irradiation with linearly polarized light of azobenzene-containing polymeric matrixes causes reorientation of azobenzene molecules. In this study, the optical light-induced anisotropy of amorphous poly(alkyl methacrylates) doped with an azo compound was measured at different temperatures and at two irradiation wavelengths. To describe a decrease in the efficiency of anisotropy formation with temperature, a model of molecule reorientation is suggested which includes the probability of molecule reorientation per one isomerization as a basic parameter. The probability of molecule reorientation was found to depend on irradiation wavelength. Comparing the anisotropy time profiles at different irradiation wavelengths, we concluded that, upon each photon absorption, the molecule most likely makes an attempt to reorient even without isomerization, i.e., the reorientation occurs by a mechanism predicted by Persico and co-workers in their theoretical works. Also, we infer that the reorientation is facilitated by the photon energy absorbed by a molecule.
Collapse
Affiliation(s)
- Sergey Grebenkin
- Voevodsky Institute of Chemical Kinetics and Combustion , Institutskaya 3, Novosibirsk, 630090, Russian Federation
| | - Arkadiy B Meshalkin
- Kutateladze Institute of Thermophysics , Lavrentieva, 1, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
50
|
Yue L, Yu L, Xu C, Lei Y, Liu Y, Zhu C. Benchmark Performance of Global Switching versus Local Switching for Trajectory Surface Hopping Molecular Dynamics Simulation: Cis
↔Trans
Azobenzene Photoisomerization. Chemphyschem 2017; 18:1274-1287. [DOI: 10.1002/cphc.201700049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ling Yue
- Institute of Molecular Science; Department of Applied Chemistry and Center for Interdisciplinary Molecular Science; National Chiao Tung University; Hsinchu 30010 Taiwan
- MOX Key Laboratory for Nonequilibrium, Synthesis and Modulation of Condensed Matter; State Key Laboratory for Mechanical Behavior of Materials and Institute of Chemistry for New Energy Materials; Department of Chemistry; Faculty of Science; Xi'an Jiaotong University; Xi'an 710049 P. R. China
| | - Le Yu
- Institute of Molecular Science; Department of Applied Chemistry and Center for Interdisciplinary Molecular Science; National Chiao Tung University; Hsinchu 30010 Taiwan
- Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education; The College of Chemistry & Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry; Northwest University; Xi'an 710069 P. R. China
| | - Chao Xu
- Institute of Molecular Science; Department of Applied Chemistry and Center for Interdisciplinary Molecular Science; National Chiao Tung University; Hsinchu 30010 Taiwan
- Center for Computational Quantum Chemistry; South China Normal University; Guangzhou 510631 P. R. China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education; The College of Chemistry & Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry; Northwest University; Xi'an 710069 P. R. China
| | - Yajun Liu
- Laboratory of Theoretical and Computational Photochemistry; Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Chaoyuan Zhu
- Institute of Molecular Science; Department of Applied Chemistry and Center for Interdisciplinary Molecular Science; National Chiao Tung University; Hsinchu 30010 Taiwan
- Center for Computational Quantum Chemistry; South China Normal University; Guangzhou 510631 P. R. China
| |
Collapse
|