1
|
Hoeher JE, Sande NE, Widom JR. Probing and perturbing riboswitch folding using a fluorescent base analogue. Photochem Photobiol 2024; 100:419-433. [PMID: 38098287 PMCID: PMC10950518 DOI: 10.1111/php.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 03/20/2024]
Abstract
Riboswitches are mRNA segments that regulate gene expression in response to ligand binding. The Class I preQ1 riboswitch consists of a stem-loop and an adenine-rich single-stranded tail ("L3"), which adopt a pseudoknot structure upon binding of the ligand preQ1 . We inserted 2-aminopurine (2-AP), a fluorescent analogue of adenine (A), into the riboswitch at six different positions within L3. Here, 2-AP functions both as a spectroscopic probe and as a "mutation" that reveals how alteration of specific A residues impacts the riboswitch. Using fluorescence and circular dichroism spectroscopy, we found that 2-AP decreases the affinity of the riboswitch for preQ1 at all labeling positions tested, although modified and unmodified variants undergo the same global conformational changes at sufficiently high preQ1 concentration. 2-AP substitution is most detrimental to ligand binding at sites proximal to the ligand-binding pocket, while distal labeling sites exhibit the largest impacts on the stability of the L3 domain in the absence of ligand. Insertion of multiple 2-AP residues does not induce significant additional disruptions. Our results show that interactions involving the A residues in L3 play a critical role in ligand recognition by the preQ1 riboswitch and that 2-AP substitution exerts complex and varied impacts on this riboswitch.
Collapse
Affiliation(s)
- Janson E. Hoeher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Natalie E. Sande
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Julia R. Widom
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| |
Collapse
|
2
|
Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem 2022; 69:1771-1792. [PMID: 34427974 PMCID: PMC9788027 DOI: 10.1002/bab.2244] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022]
Abstract
Within the last decade, the application range of aptamers in biochemistry and medicine has expanded rapidly. More than just a replacement for antibodies, these intrinsically structured RNA- or DNA-oligonucleotides show great potential for utilization in diagnostics, specific drug delivery, and treatment of certain medical conditions. However, what is analyzed less frequently is the process of aptamer identification known as systematic evolution of ligands by exponential enrichment (SELEX) and the functional mechanisms that lie at its core. SELEX involves numerous singular processes, each of which contributes to the success or failure of aptamer generation. In this review, critical steps during aptamer selection are discussed in-depth, and specific problems are presented along with potential solutions. The discussed aspects include the size and molecule type of the selected target, the nature and stringency of the selection process, the amplification step with its possible PCR bias, the efficient regeneration of RNA or single-stranded DNA, and the different sequencing procedures and screening assays currently available. Finally, useful quality control steps and their role within SELEX are presented. By understanding the mechanisms through which aptamer selection is influenced, the design of more efficient SELEX procedures leading to a higher success rate in aptamer identification is enabled.
Collapse
Affiliation(s)
- Michael Kohlberger
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| | - Gabriele Gadermaier
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|
3
|
Yu B, Bien KG, Pletka CC, Iwahara J. Dynamics of Cations around DNA and Protein as Revealed by 23Na Diffusion NMR Spectroscopy. Anal Chem 2022; 94:2444-2452. [PMID: 35080384 PMCID: PMC8829827 DOI: 10.1021/acs.analchem.1c04197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Counterions are vital for the structure and function of biomolecules. However, the behavior of counterions remains elusive due to the difficulty in characterizing mobile ions. Here, we demonstrate that the dynamics of cations around biological macromolecules can be revealed by 23Na diffusion nuclear magnetic resonance (NMR) spectroscopy. NMR probe hardware capable of generating strong magnetic field gradients enables 23Na NMR-based diffusion measurements for Na+ ions in solutions of biological macromolecules and their complexes. The dynamic properties of Na+ ions interacting with the macromolecules can be investigated using apparent 23Na diffusion coefficients measured under various conditions. Our diffusion data clearly show that Na+ ions retain high mobility within the ion atmosphere around DNA. The 23Na diffusion NMR method also permits direct observation of the release of Na+ ions from nucleic acids upon protein-nucleic acid association. The entropy change due to the ion release can be estimated from the diffusion data.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068 United States
| | - Karina G Bien
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068 United States
| | - Channing C Pletka
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068 United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068 United States
| |
Collapse
|
4
|
Abstract
The structural and regulatory elements in therapeutically relevant RNAs offer many opportunities for targeting by small molecules, yet fundamental understanding of what drives selectivity in small molecule:RNA recognition has been a recurrent challenge. In particular, RNAs tend to be more dynamic and offer less chemical functionality than proteins, and biologically active ligands must compete with the highly abundant and highly structured RNA of the ribosome. Indeed, the only small molecule drug targeting RNA other than the ribosome was just approved in August 2020, and our recent survey of the literature revealed fewer than 150 reported chemical probes that target non-ribosomal RNA in biological systems. This Feature outlines our efforts to improve small molecule targeting strategies and gain fundamental insights into small molecule:RNA recognition by analyzing patterns in both RNA-biased small molecule chemical space and RNA topological space privileged for differentiation. First, we synthesized libraries based on RNA binding scaffolds that allowed us to reveal general principles in small molecule:recognition and to ask precise chemical questions about drivers of affinity and selectivity. Elaboration of these scaffolds has led to recognition of medicinally relevant RNA targets, including viral and long noncoding RNA structures. More globally, we identified physicochemical, structural, and spatial properties of biologically active RNA ligands that are distinct from those of protein-targeted ligands, and we have provided the dataset and associated analytical tools as part of a publicly available online platform to facilitate RNA ligand discovery. At the same time, we used pattern recognition protocols to identify RNA topologies that can be differentially recognized by small molecules and have elaborated this technique to visualize conformational changes in RNA secondary structure. These fundamental insights into the drivers of RNA recognition in vitro have led to functional targeting of RNA structures in biological systems. We hope that these initial guiding principles, as well as the approaches and assays developed in their pursuit, will enable rapid progress toward the development of RNA-targeted chemical probes and ultimately new therapeutic approaches to a wide range of deadly human diseases.
Collapse
Affiliation(s)
- Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| |
Collapse
|
5
|
Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nat Commun 2020; 11:5531. [PMID: 33139729 PMCID: PMC7608651 DOI: 10.1038/s41467-020-19371-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
Biomolecules form dynamic ensembles of many inter-converting conformations which are key for understanding how they fold and function. However, determining ensembles is challenging because the information required to specify atomic structures for thousands of conformations far exceeds that of experimental measurements. We addressed this data gap and dramatically simplified and accelerated RNA ensemble determination by using structure prediction tools that leverage the growing database of RNA structures to generate a conformation library. Refinement of this library with NMR residual dipolar couplings provided an atomistic ensemble model for HIV-1 TAR, and the model accuracy was independently supported by comparisons to quantum-mechanical calculations of NMR chemical shifts, comparison to a crystal structure of a substate, and through designed ensemble redistribution via atomic mutagenesis. Applications to TAR bulge variants and more complex tertiary RNAs support the generality of this approach and the potential to make the determination of atomic-resolution RNA ensembles routine. Determining dynamic ensembles of biomolecules is still challenging. Here the authors present an approach for rapid RNA ensemble determination that combines RNA structure prediction tools and NMR residual dipolar coupling data and use it to determine atomistic ensemble models for a variety of RNAs.
Collapse
|
6
|
Gong Z, Yang S, Dong X, Yang QF, Zhu YL, Xiao Y, Tang C. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ 1 RNA Riboswitches. J Mol Biol 2020; 432:4523-4543. [PMID: 32522558 DOI: 10.1016/j.jmb.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
Single-stranded noncoding regulatory RNAs, as exemplified by bacterial riboswitches, are highly dynamic. The conformational dynamics allow the riboswitch to reach maximum switching efficiency under appropriate conditions. Here we characterize the conformational dynamics of preQ1 riboswitches from mesophilic and thermophilic bacterial species at various temperatures. With the integrative use of small-angle X-ray scattering, NMR, and molecular dynamics simulations, we model the ensemble-structures of the preQ1 riboswitch aptamers without or with a ligand bound. We show that the preQ1 riboswitch is sufficiently dynamic and fluctuating among multiple folding intermediates only near the physiological temperature of the microorganism. The hierarchical folding dynamics of the RNA involves the docking of 3'-tail to form a second RNA helix and the helical stacking to form an H-type pseudoknot structure. Further, we show that RNA secondary and tertiary dynamics can be modulated by temperature and by the length of an internal loop. The coupled equilibria between RNA folding intermediates are essential for preQ1 binding, and a four-state exchange model can account for the change of ligand-triggered switching efficiency with temperature. Together, we have established a relationship between the hierarchical dynamics and riboswitch function, and illustrated how the RNA adapts to high temperature.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| | - Shuai Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Qing-Fen Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yue-Ling Zhu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
| |
Collapse
|
7
|
Huang L, Wang J, Watkins AM, Das R, Lilley DMJ. Structure and ligand binding of the glutamine-II riboswitch. Nucleic Acids Res 2019; 47:7666-7675. [PMID: 31216023 PMCID: PMC6698751 DOI: 10.1093/nar/gkz539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
We have determined the structure of the glutamine-II riboswitch ligand binding domain using X-ray crystallography. The structure was solved using a novel combination of homology modeling and molecular replacement. The structure comprises three coaxial helical domains, the central one of which is a pseudoknot with partial triplex character. The major groove of this helix provides the binding site for L-glutamine, which is extensively hydrogen bonded to the RNA. Atomic mutation of the RNA at the ligand binding site leads to loss of binding shown by isothermal titration calorimetry, explaining the specificity of the riboswitch. A metal ion also plays an important role in ligand binding. This is directly bonded to a glutamine carboxylate oxygen atom, and its remaining inner-sphere water molecules make hydrogen bonding interactions with the RNA.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
8
|
Eubanks CS, Zhao B, Patwardhan NN, Thompson RD, Zhang Q, Hargrove AE. Visualizing RNA Conformational Changes via Pattern Recognition of RNA by Small Molecules. J Am Chem Soc 2019; 141:5692-5698. [DOI: 10.1021/jacs.8b09665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Abstract
Noncoding RNA molecules take part in many biological processes, while metal ions play crucial roles in helping RNAs to perform their functions. However, the statics and dynamics of these metal ions around RNA molecules are still not well understood. In this work, we report a detailed molecular dynamics study of the type-I preQ_{1}-bound riboswitch aptamer domain (PRAD) at different ionic conditions (K^{+}, Na^{+}, and Mg^{2+}). The results show that the structural properties and flexibility of the PRAD molecule greatly influence the distributions and dynamics of metal ions around it. Simultaneously, Na^{+} ions show a stronger competitiveness with Mg^{2+} ions than K^{+} ions, and the three types of metal ions have different modes of interaction with the RNA molecule. Furthermore, we have also investigated specific binding sites of metal ions on the PRAD molecule and found that the dynamics and hydration structures of metal ions located at the ion-binding sites were obviously affected by the RNA structure near these ion-binding sites. These results may be useful to understand the role of the metal ions in noncoding RNA functions.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
10
|
Jiang J, Wang Y, Sušac L, Chan H, Basu R, Zhou ZH, Feigon J. Structure of Telomerase with Telomeric DNA. Cell 2018; 173:1179-1190.e13. [PMID: 29775593 PMCID: PMC5995583 DOI: 10.1016/j.cell.2018.04.038] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
Telomerase is an RNA-protein complex (RNP) that extends telomeric DNA at the 3' ends of chromosomes using its telomerase reverse transcriptase (TERT) and integral template-containing telomerase RNA (TER). Its activity is a critical determinant of human health, affecting aging, cancer, and stem cell renewal. Lack of atomic models of telomerase, particularly one with DNA bound, has limited our mechanistic understanding of telomeric DNA repeat synthesis. We report the 4.8 Å resolution cryoelectron microscopy structure of active Tetrahymena telomerase bound to telomeric DNA. The catalytic core is an intricately interlocked structure of TERT and TER, including a previously structurally uncharacterized TERT domain that interacts with the TEN domain to physically enclose TER and regulate activity. This complete structure of a telomerase catalytic core and its interactions with telomeric DNA from the template to telomere-interacting p50-TEB complex provides unanticipated insights into telomerase assembly and catalytic cycle and a new paradigm for a reverse transcriptase RNP.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ritwika Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes. Nat Commun 2018; 9:606. [PMID: 29426922 PMCID: PMC5807309 DOI: 10.1038/s41467-018-02923-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/09/2018] [Indexed: 11/23/2022] Open
Abstract
RNA plays key regulatory roles in diverse cellular processes, where its functionality often derives from folding into and converting between structures. Many RNAs further rely on co-existence of alternative structures, which govern their response to cellular signals. However, characterizing heterogeneous landscapes is difficult, both experimentally and computationally. Recently, structure profiling experiments have emerged as powerful and affordable structure characterization methods, which improve computational structure prediction. To date, efforts have centered on predicting one optimal structure, with much less progress made on multiple-structure prediction. Here, we report a probabilistic modeling approach that predicts a parsimonious set of co-existing structures and estimates their abundances from structure profiling data. We demonstrate robust landscape reconstruction and quantitative insights into structural dynamics by analyzing numerous data sets. This work establishes a framework for data-directed characterization of structure landscapes to aid experimentalists in performing structure-function studies. Different experimental and computational approaches can be used to study RNA structures. Here, the authors present a computational method for data-directed reconstruction of complex RNA structure landscapes, which predicts a parsimonious set of co-existing structures and estimates their abundances from structure profiling data.
Collapse
|
12
|
Moon MH, Hilimire TA, Sanders AM, Schneekloth JS. Measuring RNA-Ligand Interactions with Microscale Thermophoresis. Biochemistry 2018; 57:4638-4643. [PMID: 29327580 DOI: 10.1021/acs.biochem.7b01141] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent years, there has been dramatic growth in the study of RNA. RNA has gone from being known as an intermediate in the central dogma of molecular biology to a molecule with a large diversity of structure and function that is involved in all aspects of biology. As new functions are rapidly discovered, it has become clear that there is a need for RNA-targeting small molecule probes to investigate RNA biology and clarify the potential for therapeutics based on RNA-small molecule interactions. While a host of techniques exist to measure RNA-small molecule interactions, many of these have drawbacks that make them intractable for routine use and are often not broadly applicable. A newer technology called microscale thermophoresis (MST), which measures the directed migration of a molecule and/or molecule-ligand complex along a temperature gradient, can be used to measure binding affinities using very small amounts of sample. The high sensitivity of this technique enables measurement of affinity constants in the nanomolar and micromolar range. Here, we demonstrate how MST can be used to study a range of biologically relevant RNA interactions, including peptide-RNA interactions, RNA-small molecule interactions, and displacement of an RNA-bound peptide by a small molecule.
Collapse
Affiliation(s)
- Michelle H Moon
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Thomas A Hilimire
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Allix M Sanders
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - John S Schneekloth
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| |
Collapse
|
13
|
Amano R, Aoki K, Miyakawa S, Nakamura Y, Kozu T, Kawai G, Sakamoto T. NMR monitoring of the SELEX process to confirm enrichment of structured RNA. Sci Rep 2017; 7:283. [PMID: 28325909 PMCID: PMC5428055 DOI: 10.1038/s41598-017-00273-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 01/20/2023] Open
Abstract
RNA aptamers are RNA molecules that bind to a target molecule with high affinity and specificity using uniquely-folded tertiary structures. RNA aptamers are selected from an RNA pool typically comprising up to 1015 different sequences generated by iterative steps of selection and amplification known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Over several rounds of SELEX, the diversity of the RNA pool decreases and the aptamers are enriched. Hence, monitoring of the enrichment of these RNA pools is critical for the successful selection of aptamers, and several methods for monitoring them have been developed. In this study, we measured one-dimensional imino proton NMR spectra of RNA pools during SELEX. The spectrum of the initial RNA pool indicates that the RNAs adopt tertiary structures. The structural diversity of the RNA pools was shown to depend highly on the design of the primer-binding sequence. Furthermore, we demonstrate that enrichment of RNA aptamers can be monitored using NMR. The RNA pools can be recovered from the NMR tube after measurement of NMR spectra. We also can monitor target binding in the NMR tubes. Thus, we propose using NMR to monitor the enrichment of structured aptamers during the SELEX process.
Collapse
Affiliation(s)
- Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Kazuteru Aoki
- Ribomic Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Shin Miyakawa
- Ribomic Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Yoshikazu Nakamura
- Ribomic Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan.
| |
Collapse
|
14
|
Wang J, Xiao Y. Types and concentrations of metal ions affect local structure and dynamics of RNA. Phys Rev E 2016; 94:040401. [PMID: 27841650 DOI: 10.1103/physreve.94.040401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 01/01/2023]
Abstract
The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the preQ_{1} riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.
Collapse
Affiliation(s)
- Jun Wang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
15
|
Babu E, Muthu Mareeswaran P, Ramdass A, Ramesh P, Rajagopal S. Label free luminescence strategy for sensitive detection of ATP using aptamer-Ru(II) complexes. JOURNAL OF LUMINESCENCE 2016; 175:267-273. [DOI: 10.1016/j.jlumin.2016.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
16
|
Frener M, Micura R. Conformational Rearrangements of Individual Nucleotides during RNA-Ligand Binding Are Rate-Differentiated. J Am Chem Soc 2016; 138:3627-30. [PMID: 26974261 PMCID: PMC4959565 DOI: 10.1021/jacs.5b11876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pronounced rate differentiation has been found for conformational rearrangements of individual nucleobases that occur during ligand recognition of the preQ1 class-I riboswitch aptamer from Thermoanaerobacter tengcongensis. Rate measurements rely on the 2ApFold approach by analyzing the fluorescence response of riboswitch variants, each with a single, strategically positioned 2-aminopurine nucleobase substitution. Observed rate discrimination between the fastest and the slowest conformational adaption is 22-fold, with the largest rate observed for the rearrangement of a nucleoside directly at the binding site and the smallest rate observed for the 3'-unpaired nucleoside that stacks onto the pseudo-knot-closing Watson-Crick base pair. Our findings provide novel insights into how compact, prefolded RNAs that follow the induced-fit recognition mechanism adapt local structural elements in response to ligand binding on a rather broad time scale and how this process culminates in a structural signal that is responsible for efficient downregulation of ribosomal translation.
Collapse
Affiliation(s)
- Marina Frener
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Frank AT. Can Holo NMR Chemical Shifts be Directly Used to Resolve RNA–Ligand Poses? J Chem Inf Model 2016; 56:368-76. [DOI: 10.1021/acs.jcim.5b00593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Aaron T. Frank
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Suddala KC, Wang J, Hou Q, Walter NG. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection. J Am Chem Soc 2015; 137:14075-83. [PMID: 26471732 DOI: 10.1021/jacs.5b09740] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial riboswitches couple small-molecule ligand binding to RNA conformational changes that widely regulate gene expression, rendering them potential targets for antibiotic intervention. Despite structural insights, the ligand-mediated folding mechanisms of riboswitches are still poorly understood. Using single-molecule fluorescence resonance energy transfer (smFRET), we have investigated the folding mechanism of an H-type pseudoknotted preQ1 riboswitch in dependence of Mg(2+) and three ligands of distinct affinities. We show that, in the absence of Mg(2+), both weakly and strongly bound ligands promote pseudoknot docking through an induced-fit mechanism. By contrast, addition of as low as 10 μM Mg(2+) generally shifts docking toward conformational selection by stabilizing a folded-like conformation prior to ligand binding. Supporting evidence from transition-state analysis further highlights the particular importance of stacking interactions during induced-fit and of specific hydrogen bonds during conformational selection. Our mechanistic dissection provides unprecedented insights into the intricate synergy between ligand- and Mg(2+)-mediated RNA folding.
Collapse
Affiliation(s)
- Krishna C Suddala
- Biophysics, ‡Single Molecule Analysis Group, Department of Chemistry, University of Michigan , 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Jiarui Wang
- Biophysics, ‡Single Molecule Analysis Group, Department of Chemistry, University of Michigan , 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Qian Hou
- Biophysics, ‡Single Molecule Analysis Group, Department of Chemistry, University of Michigan , 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Nils G Walter
- Biophysics, ‡Single Molecule Analysis Group, Department of Chemistry, University of Michigan , 930 N. University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Xue Y, Kellogg D, Kimsey IJ, Sathyamoorthy B, Stein ZW, McBrairty M, Al-Hashimi HM. Characterizing RNA Excited States Using NMR Relaxation Dispersion. Methods Enzymol 2015; 558:39-73. [PMID: 26068737 DOI: 10.1016/bs.mie.2015.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of noncoding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as "excited states." Compared to larger scale changes in RNA secondary structure, transitions toward excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around noncanonical motifs. Here, we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25-3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data are then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited states. Application is illustrated with a focus on the transactivation response element from the human immune deficiency virus type 1, which exists in dynamic equilibrium with at least two distinct excited states.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dawn Kellogg
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Zachary W Stein
- Biophysics Enhanced Program, University of Michigan Ann Arbor, Michigan, USA
| | - Mitchell McBrairty
- Biophysics Enhanced Program, University of Michigan Ann Arbor, Michigan, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA; Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
20
|
Zhao B, Zhang Q. Characterizing excited conformational states of RNA by NMR spectroscopy. Curr Opin Struct Biol 2015; 30:134-146. [PMID: 25765780 DOI: 10.1016/j.sbi.2015.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/25/2022]
Abstract
Conformational dynamics is a hallmark of diverse non-coding RNA functions. During these functional processes, RNA molecules almost ubiquitously undergo conformational transitions that are tuned to meet distinct structural and kinetic requirements for proper function. A complete mechanistic understanding of RNA function requires comprehensive structural and dynamic knowledge of these complex transitions, which often involve alternative higher-energy conformational states that pose a major challenge for high-resolution structural study by conventional methods. In this review, we describe recent progress in RNA NMR that has started to unveil detailed structural, thermodynamic and kinetic insights into some of these excited conformational states of RNA and their functional roles in biology.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
21
|
Kirmizialtin S, Hennelly SP, Schug A, Onuchic JN, Sanbonmatsu KY. Integrating molecular dynamics simulations with chemical probing experiments using SHAPE-FIT. Methods Enzymol 2015; 553:215-34. [PMID: 25726467 DOI: 10.1016/bs.mie.2014.10.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Integration and calibration of molecular dynamics simulations with experimental data remain a challenging endeavor. We have developed a novel method to integrate chemical probing experiments with molecular simulations of RNA molecules by using a native structure-based model. Selective 2'-hydroxyl acylation by primer extension (SHAPE) characterizes the mobility of each residue in the RNA. Our method, SHAPE-FIT, automatically optimizes the potential parameters of the force field according to measured reactivities from SHAPE. The optimized parameter set allows simulations of dynamics highly consistent with SHAPE probing experiments. Such atomistic simulations, thoroughly grounded in experiment, can open a new window on RNA structure-function relations.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| | - Scott P Hennelly
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA; Department of Physics and Astronomy, Rice University, Houston, Texas, USA; Department of Chemistry, Rice University, Houston, Texas, USA; Department of Biosciences, Rice University, Houston, Texas, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | - Karissa Y Sanbonmatsu
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| |
Collapse
|
22
|
Peselis A, Serganov A. Structure and function of pseudoknots involved in gene expression control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:803-22. [PMID: 25044223 DOI: 10.1002/wrna.1247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Natural RNA molecules can have a high degree of structural complexity but even the most complexly folded RNAs are assembled from simple structural building blocks. Among the simplest RNA elements are double-stranded helices that participate in the formation of different folding topologies and constitute the major fraction of RNA structures. One common folding motif of RNA is a pseudoknot, defined as a bipartite helical structure formed by base-pairing of the apical loop in the stem-loop structure with an outside sequence. Pseudoknots constitute integral parts of the RNA structures essential for various cellular activities. Among many functions of pseudoknotted RNAs is feedback regulation of gene expression, carried out through specific recognition of various molecules. Pseudoknotted RNAs autoregulate ribosomal and phage protein genes in response to downstream encoded proteins, while many metabolic and transport genes are controlled by cellular metabolites interacting with pseudoknotted RNA elements from the riboswitch family. Modulation of some genes also depends on metabolite-induced messenger RNA (mRNA) cleavage performed by pseudoknotted ribozymes. Several regulatory pseudoknots have been characterized biochemically and structurally in great detail. These studies have demonstrated a plethora of pseudoknot-based folds and have begun uncovering diverse molecular principles of the ligand-dependent gene expression control. The pseudoknot-mediated mechanisms of gene control and many unexpected and interesting features of the regulatory pseudoknots have significantly advanced our understanding of the genetic circuits and laid the foundation for modulation of their outcomes.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
23
|
Bothe JR, Stein ZW, Al-Hashimi HM. Evaluating the uncertainty in exchange parameters determined from off-resonance R1ρ relaxation dispersion for systems in fast exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 244:18-29. [PMID: 24819426 PMCID: PMC4222517 DOI: 10.1016/j.jmr.2014.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 05/25/2023]
Abstract
Spin relaxation in the rotating frame (R1ρ) is a powerful NMR technique for characterizing fast microsecond timescale exchange processes directed toward short-lived excited states in biomolecules. At the limit of fast exchange, only k(ex)=k(1)+k(-1) and Φex=p(G)p(E)(Δω)(2) can be determined from R1ρ data limiting the ability to characterize the structure and energetics of the excited state conformation. Here, we use simulations to examine the uncertainty with which exchange parameters can be determined for two state systems in intermediate-to-fast exchange using off-resonance R1ρ relaxation dispersion. R1ρ data computed by solving the Bloch-McConnell equations reveals small but significant asymmetry with respect to offset (R1ρ (ΔΩ)≠R1ρ (-ΔΩ)), which is a hallmark of slow-to-intermediate exchange, even under conditions of fast exchange for free precession chemical exchange line broadening (k(ex)/Δω>10). A grid search analysis combined with bootstrap and Monte-Carlo based statistical approaches for estimating uncertainty in exchange parameters reveals that both the sign and magnitude of Δω can be determined at a useful level of uncertainty for systems in fast exchange (k(ex)/Δω<10) but that this depends on the uncertainty in the R1ρ data and requires a thorough examination of the multidimensional variation of χ(2) as a function of exchange parameters. Results from simulations are complemented by analysis of experimental R1ρ data measured in three nucleic acid systems with exchange processes occurring on the slow (k(ex)/Δω=0.2; pE=∼0.7%), fast (k(ex)/Δω=∼10-16; p(E)=∼13%) and very fast (k(ex)=39,000 s(-1)) chemical shift timescales.
Collapse
Affiliation(s)
- Jameson R Bothe
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zachary W Stein
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
24
|
Eichhorn CD, Al-Hashimi HM. Structural dynamics of a single-stranded RNA-helix junction using NMR. RNA (NEW YORK, N.Y.) 2014; 20:782-91. [PMID: 24742933 PMCID: PMC4024633 DOI: 10.1261/rna.043711.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many regulatory RNAs contain long single strands (ssRNA) that adjoin secondary structural elements. Here, we use NMR spectroscopy to study the dynamic properties of a 12-nucleotide (nt) ssRNA tail derived from the prequeuosine riboswitch linked to the 3' end of a 48-nt hairpin. Analysis of chemical shifts, NOE connectivity, (13)C spin relaxation, and residual dipolar coupling data suggests that the first two residues (A25 and U26) in the ssRNA tail stack onto the adjacent helix and assume an ordered conformation. The following U26-A27 step marks the beginning of an A6-tract and forms an acute pivot point for substantial motions within the tail, which increase toward the terminal end. Despite substantial internal motions, the ssRNA tail adopts, on average, an A-form helical conformation that is coaxial with the helix. Our results reveal a surprising degree of structural and dynamic complexity at the ssRNA-helix junction, which involves a fine balance between order and disorder that may facilitate efficient pseudoknot formation on ligand recognition.
Collapse
Affiliation(s)
- Catherine D. Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding authorE-mail
| |
Collapse
|
25
|
Yoon J, Lin JC, Hyeon C, Thirumalai D. Dynamical Transition and Heterogeneous Hydration Dynamics in RNA. J Phys Chem B 2014; 118:7910-9. [DOI: 10.1021/jp500643u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jeseong Yoon
- Korea Institute for Advanced Study, 130-722 Seoul, Korea
| | - Jong-Chin Lin
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | | | - D. Thirumalai
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
26
|
Eichhorn CD, Kang M, Feigon J. Structure and function of preQ 1 riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:939-950. [PMID: 24798077 DOI: 10.1016/j.bbagrm.2014.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/17/2022]
Abstract
PreQ1 riboswitches help regulate the biosynthesis and transport of preQ1 (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ1 riboswitches have been identified (preQ1-I and preQ1-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ1 binding, each of which has distinct unusual features and modes of preQ1 recognition. These features include an unusually long loop 2 in preQ1-I pseudoknots and an embedded hairpin in loop 3 in preQ1-II pseudoknots. PreQ1-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ1 riboswitches. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mijeong Kang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Gong Z, Zhao Y, Chen C, Duan Y, Xiao Y. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations. PLoS One 2014; 9:e92247. [PMID: 24663240 PMCID: PMC3963873 DOI: 10.1371/journal.pone.0092247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
Riboswitches play roles in transcriptional or translational regulation through specific ligand binding of their aptamer domains. Although a number of ligand-bound aptamer complex structures have been solved, it is important to know ligand-free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, preQ1 riboswitch aptamer domain from Bacillus subtilis is studied by overall 1.5 μs all-atom molecular dynamics simulations We found that the ligand-free aptamer has a stable state with a folded P1-L3 and open binding pocket. The latter forms a cytosine-rich pool in which the nucleotide C19 oscillates between close and open positions, making it a potential conformation for preQ1 entrance. The dynamic picture further suggests that the specific recognition of preQ1 by the aptamer domain is not only facilitated by the key nucleotide C19 but also aided and enhanced by other cytosines around the binding pocket. These results should help to understand the details of preQ1 binding.
Collapse
Affiliation(s)
- Zhou Gong
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Duan
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Center and Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
28
|
Abstract
RNA dynamics play a fundamental role in many cellular functions. However, there is no general framework to describe these complex processes, which typically consist of many structural maneuvers that occur over timescales ranging from picoseconds to seconds. Here, we classify RNA dynamics into distinct modes representing transitions between basins on a hierarchical free-energy landscape. These transitions include large-scale secondary-structural transitions at >0.1-s timescales, base-pair/tertiary dynamics at microsecond-to-millisecond timescales, stacking dynamics at timescales ranging from nanoseconds to microseconds, and other "jittering" motions at timescales ranging from picoseconds to nanoseconds. We review various modes within these three different tiers, the different mechanisms by which they are used to regulate function, and how they can be coupled together to achieve greater functional complexity.
Collapse
|
29
|
Structural determinants for ligand capture by a class II preQ1 riboswitch. Proc Natl Acad Sci U S A 2014; 111:E663-71. [PMID: 24469808 DOI: 10.1073/pnas.1400126111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prequeuosine (preQ1) riboswitches are RNA regulatory elements located in the 5' UTR of genes involved in the biosynthesis and transport of preQ1, a precursor of the modified base queuosine universally found in four tRNAs. The preQ1 class II (preQ1-II) riboswitch regulates preQ1 biosynthesis at the translational level. We present the solution NMR structure and conformational dynamics of the 59 nucleotide Streptococcus pneumoniae preQ1-II riboswitch bound to preQ1. Unlike in the preQ1 class I (preQ1-I) riboswitch, divalent cations are required for high-affinity binding. The solution structure is an unusual H-type pseudoknot featuring a P4 hairpin embedded in loop 3, which forms a three-way junction with the other two stems. (13)C relaxation and residual dipolar coupling experiments revealed interhelical flexibility of P4. We found that the P4 helix and flanking adenine residues play crucial and unexpected roles in controlling pseudoknot formation and, in turn, sequestering the Shine-Dalgarno sequence. Aided by divalent cations, P4 is poised to act as a "screw cap" on preQ1 recognition to block ligand exit and stabilize the binding pocket. Comparison of preQ1-I and preQ1-II riboswitch structures reveals that whereas both form H-type pseudoknots and recognize preQ1 using one A, C, or U nucleotide from each of three loops, these nucleotides interact with preQ1 differently, with preQ1 inserting into different grooves. Our studies show that the preQ1-II riboswitch uses an unusual mechanism to harness exquisite control over queuosine metabolism.
Collapse
|
30
|
Chappell J, Takahashi MK, Meyer S, Loughrey D, Watters KE, Lucks J. The centrality of RNA for engineering gene expression. Biotechnol J 2013; 8:1379-95. [PMID: 24124015 PMCID: PMC4033574 DOI: 10.1002/biot.201300018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 12/25/2022]
Abstract
Synthetic biology holds promise as both a framework for rationally engineering biological systems and a way to revolutionize how we fundamentally understand them. Essential to realizing this promise is the development of strategies and tools to reliably and predictably control and characterize sophisticated patterns of gene expression. Here we review the role that RNA can play towards this goal and make a case for why this versatile, designable, and increasingly characterizable molecule is one of the most powerful substrates for engineering gene expression at our disposal. We discuss current natural and synthetic RNA regulators of gene expression acting at key points of control – transcription, mRNA degradation, and translation. We also consider RNA structural probing and computational RNA structure predication tools as a way to study RNA structure and ultimately function. Finally, we discuss how next-generation sequencing methods are being applied to the study of RNA and to the characterization of RNA's many properties throughout the cell.
Collapse
Affiliation(s)
- James Chappell
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
31
|
Suddala KC, Rinaldi AJ, Feng J, Mustoe AM, Eichhorn CD, Liberman JA, Wedekind JE, Al-Hashimi HM, Brooks CL, Walter NG. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Nucleic Acids Res 2013; 41:10462-75. [PMID: 24003028 PMCID: PMC3905878 DOI: 10.1093/nar/gkt798] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Riboswitches are structural elements in the 5′ untranslated regions of many bacterial messenger RNAs that regulate gene expression in response to changing metabolite concentrations by inhibition of either transcription or translation initiation. The preQ1 (7-aminomethyl-7-deazaguanine) riboswitch family comprises some of the smallest metabolite sensing RNAs found in nature. Once ligand-bound, the transcriptional Bacillus subtilis and translational Thermoanaerobacter tengcongensis preQ1 riboswitch aptamers are structurally similar RNA pseudoknots; yet, prior structural studies have characterized their ligand-free conformations as largely unfolded and folded, respectively. In contrast, through single molecule observation, we now show that, at near-physiological Mg2+ concentration and pH, both ligand-free aptamers adopt similar pre-folded state ensembles that differ in their ligand-mediated folding. Structure-based Gō-model simulations of the two aptamers suggest that the ligand binds late (Bacillus subtilis) and early (Thermoanaerobacter tengcongensis) relative to pseudoknot folding, leading to the proposal that the principal distinction between the two riboswitches lies in their relative tendencies to fold via mechanisms of conformational selection and induced fit, respectively. These mechanistic insights are put to the test by rationally designing a single nucleotide swap distal from the ligand binding pocket that we find to predictably control the aptamers′ pre-folded states and their ligand binding affinities.
Collapse
Affiliation(s)
- Krishna C Suddala
- Biophysics, University of Michigan, Ann Arbor, MI 48109, USA, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA, Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA, Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA and Center for Theoretical Biological Physics, University of California San Diego, San Diego, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Denning EJ, Thirumalai D, MacKerell AD. Protonation of trimethylamine N-oxide (TMAO) is required for stabilization of RNA tertiary structure. Biophys Chem 2013; 184:8-16. [PMID: 24012912 DOI: 10.1016/j.bpc.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 01/10/2023]
Abstract
The osmolyte trimethylamine N-oxide (TMAO) stabilizes the tertiary but not the secondary structures of RNA. However, molecular dynamics simulations performed on the PreQ1 riboswitch showed that TMAO destabilizes the tertiary riboswitch structure, leading us to hypothesize that the presence of RNA could result in enhanced population of the protonated form, TMAOP. Constant pH replica exchange simulations showed that a percentage of TMAO is indeed protonated, thus contributing to the stability of the tertiary but not the secondary structure of PreQ1. TMAOP results in an unfavorable dehydration of phosphodiester backbone, which is compensated by electrostatic attraction between TMAOP and the phosphate groups. In addition, TMAOP interacts with specific sites in the tertiary RNA structure, mimicking the behavior of positively charged ions and of the PreQ1 ligand in stabilizing RNA. Finally, we predict that TMAO-induced stabilization of RNA tertiary structures should be strongly pH dependent.
Collapse
Affiliation(s)
- Elizabeth J Denning
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
33
|
Tuning a riboswitch response through structural extension of a pseudoknot. Proc Natl Acad Sci U S A 2013; 110:E3256-64. [PMID: 23940363 DOI: 10.1073/pnas.1304585110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural and dynamic features of RNA folding landscapes represent critical aspects of RNA function in the cell and are particularly central to riboswitch-mediated control of gene expression. Here, using single-molecule fluorescence energy transfer imaging, we explore the folding dynamics of the preQ1 class II riboswitch, an upstream mRNA element that regulates downstream encoded modification enzymes of queuosine biosynthesis. For reasons that are not presently understood, the classical pseudoknot fold of this system harbors an extra stem-loop structure within its 3'-terminal region immediately upstream of the Shine-Dalgarno sequence that contributes to formation of the ligand-bound state. By imaging ligand-dependent preQ1 riboswitch folding from multiple structural perspectives, we reveal that the extra stem-loop strongly influences pseudoknot dynamics in a manner that decreases its propensity to spontaneously fold and increases its responsiveness to ligand binding. We conclude that the extra stem-loop sensitizes this RNA to broaden the dynamic range of the ON/OFF regulatory switch.
Collapse
|
34
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
35
|
Yoon J, Thirumalai D, Hyeon C. Urea-induced denaturation of preQ1-riboswitch. J Am Chem Soc 2013; 135:12112-21. [PMID: 23863126 DOI: 10.1021/ja406019s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urea, a polar molecule with a large dipole moment, not only destabilizes folded RNA structures but can also enhance the folding rates of large ribozymes. Unlike the mechanism of urea-induced unfolding of proteins, which is well understood, the action of urea on RNA has barely been explored. We performed extensive all-atom molecular dynamics simulations to determine the molecular underpinnings of urea-induced RNA denaturation. Urea displays its denaturing power in both secondary and tertiary motifs of the riboswitch structure. Our simulations reveal that the denaturation of RNA structures is mainly driven by the hydrogen-bonding and stacking interactions of urea with the bases. Through detailed studies of the simulation trajectories, we found that geminate pairs between urea and bases due to hydrogen bonds and stacks persist only ~0.1-1 ns, which suggests that the urea-base interaction is highly dynamic. Most importantly, the early stage of base-pair disruption is triggered by penetration of water molecules into the hydrophobic domain between the RNA bases. The infiltration of water into the narrow space between base pairs is critical in increasing the accessibility of urea to transiently disrupted bases, thus allowing urea to displace inter-base hydrogen bonds. This mechanism--water-induced disruption of base pairs resulting in the formation of a "wet" destabilized RNA followed by solvation by urea--is the exact opposite of the two-stage denaturation of proteins by urea. In the latter case, initial urea penetration creates a dry globule, which is subsequently solvated by water, leading to global protein unfolding. Our work shows that the ability to interact with both water and polar or nonpolar components of nucleotides makes urea a powerful chemical denaturant for nucleic acids.
Collapse
Affiliation(s)
- Jeseong Yoon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea
| | | | | |
Collapse
|
36
|
Abstract
RNA molecules have highly versatile structures that can fold into myriad conformations, providing many potential pockets for binding small molecules. The increasing number of available RNA structures, in complex with proteins, small ligands and in free form, enables the design of new therapeutically useful RNA-binding ligands. Here we studied RNA ligand complexes from 10 RNA groups extracted from the protein data bank (PDB), including adaptive and non-adaptive complexes. We analyzed the chemical, physical, structural and conformational properties of binding pockets around the ligand. Comparing the properties of ligand-binding pockets to the properties of computed pockets extracted from all available RNA structures and RNA-protein interfaces, revealed that ligand-binding pockets, mainly the adaptive pockets, are characterized by unique properties, specifically enriched in rare conformations of the nucleobase and the sugar pucker. Further, we demonstrate that nucleotides possessing the rare conformations are preferentially involved in direct interactions with the ligand. Overall, based on our comprehensive analysis of RNA-ligand complexes, we suggest that the unique conformations adopted by RNA nucleotides play an important role in RNA recognition by small ligands. We term the recognition of a binding site by a ligand via the unique RNA conformations "RNA conformational readout." We propose that "conformational readout" is a general way by which RNA binding pockets are recognized and selected from an ensemble of different RNA states.
Collapse
Affiliation(s)
- Efrat Kligun
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
37
|
Frank AT, Horowitz S, Andricioaei I, Al-Hashimi HM. Utility of 1H NMR chemical shifts in determining RNA structure and dynamics. J Phys Chem B 2013; 117:2045-52. [PMID: 23320790 DOI: 10.1021/jp310863c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of methods for predicting NMR chemical shifts with high accuracy and speed is increasingly allowing use of these abundant, readily accessible measurements in determining the structure and dynamics of proteins. For nucleic acids, however, despite the availability of semiempirical methods for predicting (1)H chemical shifts, their use in determining the structure and dynamics has not yet been examined. Here, we show that (1)H chemical shifts offer powerful restraints for RNA structure determination, allowing discrimination of native structure from non-native states to within 2-4 Å, and <3 Å when highly flexible residues are ignored. Theoretical simulations shows that although (1)H chemical shifts can provide valuable information for constructing RNA dynamic ensembles, large uncertainties in the chemical shift predictions and inherent degeneracies lead to higher uncertainties as compared to residual dipolar couplings.
Collapse
Affiliation(s)
- Aaron T Frank
- Department of Chemistry, University of California Irvine 1102 Natural Sciences 2, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
38
|
Leonard CW, Hajdin CE, Karabiber F, Mathews DH, Favorov O, Dokholyan NV, Weeks KM. Principles for understanding the accuracy of SHAPE-directed RNA structure modeling. Biochemistry 2013; 52:588-95. [PMID: 23316814 PMCID: PMC3578230 DOI: 10.1021/bi300755u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accurate RNA structure modeling is an important, incompletely solved, challenge. Single-nucleotide resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) yields an experimental measurement of local nucleotide flexibility that can be incorporated as pseudo-free energy change constraints to direct secondary structure predictions. Prior work from our laboratory has emphasized both the overall accuracy of this approach and the need for nuanced interpretation of modeled structures. Recent studies by Das and colleagues [Kladwang, W., et al. (2011) Biochemistry 50, 8049; Nat. Chem. 3, 954], focused on analyzing six small RNAs, yielded poorer RNA secondary structure predictions than expected on the basis of prior benchmarking efforts. To understand the features that led to these divergent results, we re-examined four RNAs yielding the poorest results in this recent work: tRNA(Phe), the adenine and cyclic-di-GMP riboswitches, and 5S rRNA. Most of the errors reported by Das and colleagues reflected nonstandard experiment and data processing choices, and selective scoring rules. For two RNAs, tRNA(Phe) and the adenine riboswitch, secondary structure predictions are nearly perfect if no experimental information is included but were rendered inaccurate by the SHAPE data of Das and colleagues. When best practices were used, single-sequence SHAPE-directed secondary structure modeling recovered ~93% of individual base pairs and >90% of helices in the four RNAs, essentially indistinguishable from the results of the mutate-and-map approach with the exception of a single helix in the 5S rRNA. The field of experimentally directed RNA secondary structure prediction is entering a phase focused on the most difficult prediction challenges. We outline five constructive principles for guiding this field forward.
Collapse
Affiliation(s)
| | - Christine E. Hajdin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Fethullah Karabiber
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - David H. Mathews
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Oleg Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
39
|
Banáš P, Sklenovský P, Wedekind JE, Šponer J, Otyepka M. Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study. J Phys Chem B 2012; 116:12721-34. [PMID: 22998634 PMCID: PMC3505677 DOI: 10.1021/jp309230v] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Riboswitches often occur in the 5'-untranslated regions of bacterial mRNA where they regulate gene expression. The preQ(1) riboswitch controls the biosynthesis of a hypermodified nucleoside queuosine in response to binding the queuosine metabolic intermediate. Structures of the ligand-bound and ligand-free states of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis were determined recently by X-ray crystallography. We used multiple, microsecond-long molecular dynamics simulations (29 μs in total) to characterize the structural dynamics of preQ(1) riboswitches in both states. We observed different stabilities of the stem in the bound and free states, resulting in different accessibilities of the ribosome-binding site. These differences are related to different stacking interactions between nucleotides of the stem and the associated loop, which itself adopts different conformations in the bound and free states. We suggest that the loop not only serves to bind preQ(1) but also transmits information about ligand binding from the ligand-binding pocket to the stem, which has implications for mRNA accessibility to the ribosome. We explain functional results obscured by a high salt crystallization medium and help to refine regions of disordered electron density, which demonstrates the predictive power of our approach. Besides investigating the functional dynamics of the riboswitch, we have also utilized this unique small folded RNA system for analysis of performance of the RNA force field on the μs time scale. The latest AMBER parmbsc0χ(OL3) RNA force field is capable of providing stable trajectories of the folded molecule on the μs time scale. On the other hand, force fields that are not properly balanced lead to significant structural perturbations on the sub-μs time scale, which could easily lead to inappropriate interpretation of the simulation data.
Collapse
Affiliation(s)
- Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Petr Sklenovský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 712, Rochester, NY 14620, USA
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
40
|
Gong Z, Zhao Y, Chen C, Xiao Y. Computational study of unfolding and regulation mechanism of preQ1 riboswitches. PLoS One 2012; 7:e45239. [PMID: 23028870 PMCID: PMC3444477 DOI: 10.1371/journal.pone.0045239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/17/2012] [Indexed: 11/18/2022] Open
Abstract
Riboswitches are novel RNA regulatory elements. Each riboswitch molecule consists of two domains: aptamer and express platform. The three-dimensional (3D) structure of the aptamer domain, depending on ligand binding or not, controls that of the express platform, which then switches on or off transcriptional or translational process. Here we study the two types of preQ(1) riboswitch aptamers from T. Tengcongensis (denoted as Tte preQ(1) riboswitch for short below) and Bacillus subtilis (denoted as Bsu preQ(1) riboswitch for short below), respectively. The free-state 3D structure of the Tte preQ(1) riboswitch is the same as its bound state but the Bsu preQ(1) riboswitch is not. Therefore, it is very interesting to investigate how these riboswitches realize their different regulation functions. We simulated the unfolding of these two aptamers through all-atom molecular dynamic simulation and found that they have similar unfolding or folding pathways and ligand-binding processes. The main difference between them is the folding intermediate states. The similarity and difference of their unfolding or folding dynamics may suggest their similar regulation mechanisms and account for their different functions, respectively. These results are also useful to understand the regulation mechanism of other riboswitches with free-state 3D structures similar to their bound states.
Collapse
Affiliation(s)
- Zhou Gong
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
41
|
Santner T, Rieder U, Kreutz C, Micura R. Pseudoknot preorganization of the preQ1 class I riboswitch. J Am Chem Soc 2012; 134:11928-31. [PMID: 22775200 DOI: 10.1021/ja3049964] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To explore folding and ligand recognition of metabolite-responsive RNAs is of major importance to comprehend gene regulation by riboswitches. Here, we demonstrate, using NMR spectroscopy, that the free aptamer of a preQ(1) class I riboswitch preorganizes into a pseudoknot fold in a temperature- and Mg(2+)-dependent manner. The preformed pseudoknot represents a structure that is close to the ligand-bound state and that likely represents the conformation selected by the ligand. Importantly, a defined base pair mutation within the pseudoknot interaction stipulates whether, in the absence of ligand, dimer formation of the aptamer competes with intramolecular pseudoknot formation. This study pinpoints how RNA preorganization is a crucial determinant for the adaptive recognition process of RNA and ligand.
Collapse
Affiliation(s)
- Tobias Santner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
42
|
Serganov A, Patel DJ. Molecular recognition and function of riboswitches. Curr Opin Struct Biol 2012; 22:279-86. [PMID: 22579413 DOI: 10.1016/j.sbi.2012.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Regulatory mRNAs elements termed riboswitches respond to elevated concentrations of cellular metabolites by modulating expression of associated genes. Riboswitches attain their high metabolite selectivity by capitalizing on the intrinsic tertiary structures of their sensor domains. Over the years, riboswitch structure and folding have been amongst the most researched topics in the RNA field. Most recently, novel structures of single-ligand and cooperative double-ligand sensors have broadened our knowledge of architectural and molecular recognition principles exploited by riboswitches. The structural information has been complemented by extensive folding studies, which have provided several important clues on the formation of ligand-competent conformations and mechanisms of ligand discrimination. These studies have greatly improved our understanding of molecular events in riboswitch-mediated gene expression control and provided the molecular basis for intervention into riboswitch-controlled genetic circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Ave., MSB-393, New York, NY 10016, USA
| | | |
Collapse
|
43
|
Li XJ, Jiang FL, Wu MY, Zhang SQ, Zhou YF, Hong MC. Self-Assembly of Discrete M6L8 Coordination Cages Based on a Conformationally Flexible Tripodal Phosphoric Triamide Ligand. Inorg Chem 2012; 51:4116-22. [DOI: 10.1021/ic202373a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xing-Jun Li
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002,
People's Republic of China
- Graduate University, Chinese Academy of Sciences, Beijing 100039, People's
Republic of China
| | - Fei-Long Jiang
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002,
People's Republic of China
| | - Ming-Yan Wu
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002,
People's Republic of China
| | - Shu-Quan Zhang
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002,
People's Republic of China
| | - You-Fu Zhou
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002,
People's Republic of China
| | - Mao-Chun Hong
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002,
People's Republic of China
| |
Collapse
|
44
|
Erat MC, Coles J, Finazzo C, Knobloch B, Sigel RK. Accurate analysis of Mg2+ binding to RNA: From classical methods to a novel iterative calculation procedure. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Eichhorn CD, Feng J, Suddala KC, Walter NG, Brooks CL, Al-Hashimi HM. Unraveling the structural complexity in a single-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch. Nucleic Acids Res 2011; 40:1345-55. [PMID: 22009676 PMCID: PMC3273816 DOI: 10.1093/nar/gkr833] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Single-stranded RNAs (ssRNAs) are ubiquitous RNA elements that serve diverse functional roles. Much of our understanding of ssRNA conformational behavior is limited to structures in which ssRNA directly engages in tertiary interactions or is recognized by proteins. Little is known about the structural and dynamic behavior of free ssRNAs at atomic resolution. Here, we report the collaborative application of nuclear magnetic resonance (NMR) and replica exchange molecular dynamics (REMD) simulations to characterize the 12 nt ssRNA tail derived from the prequeuosine riboswitch. NMR carbon spin relaxation data and residual dipolar coupling measurements reveal a flexible yet stacked core adopting an A-form-like conformation, with the level of order decreasing toward the terminal ends. An A-to-C mutation within the polyadenine tract alters the observed dynamics consistent with the introduction of a dynamic kink. Pre-ordering of the tail may increase the efficacy of ligand binding above that achieved by a random-coil ssRNA. The REMD simulations recapitulate important trends in the NMR data, but suggest more internal motions than inferred from the NMR analysis. Our study unmasks a previously unappreciated level of complexity in ssRNA, which we believe will also serve as an excellent model system for testing and developing computational force fields.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. Understanding the transcriptome through RNA structure. Nat Rev Genet 2011; 12:641-55. [PMID: 21850044 DOI: 10.1038/nrg3049] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA structure is crucial for gene regulation and function. In the past, transcriptomes have largely been parsed by primary sequences and expression levels, but it is now becoming feasible to annotate and compare transcriptomes based on RNA structure. In addition to computational prediction methods, the recent advent of experimental techniques to probe RNA structure by high-throughput sequencing has enabled genome-wide measurements of RNA structure and has provided the first picture of the structural organization of a eukaryotic transcriptome - the 'RNA structurome'. With additional advances in method refinement and interpretation, structural views of the transcriptome should help to identify and validate regulatory RNA motifs that are involved in diverse cellular processes and thereby increase understanding of RNA function.
Collapse
Affiliation(s)
- Yue Wan
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
47
|
Petrone PM, Dewhurst J, Tommasi R, Whitehead L, Pomerantz AK. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding. J Mol Graph Model 2011; 30:179-85. [PMID: 21831681 DOI: 10.1016/j.jmgm.2011.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 01/22/2023]
Abstract
Riboswitches are mRNA structural elements that act as intracellular sensors of small-molecule metabolites. By undergoing conformational changes capable of modulating translation or terminating transcription, riboswitches are able to play a role in regulating the concentration of essential metabolites in the cell. Computer-guided fluorescence experiments were carried out to interrogate molecular dynamics and conformational changes in the minimal riboswitch aptamer that binds 7-aminomethyl-7-deazaguanine (preQ₁). Our combined experimental results and computational analysis suggest that the preQ₁ riboswitch apo form is structured but shows no evidence of a ligand-binding pocket. Simulations of the apo and bound forms indicate a large conformational change is triggered by the breaking of the Watson-Crick base pairing of nucleotides G11 and C31 upon preQ₁ removal, followed by collapse of the pocket due to interfering π-stacking. Computational predictions of local aptamer dynamics were validated by fluorescence experiments employing 2-aminopurine substitutions. In-line probing reactions confirmed that fluorophore-labeled riboswitches retain similar higher-order structural features as the unlabeled aptamer upon ligand binding, although their affinity for the ligand is reduced by the introduction of the fluorescent reporter.
Collapse
Affiliation(s)
- Paula M Petrone
- Novartis Institutes for BioMedical Research, Inc., 100 Technology Square & 250 Massachusetts Ave. Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|