1
|
Wada T, Saito-Tarashima N, Yamada M, Okamoto Y, Minakawa N. Synthesis of nucleoside units possessing photoreactive diazirine groups on the major and minor groove faces. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Saito-Tarashima N, Kira H, Wada T, Miki K, Ide S, Yamazaki N, Matsuda A, Minakawa N. Groove modification of siRNA duplexes to elucidate siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes. Org Biomol Chem 2018; 14:11096-11105. [PMID: 27714245 DOI: 10.1039/c6ob01866a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elucidation of dynamic interactions between RNA and proteins is essential for understanding the biological processes regulated by RNA, such as RNA interference (RNAi). In this study, the logical chemical probes, comprising 7-bromo-7-deazaadenosine (Br7C7A) and 3-bromo-3-deazaadenosine (Br3C3A), to investigate small interfering RNA (siRNA)-RNAi related protein interactions, were developed. The bromo substituents of Br7C7A and Br3C3A are expected to be located in the major and the minor grooves, respectively, and to act as a steric hindrance in each groove when these chemical probes are incorporated into siRNAs. A comprehensive investigation using siRNAs containing these chemical probes revealed that (i) Br3C3A(s) at the 5'-end of the passenger strand enhanced their RNAi activity, and (ii) the direction of RISC assembly is determined by the interaction between Argonaute2, which is the main component of RISC, and siRNA in the minor groove near the 5'-end of the passenger strand. Utilization of these chemical probes enables the investigation of the dynamic interactions between RNA and proteins.
Collapse
Affiliation(s)
- Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| | - Hirotaka Kira
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| | - Tomoya Wada
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| | - Kazuya Miki
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| | - Shiho Ide
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Naoshi Yamazaki
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| |
Collapse
|
3
|
Ma Y, Liu S, Wang Y, Zhao Y, Huang Y, Zhong L, Guan Z, Zhang L, Yang Z. Isonucleotide incorporation into middle and terminal siRNA duplexes exhibits high gene silencing efficacy and nuclease resistance. Org Biomol Chem 2018; 15:5161-5170. [PMID: 28585968 DOI: 10.1039/c7ob01065f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we introduced a pair of nucleotide enantiomers, d-/l-isonucleotides (d-/l-isoNA), to examine the interactions between siRNAs and their related proteins. The serum stability and gene-silencing activity of the modified siRNAs were systematically evaluated. Gene-silencing activity had a site-specific effect, and the incorporation of a single d-isoNA at the 8th position (counting from the 5'-terminus) in the antisense strand improved the gene-silencing activity by improving RISC loading and affecting the movement of the PIWI domain. d-isoNA incorporated at the terminus of siRNA including the 2nd position in the antisense strand and 3'-overhangs in the sense strand, especially the latter, enhanced nuclease resistance and prolonged the silencing retention time. In addition, l-isoNA incorporation into the middle of the sense strand enhanced activity. These results provide a chemical strategy for the modulation of siRNA gene-silencing activity and nuclease resistance.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. ACTA ACUST UNITED AC 2012; 19:937-54. [PMID: 22921062 DOI: 10.1016/j.chembiol.2012.07.011] [Citation(s) in RCA: 430] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023]
Abstract
Oligonucleotides (ONs), and their chemically modified mimics, are now routinely used in the laboratory as a means to control the expression of fundamentally interesting or therapeutically relevant genes. ONs are also under active investigation in the clinic, with many expressing cautious optimism that at least some ON-based therapies will succeed in the coming years. In this review, we will discuss several classes of ONs used for controlling gene expression, with an emphasis on antisense ONs (AONs), small interfering RNAs (siRNAs), and microRNA-targeting ONs (anti-miRNAs). This review provides a current and detailed account of ON chemical modification strategies for the optimization of biological activity and therapeutic application, while clarifying the biological pathways, chemical properties, benefits, and limitations of oligonucleotide analogs used in nucleic acids research.
Collapse
Affiliation(s)
- Glen F Deleavey
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada.
| | | |
Collapse
|
5
|
Ghanty U, Fostvedt E, Valenzuela R, Beal PA, Burrows CJ. Promiscuous 8-alkoxyadenosines in the guide strand of an siRNA: modulation of silencing efficacy and off-pathway protein binding. J Am Chem Soc 2012; 134:17643-52. [PMID: 23030736 DOI: 10.1021/ja307102g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
8-Alkoxyadenosines have the potential to exist in anti or syn conformations around the glycosidic bond when paired opposite to U or G in the complementary strands, thereby placing the sterically demanding 8-alkoxy groups in the major or minor groove, respectively, of duplex RNA. These modified bases were used as "base switches" in the guide strands of an siRNA to prevent off-pathway protein binding during delivery via placement of the alkoxy group in the minor groove, while maintaining significant RNAi efficacy by orienting the alkoxy group in the major groove. 8-Alkoxyadenosine phosphoramidites were synthesized and incorporated into the guide strand of caspase 2 siRNA at four different positions: two in the seed region, one at the cleavage junction, and another nearer to the 3'-end of the guide strand. Thermal stabilities of the corresponding siRNA duplexes showed that U is preferred over G as the base-pairing partner in the complementary strand. When compared to the unmodified positive control siRNAs, singly modified siRNAs knocked down the target mRNA efficiently and with little or no loss of efficacy. Doubly modified siRNAs were found to be less effective and lose their efficacy at low nanomolar concentrations. SiRNAs singly modified at positions 6 and 10 of the guide strand were found to be effective in blocking binding to the RNA-dependent protein kinase PKR, a cytoplasmic dsRNA-binding protein implicated in sequence-independent off-target effects.
Collapse
Affiliation(s)
- Uday Ghanty
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | | | |
Collapse
|
6
|
Hernández AR, Peterson LW, Kool ET. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases. ACS Chem Biol 2012; 7:1454-61. [PMID: 22646660 DOI: 10.1021/cb300174c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC), the key protein complex of RNA interference (RNAi), is of great importance to the development of siRNAs with improved biological and potentially therapeutic function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 Å using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to -5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3'-end increased activity over that of wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation.
Collapse
Affiliation(s)
- Armando R. Hernández
- Department
of Chemistry, Stanford University, Stanford,
California 94305, United States
| | - Larryn W. Peterson
- Department
of Chemistry, Stanford University, Stanford,
California 94305, United States
| | - Eric T. Kool
- Department
of Chemistry, Stanford University, Stanford,
California 94305, United States
| |
Collapse
|
7
|
Ibarra-Soza JM, Morris AA, Jayalath P, Peacock H, Conrad WE, Donald MB, Kurth MJ, Beal PA. 7-Substituted 8-aza-7-deazaadenosines for modification of the siRNA major groove. Org Biomol Chem 2012; 10:6491-7. [PMID: 22766576 DOI: 10.1039/c2ob25647a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we describe the synthesis of new 7-substituted 8-aza-7-deazaadenosine ribonucleoside phosphoramidites and their use in generating major groove-modified duplex RNAs. A 7-ethynyl analog leads to further structural diversification of the RNA via post-automated RNA synthesis azide-alkyne cycloaddition reactions. In addition, we report preliminary studies on the effects of eight different purine 7-position modifications on RNA duplex stability and pairing specificity. Finally, the effect on RNAi activity of this type of modification at eight different positions in an siRNA guide strand has been explored. Analogs were identified with large 7-position substituents that maintain adenosine pairing specificity and are well-tolerated at specific positions in an siRNA guide strand.
Collapse
Affiliation(s)
- José M Ibarra-Soza
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gore KR, Nawale GN, Harikrishna S, Chittoor VG, Pandey SK, Höbartner C, Patankar S, Pradeepkumar PI. Synthesis, gene silencing, and molecular modeling studies of 4'-C-aminomethyl-2'-O-methyl modified small interfering RNAs. J Org Chem 2012; 77:3233-45. [PMID: 22372696 DOI: 10.1021/jo202666m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The linear syntheses of 4'-C-aminomethyl-2'-O-methyl uridine and cytidine nucleoside phosphoramidites were achieved using glucose as the starting material. The modified RNA building blocks were incorporated into small interfering RNAs (siRNAs) by employing solid phase RNA synthesis. Thermal melting studies showed that the modified siRNA duplexes exhibited slightly lower T(m) (∼1 °C/modification) compared to the unmodified duplex. Molecular dynamics simulations revealed that the 4'-C-aminomethyl-2'-O-methyl modified nucleotides adopt South-type conformation in a siRNA duplex, thereby altering the stacking and hydrogen-bonding interactions. These modified siRNAs were also evaluated for their gene silencing efficiency in HeLa cells using a luciferase-based reporter assay. The results indicate that the modifications are well tolerated in various positions of the passenger strand and at the 3' end of the guide strand but are less tolerated in the seed region of the guide strand. The modified siRNAs exhibited prolonged stability in human serum compared to unmodified siRNA. This work has implications for the use of 4'-C-aminomethyl-2'-O-methyl modified nucleotides to overcome some of the challenges associated with the therapeutic utilities of siRNAs.
Collapse
Affiliation(s)
- Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The past several years have seen numerous reports of new chemical modifications for use in RNA. In addition, in that time period, we have seen the discovery of several previously unknown naturally occurring modifications that impart novel properties on the parent RNAs. In this review, we describe recent discoveries in these areas with a focus on RNA modifications that introduce spectroscopic tags, reactive handles, or new recognition properties.
Collapse
Affiliation(s)
- Kelly Phelps
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Alexi Morris
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Peter A. Beal
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
10
|
Peacock H, Kannan A, Beal PA, Burrows CJ. Chemical modification of siRNA bases to probe and enhance RNA interference. J Org Chem 2011; 76:7295-300. [PMID: 21834582 DOI: 10.1021/jo2012225] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Considerable attention has focused on the use of alternatives to the native ribose and phosphate backbone of small interfering RNAs for therapeutic applications of the RNA interference pathway. In this synopsis, we highlight the less common chemical modifications, namely, those of the RNA nucleobases. Base modifications have the potential to lend insight into the mechanism of gene silencing and to lead to novel methods to overcome off-target effects that arise due to deleterious protein binding or mis-targeting of mRNA.
Collapse
Affiliation(s)
- Hayden Peacock
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|