1
|
Paul S, Reyes-Morales J, Roy K, Dick JE. Anodic Electrodeposition of IrO x Nanoparticles from Aqueous Nanodroplets. ACS NANOSCIENCE AU 2024; 4:216-222. [PMID: 38912286 PMCID: PMC11191722 DOI: 10.1021/acsnanoscienceau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 06/25/2024]
Abstract
Electrodeposition has been used for centuries to create new materials. However, synthetic platforms are still necessary to enrich a variety of nanomaterials that can be electrodeposited. For instance, IrO x is a popular material for the water oxidation reaction, but electrodeposition strategies for the controlled growth of IrO x nanoparticles are lacking. Here, we demonstrate the anodic electrodeposition of IrO x nanoparticles from aqueous nanodroplets. Field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM) images confirm the macro- and microstructure of the resulting nanoparticles. IrO x nanoparticles of 43 ± 10 nm in diameter were achieved. X-ray photoelectron spectroscopy (XPS) showed the presence of Ir(III) and Ir(IV) hydrated oxyhydroxide species. The synthesis of IrO x nanoparticles under anodic conditions using water nanodroplets expands the capabilities of our technique and provides a tunable platform for IrO x nanoparticle electrodeposition.
Collapse
Affiliation(s)
- Saptarshi Paul
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joshua Reyes-Morales
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kingshuk Roy
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E. Dick
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore
Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
3
|
Chatterjee A, Mondal P, Chakraborty P, Kumar B, Mandal S, Rizzoli C, Saha R, Adhikary B, Dey SK. Strategic Synthesis of Heptacoordinated Fe III Bifunctional Complexes for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202307832. [PMID: 37477221 DOI: 10.1002/anie.202307832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
In this research, highly efficient heterogeneous bifunctional (BF) electrocatalysts (ECs) have been strategically designed by Fe coordination (CR ) complexes, [Fe2 L2 (H2 O)2 Cl2 ] (C1) and [Fe2 L2 (H2 O)2 (SO4 )].2(CH4 O) (C2) where the high seven CR number synergistically modifies the electronic environment of the Fe centre for facilitation of H2 O electrolysis. The electronic status of Fe and its adjacent atomic sites have been further modified by the replacement of -Cl- in C1 by -SO4 2- in C2. Interestingly, compared to C1, the O-S-O bridged C2 reveals superior BF activity with extremely low overpotential (η) at 10 mA cm-2 (140 mVOER , 62 mVHER ) and small Tafel slope (120.9 mV dec-1 OER , 45.8 mV dec-1 HER ). Additionally, C2 also facilitates a high-performance alkaline H2 O electrolyzer with cell voltage of 1.54 V at 10 mA cm-2 and exhibits remarkable long-term stability. Thus, exploration of the intrinsic properties of metal-organic framework (MOF)-based ECs opens up a new approach to the rational design of a wide range of molecular catalysts.
Collapse
Affiliation(s)
| | - Papri Mondal
- Department of Chemistry, Indian Institution of Engineering Science and Technology, 711103, Shibpur, Howrah, India
| | - Priyanka Chakraborty
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| | - Bidyapati Kumar
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| | - Sourav Mandal
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| | - Corrado Rizzoli
- Dipartimento S.C.V.S.A., Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, 713340, Asansol, WB, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institution of Engineering Science and Technology, 711103, Shibpur, Howrah, India
| | - Subrata K Dey
- Department of Chemistry, Sidho-Kanho-Birsha University, 723104, Purulia, WB, India
| |
Collapse
|
4
|
Zhang H, Liu T, Dulock N, Williams BP, Wang Y, Chen B, Wikar H, Wang DZ, Brudvig GW, Wang D, Waegele MM. Atomically dispersed Ir catalysts exhibit support-dependent water oxidation kinetics during photocatalysis. Chem Sci 2023; 14:6601-6607. [PMID: 37350819 PMCID: PMC10283500 DOI: 10.1039/d3sc00603d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Heterogeneous water oxidation catalysis is central to the development of renewable energy technologies. Recent research has suggested that the reaction mechanisms are sensitive to the hole density at the active sites. However, these previous results were obtained on catalysts of different materials featuring distinct active sites, making it difficult to discriminate between competing explanations. Here, a comparison study based on heterogenized dinuclear Ir catalysts (Ir-DHC), which feature the same type of active site on different supports, is reported. The prototypical reaction was water oxidation triggered by pulsed irradiation of suspensions containing a light sensitizer, Ru(bpy)32+, and a sacrificial electron scavenger, S2O82-. It was found that at relatively low temperatures (288-298 K), the water oxidation activities of Ir-DHC on indium tin oxide (ITO) and CeO2 supports were comparable within the studied range of fluences (62-151 mW cm-2). By contrast, at higher temperatures (310-323 K), Ir-DHC on ITO exhibited a ca. 100% higher water oxidation activity than on CeO2. The divergent activities were attributed to the distinct abilities of the supporting substrates in redistributing holes. The differences were only apparent at relatively high temperatures when hole redistribution to the active site became a limiting factor. These findings highlight the critical role of the supporting substrate in determining the turnover at active sites of heterogeneous catalysts.
Collapse
Affiliation(s)
- Hongna Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Tianying Liu
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Nicholas Dulock
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Benjamin P Williams
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Yuanxing Wang
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Boqiang Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Haden Wikar
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - David Z Wang
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Gary W Brudvig
- Department of Chemistry and Yale Energy Sciences Institute, Yale University New Haven Connecticut 06520-8107 USA
| | - Dunwei Wang
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| | - Matthias M Waegele
- Department of Chemistry, Boston College, Merkert Chemistry Center Chestnut Hill Massachusetts 02467 USA
| |
Collapse
|
5
|
Ali Akbari MS, Nandy S, Chae KH, Bikas R, Kozakiewicz-Piekarz A, Najafpour MM. Water Oxidation by a Copper(II) Complex with 6,6'-Dihydroxy-2,2'-Bipyridine Ligand: Challenges and an Alternative Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5542-5553. [PMID: 37029750 DOI: 10.1021/acs.langmuir.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, copper(II) complexes have been extensively investigated as oxygen-evolution reaction (OER) catalysts through a water-oxidation reaction. Herein, new findings regarding OER in the presence of a Cu(II) complex with 6,6'-dihydroxy-2,2'-bipyridine ligand are reported. Using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectroscopy, in situ visible microscopy, in situ visible spectroelectrochemistry, X-ray absorption spectroscopy, and electrochemistry, it is hypothesized that the film formed on the electrode's surface in the presence of this complex causes an appropriated matrix to produce Cu (hydr)oxide. The resulting Cu (hydr)oxide could be a candidate for OER catalysis. The formed film could form Cu (hydr)oxide and stabilize it. Thus, OER activity increases in the presence of this complex.
Collapse
Affiliation(s)
- Mohammad Saleh Ali Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
6
|
Fan W, Duan Z, Liu W, Mehmood R, Qu J, Cao Y, Guo X, Zhong J, Zhang F. Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat Commun 2023; 14:1426. [PMID: 36918545 PMCID: PMC10014850 DOI: 10.1038/s41467-023-37066-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Single-atom catalysts supported on solid substrates have inspired extensive interest, but the rational design of high-efficiency single-atom catalysts is still plagued by ambiguous structure determination of active sites and its local support effect. Here, we report hybrid single-atom catalysts by an axial coordination linkage of molecular cobalt phthalocyanine with carbon nanotubes for selective oxygen reduction reaction by screening from a series of metal phthalocyanines via preferential density-functional theory calculations. Different from conventional heterogeneous single-atom catalysts, the hybrid single-atom catalysts are proven to facilitate rational screening of target catalysts as well as understanding of its underlying oxygen reduction reaction mechanism due to its well-defined active site structure and clear coordination linkage in the hybrid single-atom catalysts. Consequently, the optimized Co hybrid single-atom catalysts exhibit improved 2e- oxygen reduction reaction performance compared to the corresponding homogeneous molecular catalyst in terms of activity and selectivity. When prepared as an air cathode in an air-breathing flow cell device, the optimized hybrid catalysts enable the oxygen reduction reaction at 300 mA cm-2 exhibiting a stable Faradaic efficiency exceeding 90% for 25 h.
Collapse
Affiliation(s)
- Wenjun Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi'an, P. R. China.
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Rashid Mehmood
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiating Qu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yucheng Cao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| |
Collapse
|
7
|
Vereshchuk N, Gil-Sepulcre M, Ghaderian A, Holub J, Gimbert-Suriñach C, Llobet A. Metamorphic oxygen-evolving molecular Ru and Ir catalysts. Chem Soc Rev 2023; 52:196-211. [PMID: 36459110 DOI: 10.1039/d2cs00463a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Today sustainable and clean energy conversion strategies are based on sunlight and the use of water as a source of protons and electrons, in a similar manner as it happens in Photosystem II. To achieve this, the charge separation state induced by light has to be capable of oxidising water by 4 protons and 4 electrons and generating molecular oxygen. This oxidation occurs by the intermediacy of a catalyst capable of finding low-energy pathways via proton-coupled electron transfer steps. The high energy involved in the thermodynamics of water oxidation reaction, coupled with its mechanistic complexity, is responsible for the difficulty of discovering efficient and oxidatively robust molecules capable of achieving such a challenging task. A significant number of Ru coordination complexes have been identified as water oxidation catalysts (WOCs) and are among the best understood from a mechanistic perspective. In this review, we describe the catalytic performance of these complexes and focus our attention on the factors that influence their performance during catalysis, especially in cases where a detailed mechanistic investigation has been carried out. The collective information extracted from all the catalysts studied allows one to identify the key features that govern the complex chemistry associated with the catalytic water oxidation reaction. This includes the stability of trans-O-Ru-O groups, the change in coordination number from CN6 to CN7 at Ru high oxidation states, the ligand flexibility, the capacity to undergo intramolecular proton transfer, the bond strain, the axial ligand substitution, and supramolecular effects. Overall, combining all this information generates a coherent view of this complex chemistry.
Collapse
Affiliation(s)
- Nataliia Vereshchuk
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain. .,Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain.
| | - Abolfazl Ghaderian
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain. .,Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Jan Holub
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain. .,Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, CZ-16628 Prague, Czech Republic
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain. .,Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain. .,Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Kim M, Yi J, Park SH, Park SS. Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203791. [PMID: 35853171 DOI: 10.1002/adma.202203791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical conversion of small molecules, such as CO2 , O2 , and H2 O, has received significant attention as a potential engine for sustainable life. Metal-organic frameworks (MOFs) are a promising class of electrocatalytic materials for such processes. An attractive aspect of utilizing this class of materials as electrocatalysts is that well-known molecular active sites can be introduced to well-defined crystalline heterogeneous catalytic systems with high tunability. This review offers strategic insights into recent studies on MOF-based electrocatalysts by discussing the notable active sites that have been utilized in both homogeneous and heterogeneous catalysts, while highlighting instances where such active sites have been introduced into MOFs. In addition, material design principles enabling the integration of electrochemically active components with the MOF platform are outlined. Viewpoints on the viability of MOFs as an alternative to currently used electrocatalysts are also discussed. Finally, the future direction of MOF-based electrocatalysis research is established.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Yi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seong-Hyeon Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sarah S Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
9
|
Biomimetic Catalysts Based on Au@TiO 2-MoS 2-CeO 2 Composites for the Production of Hydrogen by Water Splitting. Int J Mol Sci 2022; 24:ijms24010363. [PMID: 36613813 PMCID: PMC9820641 DOI: 10.3390/ijms24010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The photocatalytic hydrogen evolution reaction (HER) by water splitting has been studied, using catalysts based on crystalline TiO2 nanowires (TiO2NWs), which were synthesized by a hydrothermal procedure. This nanomaterial was subsequently modified by incorporating different loadings (1%, 3% and 5%) of gold nanoparticles (AuNPs) on the surface, previously exfoliated MoS2 nanosheets, and CeO2 nanoparticles (CeO2NPs). These nanomaterials, as well as the different synthesized catalysts, were characterized by electron microscopy (HR-SEM and HR-TEM), XPS, XRD, Raman, Reflectance and BET surface area. HER studies were performed in aqueous solution, under irradiation at different wavelengths (UV-visible), which were selected through the appropriate use of optical filters. The results obtained show that there is a synergistic effect between the different nanomaterials of the catalysts. The specific area of the catalyst, and especially the increased loading of MoS2 and CeO2NPs in the catalyst substantially improved the H2 production, with values of ca. 1114 μm/hg for the catalyst that had the best efficiency. Recyclability studies showed only a decrease in activity of approx. 7% after 15 cycles of use, possibly due to partial leaching of gold nanoparticles during catalyst use cycles. The results obtained in this research are certainly relevant and open many possibilities regarding the potential use and scaling of these heterostructures in the photocatalytic production of H2 from water.
Collapse
|
10
|
Lovrić M. Dimensionless rate constant of homogeneous electrocatalysis on the rotating disk electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Mousazade Y, Nandy S, Bikas R, Aleshkevych P, Chae KH, Siczek M, Lis T, Allakhverdiev SI, Najafpour MM. A copper(II) coordination compound under water-oxidation reaction at neutral conditions: decomposition on the counter electrode. Dalton Trans 2022; 51:12170-12180. [PMID: 35876690 DOI: 10.1039/d2dt01572b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of energy storage, the oxygen-evolution reaction (OER, 2H2O → O2 + 4H+ + 4e-) through the water-oxidation reaction is a thermodynamically uphill reaction in overall water splitting. In recent years, copper(II) coordination compounds have been extensively used for the OER. However, challenges remain in finding the mechanism of the OER in the presence of these metal coordination compounds. Herein, the electrochemical OER activity is investigated in the presence of a copper(II) coordination compound at pH ≈ 7. While the investigations on finding true catalysts for the OER are focused on the working electrode, herein, for the first time, the focus is on the decomposition of copper(II) coordination compound (CuL3, L: 2,2'-bipyridine N,N'-dioxide) during the OER on the counter electrode toward the precipitation of copper(I) oxide and metallic Cu.
Collapse
Affiliation(s)
- Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw, 02-668, Poland
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Milosz Siczek
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Suleyman I Allakhverdiev
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia.
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
12
|
Boer DD, Siberie Q, Siegler MA, Ferber TH, Moritz DC, Hofmann JP, Hetterscheid DGH. On the Homogeneity of a Cobalt-Based Water Oxidation Catalyst. ACS Catal 2022; 12:4597-4607. [PMID: 35465245 PMCID: PMC9016703 DOI: 10.1021/acscatal.2c01299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Indexed: 01/01/2023]
Abstract
![]()
The homogeneity of
molecular Co-based water oxidation catalysts
(WOCs) has been a subject of debate over the last 10 years as assumed
various homogeneous Co-based WOCs were found to actually form CoOx under operating conditions. The homogeneity
of the Co(HL) (HL = N,N-bis(2,2′-bipyrid-6-yl)amine) system was investigated
with cyclic voltammetry, electrochemical quartz crystal microbalance,
and X-ray photoelectron spectroscopy. The obtained experimental results
were compared with heterogeneous CoOx.
Although it is shown that Co(HL) interacts with the electrode
during electrocatalysis, the formation of CoOx was not observed. Instead, a molecular deposit of Co(HL) was found to be formed on the electrode surface. This study
shows that deposition of catalytic material is not necessarily linked
to the decomposition of homogeneous cobalt-based water oxidation catalysts.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, RA, Leiden 2300, The Netherlands
| | - Quentin Siberie
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, RA, Leiden 2300, The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore 21218 Maryland, United States
| | - Thimo H. Ferber
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Dominik C. Moritz
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Jan P. Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | | |
Collapse
|
13
|
|
14
|
Troiano JL, Crabtree RH, Brudvig GW. Optimization of Surface Loading of the Silatrane Anchoring Group on TiO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6582-6589. [PMID: 35076223 DOI: 10.1021/acsami.1c20678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anchoring groups are usually needed for the attachment of small molecules to metal oxide surfaces such as in water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs). Here, we optimize the surface loading onto titanium dioxide surfaces of the silatrane anchoring group, a triethanolamine-protected trialkoxysilane. This anchoring group is not yet widely used because prior protocols afforded low surface coverage, but it has the advantage of high stability over a wide pH range and at both oxidizing and reducing potentials when bound. A new and improved method for estimating surface coverage is described here and used to determine that loading using previously reported binding protocols is very low. However, we were able to uncover several factors contributing to this low loading, which has allowed us to develop methods to greatly improve surface coverage for a variety of silatranes. Most notably, we were able to increase the loading of a model arylsilatrane by 145% through use of a benzoic acid additive. This is not general acid catalysis because alkylsilatranes are not similarly affected and 4-t-butylbenzoic acid, having a similar pKa to benzoic acid, is not effective. Because the bulky t-butyl group of the latter additive is not expected to pi-stack with our arylsilatrane, we have tentatively assigned this enhancement to aromatic stacking between the aromatic additive and the arylsilatrane.
Collapse
Affiliation(s)
- Jennifer L Troiano
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| |
Collapse
|
15
|
Nikoloudakis E, Alsaleh AZ, Charalambidis G, Coutsolelos AG, D'Souza F. A covalently linked nickel( ii) porphyrin–ruthenium( ii) tris(bipyridyl) dyad for efficient photocatalytic water oxidation. Chem Commun (Camb) 2022; 58:12078-12081. [DOI: 10.1039/d2cc03563d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-induced oxidation of water to dioxygen, catalyzed by a newly synthesized dyad consisting of a ruthenium tris(bipyridyl), [Ru(bpy)3]2+ as a photosensitizer, and a nickel porphyrin, NiP as a cheaper water oxidation catalyst is reported.
Collapse
Affiliation(s)
- Emmanouil Nikoloudakis
- Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology – Hellas (FORTH), Voutes Campus, Heraklion 70013, Crete, Greece
| | - Ajyal Z. Alsaleh
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Georgios Charalambidis
- Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology – Hellas (FORTH), Voutes Campus, Heraklion 70013, Crete, Greece
| | - Athanassios G. Coutsolelos
- Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology – Hellas (FORTH), Voutes Campus, Heraklion 70013, Crete, Greece
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
16
|
Liu C, Geer AM, Webber C, Musgrave CB, Gu S, Johnson G, Dickie DA, Chabbra S, Schnegg A, Zhou H, Sun CJ, Hwang S, Goddard WA, Zhang S, Gunnoe TB. Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ana M. Geer
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Christopher Webber
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Grayson Johnson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
17
|
Hu G, Crabtree RH, Brudvig GW. Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Hu G, Troiano JL, Tayvah UT, Sharninghausen LS, Sinha SB, Shopov DY, Mercado BQ, Crabtree RH, Brudvig GW. Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorg Chem 2021; 60:14349-14356. [PMID: 34478282 DOI: 10.1021/acs.inorgchem.1c02025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One ongoing challenge in the field of iridium-based water oxidation catalysts is to develop a molecular precatalyst affording well-defined homogeneous active species for catalysis. Our previous work by using organometallic precatalysts Cp*Ir(pyalk)OH and Ir(pyalk)(CO)2 (pyalk = (2-pyridyl)-2-propanolate) suggested a μ-oxo-bridged Ir dimer as the probable resting state, although the structure of the active species remained elusive. During the activation, the ligands Cp* and CO were found to oxidatively degrade into acetic acid or other products, which coordinate to Ir centers and affect the catalytic reaction. Two related dimers bearing two pyalk ligands on each iridium were crystallized for structural analysis. However, preliminary results indicated that these crystallographically characterized dimers are not active catalysts. In this work, we accessed a mixture of dinuclear iridium species from a coordination precursor, Na[Ir(pyalk)Cl4], and assayed their catalytic activity for oxygen evolution by using NaIO4 as the oxidant. This catalyst showed comparable oxygen-evolution activity to the ones previously reported from organometallic precursors without demanding oxidative activation to remove sacrificial ligands. Future research along this direction is expected to provide insights and design principles toward a well-defined active species.
Collapse
Affiliation(s)
- Gongfang Hu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Jennifer L Troiano
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Uriel T Tayvah
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Liam S Sharninghausen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Shashi Bhushan Sinha
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Dimitar Y Shopov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, 520 West Campus Drive, West Haven, Connecticut 06516, United States
| |
Collapse
|
19
|
Geer AM, Liu C, Musgrave CB, Webber C, Johnson G, Zhou H, Sun CJ, Dickie DA, Goddard WA, Zhang S, Gunnoe TB. Noncovalent Immobilization of Pentamethylcyclopentadienyl Iridium Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ana M. Geer
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Chang Liu
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Charles B. Musgrave
- Materials and Process Simulation Center Department of Chemistry California Institute of Technology Pasadena CA 91125 USA
| | - Christopher Webber
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Grayson Johnson
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Hua Zhou
- Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Cheng-Jun Sun
- Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - William A. Goddard
- Materials and Process Simulation Center Department of Chemistry California Institute of Technology Pasadena CA 91125 USA
| | - Sen Zhang
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - T. Brent Gunnoe
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
20
|
Synthesis, X-ray structure, Hirshfeld analysis and DFT studies of Ni(II) complexes with pyridine-type ligands and monoanionic (SCN¯, N3¯ and NO3¯) ligands. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Ishaq MW, Nawaz R, Jalil A, Hashmi MA, Zheng T, Li L. Ligand Exchange Reaction in [Co4O4]-Cobalt Cubane: A Versatile Strategy Towards the Preparation of Cobalt Cubane-based Functional Small Molecules and Polymeric Materials. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Chao HJ, Lin ZS, Singuru MMR, Chuang MC. Sustainable oxygen-evolving electrode via in situ regenerative deposition of hexahydroxyiridate (IV)-adsorbed IrOx nanoparticles. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Priyadarsini A, Mallik BS. Comparative first principles-based molecular dynamics study of catalytic mechanism and reaction energetics of water oxidation reaction on 2D-surface. J Comput Chem 2021; 42:1138-1149. [PMID: 33851446 DOI: 10.1002/jcc.26528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023]
Abstract
The study of the water-splitting process, which can proceed in 2e- as well as 4e- pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e- transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol-1 , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
24
|
One-Dimensional (1D) Nanostructured Materials for Energy Applications. MATERIALS 2021; 14:ma14102609. [PMID: 34067754 PMCID: PMC8156553 DOI: 10.3390/ma14102609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/12/2023]
Abstract
At present, the world is at the peak of production of traditional fossil fuels. Much of the resources that humanity has been consuming (oil, coal, and natural gas) are coming to an end. The human being faces a future that must necessarily go through a paradigm shift, which includes a progressive movement towards increasingly less polluting and energetically viable resources. In this sense, nanotechnology has a transcendental role in this change. For decades, new materials capable of being used in energy processes have been synthesized, which undoubtedly will be the cornerstone of the future development of the planet. In this review, we report on the current progress in the synthesis and use of one-dimensional (1D) nanostructured materials (specifically nanowires, nanofibers, nanotubes, and nanorods), with compositions based on oxides, nitrides, or metals, for applications related to energy. Due to its extraordinary surface-volume relationship, tunable thermal and transport properties, and its high surface area, these 1D nanostructures have become fundamental elements for the development of energy processes. The most relevant 1D nanomaterials, their different synthesis procedures, and useful methods for assembling 1D nanostructures in functional devices will be presented. Applications in relevant topics such as optoelectronic and photochemical devices, hydrogen production, or energy storage, among others, will be discussed. The present review concludes with a forecast on the directions towards which future research could be directed on this class of nanostructured materials.
Collapse
|
25
|
D’Agostini S, Kottrup KG, Casadevall C, Gamba I, Dantignana V, Bucci A, Costas M, Lloret-Fillol J, Hetterscheid DG. Electrocatalytic Water Oxidation with α-[Fe(mcp)(OTf) 2] and Analogues. ACS Catal 2021; 11:2583-2595. [PMID: 33815893 PMCID: PMC8016111 DOI: 10.1021/acscatal.0c05439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Indexed: 12/02/2022]
Abstract
![]()
The complex α-[Fe(mcp)(OTf)2] (mcp = N,N′-dimethyl-N,N′-bis(pyridin-2-ylmethyl)-cyclohexane-1,2-diamine
and OTf
= trifluoromethanesulfonate anion) was reported in 2011 by some of
us as an active water oxidation (WO) catalyst in the presence of sacrificial
oxidants. However, because chemical oxidants are likely to take part
in the reaction mechanism, mechanistic electrochemical studies are
critical in establishing to what extent previous studies with sacrificial
reagents have actually been meaningful. In this study, the complex
α-[Fe(mcp)(OTf)2] and its analogues were investigated
electrochemically under both acidic and neutral conditions. All the
systems under investigation proved to be electrochemically active
toward the WO reaction, with no major differences in activity despite
the structural changes. Our findings show that WO-catalyzed by mcp–iron
complexes proceeds via homogeneous species, whereas the analogous
manganese complex forms a heterogeneous deposit on the electrode surface.
Mechanistic studies show that the reaction proceeds with a different
rate-determining step (rds) than what was previously proposed in the
presence of chemical oxidants. Moreover, the different kinetic isotope
effect (KIE) values obtained electrochemically at pH 7 (KIE ∼
10) and at pH 1 (KIE = 1) show that the reaction conditions have a
remarkable effect on the rds and on the mechanism. We suggest a proton-coupled
electron transfer (PCET) as the rds under neutral conditions, whereas
at pH 1 the rds is most likely an electron transfer (ET).
Collapse
Affiliation(s)
- Silvia D’Agostini
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | - Carla Casadevall
- Institute of Chemical Research of Catalonia, Spain (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Alberto Bucci
- Institute of Chemical Research of Catalonia, Spain (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia, Spain (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | | |
Collapse
|
26
|
Abstract
In neutral medium (pH 7.0) [RuIIIRuII(µ-CO3)4(OH)]4− undergoes one electron oxidation to form [RuIIIRuIII(µ-CO3)4(OH)2]4− at an E1/2 of 0.85 V vs. NHE followed by electro-catalytic water oxidation at a potential ≥1.5 V. When the same electrochemical measurements are performed in bicarbonate medium (pH 8.3), the complex first undergoes one electron oxidation at an Epa of 0.86 V to form [RuIIIRuIII(µ-CO3)4(OH)2]4−. This complex further undergoes two step one electron oxidations to form RuIVRuIII and RuIVRuIV species at potentials (Epa) 1.18 and 1.35 V, respectively. The RuIVRuIII and RuIVRuIV species in bicarbonate solutions are [RuIVRuIII(µ-CO3)4(OH)(CO3)]4− and [RuIVRuIV(µ-CO3)4(O)(CO3)]4− based on density functional theory (DFT) calculations. The formation of HCO4− in the course of the oxidation has been demonstrated by DFT. The catalyst acts as homogeneous water oxidation catalyst, and after long term chronoamperometry, the absorption spectra does not change significantly. Each step has been found to follow a proton coupled electron transfer process (PCET) as obtained from the pH dependent studies. The catalytic current is found to follow linear relation with the concentration of the catalyst and bicarbonate. Thus, bicarbonate is involved in the catalytic process that is also evident from the generation of higher oxidation peaks in cyclic voltammetry. The detailed mechanism has been derived by DFT. A catalyst with no organic ligands has the advantage of long-time stability.
Collapse
|
27
|
Dobereiner GE, Hazari N, Schley ND. Pioneers and Influencers in Organometallic Chemistry: Professor Robert Crabtree’s Storied Career via an Unusual Journey to the Ivy League. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Graham E. Dobereiner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, Unites States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
28
|
Gatto G, De Palo A, Carrasco AC, Pizarro AM, Zacchini S, Pampaloni G, Marchetti F, Macchioni A. Modulating the water oxidation catalytic activity of iridium complexes by functionalizing the Cp*-ancillary ligand: hints on the nature of the active species. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02306j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comparative study on the behavior of a series of iridium dimeric WOCs with modified Cp* ligands reveals the key role played by the variable substituent.
Collapse
Affiliation(s)
- Giordano Gatto
- Department of Chemistry, Biology and Biotechnology and CIRCC
- University of Perugia
- 06123 Perugia
- Italy
| | - Alice De Palo
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | | | | | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- 40136 Bologna
- Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale University of Pisa
- 56124 Pisa
- Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
29
|
Wu Y, Hu G, Rooney CL, Brudvig GW, Wang H. Heterogeneous Nature of Electrocatalytic CO/CO 2 Reduction by Cobalt Phthalocyanines. CHEMSUSCHEM 2020; 13:6296-6299. [PMID: 32668072 DOI: 10.1002/cssc.202001396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Molecular catalysts for electrochemical CO2 reduction have traditionally been studied in their dissolved states. However, the heterogenization of molecular catalysts has the potential to deliver much higher reaction rates and enable the reduction of CO2 by more than two electrons. In light of the recently discovered reactivity of heterogenized cobalt phthalocyanine molecules to catalyze CO2 reduction into methanol, direct comparison is needed to uncover the distinct catalytic activity and selectivity in homogeneous catalysis versus heterogeneous catalysis. Herein, soluble cobalt phthalocyanine derivatives were synthesized, and their catalytic activities in the homogeneous solutions were evaluated. The results show that the observed catalytic activities for both CO2 -to-CO and CO-to-methanol conversions in aqueous solutions of the cobalt phthalocyanines are predominantly heterogeneous in nature through the adsorbed species on the electrode.
Collapse
Affiliation(s)
- Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
- Energy Sciences Institute, Yale University, West Haven, Connecticut, 06516, USA
| | - Gongfang Hu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
- Energy Sciences Institute, Yale University, West Haven, Connecticut, 06516, USA
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
- Energy Sciences Institute, Yale University, West Haven, Connecticut, 06516, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
- Energy Sciences Institute, Yale University, West Haven, Connecticut, 06516, USA
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
- Energy Sciences Institute, Yale University, West Haven, Connecticut, 06516, USA
| |
Collapse
|
30
|
Wang CL, Liu WX, Zhan SZ. A cobalt complex of bis(methylthioether)pyridine, a new catalyst for hydrogen evolution. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Dong Y, Han Q, Ma K, Song F, Zheng S, Ding Y. Study two kind different catalytic behaviors for K4H1.2[Co0.6(H2O)0.6SiW11.4O39.4]-cocatalyzed visible light driven water oxidation in pH 1–7 media. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Hessels J, Yu F, Detz RJ, Reek JNH. Potential- and Buffer-Dependent Catalyst Decomposition during Nickel-Based Water Oxidation Catalysis. CHEMSUSCHEM 2020; 13:5625-5631. [PMID: 32959962 PMCID: PMC7702101 DOI: 10.1002/cssc.202001428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The production of hydrogen by water electrolysis benefits from the development of water oxidation catalysts. This development process can be aided by the postulation of design rules for catalytic systems. The analysis of the reactivity of molecular complexes can be complicated by their decomposition under catalytic conditions into nanoparticles that may also be active. Such a misinterpretation can lead to incorrect design rules. In this study, the nickel-based water oxidation catalyst [NiII (meso-L)](ClO4 )2 , which was previously thought to operate as a molecular catalyst, is found to decompose to form a NiOx layer in a pH 7.0 phosphate buffer under prolonged catalytic conditions, as indicated by controlled potential electrolysis, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy measurements. Interestingly, the formed NiOx layer desorbs from the surface of the electrode under less anodic potentials. Therefore, no nickel species can be detected on the electrode after electrolysis. Catalyst decomposition is strongly dependent on the pH and buffer, as there is no indication of NiOx layer formation at pH 6.5 in phosphate buffer nor in a pH 7.0 acetate buffer. Under these conditions, the activity stems from a molecular species, but currents are much lower. This study demonstrates the importance of in situ characterization methods for catalyst decomposition and metal oxide layer formation, and previously proposed design elements for nickel-based catalysts need to be revised.
Collapse
Affiliation(s)
- Joeri Hessels
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Fengshou Yu
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Remko J. Detz
- TNO Energy Transition, Energy Transition StudiesRadarweg 601043 NTAmsterdam (TheNetherlands
| | - Joost N. H. Reek
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
33
|
Denizaltı S, Dayan S, Günnaz S, Şahin E. Thiazoline‐Iridium (III) Complexes and Immobilized Nanomaterials as Selective Catalysts in
N
‐Alkylation of Amines with Alcohols. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Serpil Denizaltı
- Department of Chemistry Ege University Bornova‐İzmir 35100 Turkey
| | - Serkan Dayan
- Drug Application and Research Center Erciyes University Kayseri 38280 Turkey
| | - Salih Günnaz
- Department of Chemistry Ege University Bornova‐İzmir 35100 Turkey
| | - Ertan Şahin
- Department of Chemistry Atatürk University Erzurum 25400 Turkey
| |
Collapse
|
34
|
Mazloomi Z, Margalef J, Gil-Sepulcre M, Romero N, Albrecht M, Llobet A, Sala X, Pàmies O, Diéguez M. Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. Inorg Chem 2020; 59:12337-12347. [PMID: 32813508 DOI: 10.1021/acs.inorgchem.0c01439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the effect of replacing the pyridine group in the chelating trz Ir-water oxidation catalysts by a benzoxazole and a thiazole moiety. We have also evaluated if the presence of bidentate ligands is crucial for high activities and to avoid the decomposition into undesired heterogeneous layers. The catalytic performance of these benzoxazole/thiazole-triazolidene Ir-complexes in water oxidation was studied at variable pH using either CAN (pH = 1) or NaIO4 (pH = 5.6 and 7). Electrocatalytic experiments indicated that while CAN-mediated water oxidation led to catalyst heterogeneization irrespective of the triazolylidene substituent, periodate as sacrificial oxidant preserved a homogeneously active species. Repetitive additions of sacrificial oxidant indicates higher integrity of the Ir-complex with a thiazole-substituted triazolylidene compared to ligands featuring a benzoxazole as chelating donor or no chelating group at all. Rigid chelation of the thiazole group was also established from stability measurements under highly acidic, oxidizing, and high ionic strength conditions.
Collapse
Affiliation(s)
- Zahra Mazloomi
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jessica Margalef
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Marcos Gil-Sepulcre
- Departament de Quı́mica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Nuria Romero
- Departament de Quı́mica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Martin Albrecht
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Xavier Sala
- Departament de Quı́mica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Oscar Pàmies
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Montserrat Diéguez
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
35
|
van Dijk B, Rodriguez GM, Wu L, Hofmann JP, Macchioni A, Hetterscheid DGH. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation. ACS Catal 2020; 10:4398-4410. [PMID: 32280560 PMCID: PMC7137537 DOI: 10.1021/acscatal.0c00531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Indexed: 12/31/2022]
Abstract
![]()
Electrochemical
water oxidation is the bottleneck of electrolyzers
as even the best catalysts, iridium and ruthenium oxides, have to
operate at significant overpotentials. Previously, the position of
a hydroxyl on a series of hydroxylpicolinate ligands was found to
significantly influence the activity of molecular iridium catalysts
in sacrificial oxidant driven water oxidation. In this study, these
catalysts were tested under electrochemical conditions and benchmarked
to several other known molecular iridium catalysts under the exact
same conditions. This allowed us to compare these catalysts directly
and observe whether structure–activity relationships would
prevail under electrochemical conditions. Using both electrochemical
quartz crystal microbalance experiments and X-ray photoelectron spectroscopy,
we found that all studied iridium complexes form an iridium deposit
on the electrode with binding energies ranging from 62.4 to 62.7 eV
for the major Ir 4f7/2 species. These do not match the
binding energies found for the parent complexes, which have a broader
binding energy range from 61.7 to 62.7 eV and show a clear relationship
to the electronegativity induced by the ligands. Moreover, all catalysts
performed the electrochemical water oxidation in the same order of
magnitude as the maximum currents ranged from 0.2 to 0.6 mA cm–2 once more without clear structure–activity
relationships. In addition, by employing 1H NMR spectroscopy
we found evidence for Cp* breakdown products such as acetate. Electrodeposited
iridium oxide from ligand free [Ir(OH)6]2– or a colloidal iridium oxide nanoparticles solution produces currents
almost 2 orders of magnitude higher with a maximum current of 11 mA
cm–2. Also, this deposited material contains, apart
from an Ir 4f7/2 species at 62.4 eV, an Ir species at 63.6
eV, which is not observed for any deposit formed by the molecular
complexes. Thus, the electrodeposited material of the complexes cannot
be directly linked to bulk iridium oxide. Small IrOx clusters
containing few Ir atoms with partially incorporated ligand residues
are the most likely option for the catalytically active electrodeposit.
Our results emphasize that structure–activity relationships
obtained with sacrificial oxidants do not necessarily translate to
electrochemical conditions. Furthermore, other factors, such as electrodeposition
and catalyst degradation, play a major role in the electrochemically
driven water oxidation and should thus be considered when optimizing
molecular catalysts.
Collapse
Affiliation(s)
- Bas van Dijk
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Gabriel Menendez Rodriguez
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Longfei Wu
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan P. Hofmann
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | |
Collapse
|
36
|
Olivares M, van der Ham CJM, Mdluli V, Schmidtendorf M, Müller‐Bunz H, Verhoeven TWGM, Li M, Niemantsverdriet JW(H, Hetterscheid DGH, Bernhard S, Albrecht M. Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for Catalytic Water Oxidation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marta Olivares
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3, CH ‐3012 Bern Switzerland
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | | | - Velabo Mdluli
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | | | - Helge Müller‐Bunz
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | - Tiny W. G. M. Verhoeven
- Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Mo Li
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | | | | | - Stefan Bernhard
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | - Martin Albrecht
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3, CH ‐3012 Bern Switzerland
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
37
|
Sconyers DJ, Blakemore JD. Electrodeposition behavior of homoleptic transition metal acetonitrile complexes interrogated with piezoelectric gravimetry. Analyst 2020; 145:466-477. [PMID: 31750451 DOI: 10.1039/c9an01952a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homoleptic acetonitrile complexes of first-row transition metal ions are a common product of the detrimental speciation of coordination complexes and organometallic compounds. However, the electrochemical properties of such species are mostly unknown, introducing ambiguities into interpretation of electroanalytical data associated with studies of molecular electrocatalysis. Here, we have cataloged the cyclic voltammetric properties of the solvento complexes of Mn(ii), Fe(ii), Co(ii), Ni(ii), Cu(i), and Zn(ii) in acetonitrile electrolyte, providing information on the cathodic electrodeposition and anodic stripping processes occuring with each ion. The electrochemical quartz crystal microbalance (EQCM) has been used to quantify these processes, as well as the rates of the in situ corrosion of electrodeposited materials by the strong organic acid dimethylforamidinium, [DMFH]+. Ex situ X-ray photoelectron spectroscopic results confirm the interpretations of the voltammetric and gravimetric data, and confirm the periodic relationship between the metals. Taken together, the results described here provide an electrochemical roadmap useful in distinguishing currents arising from homogeneous electrocatalysis from currents associated with the redox cycling of secondary heterogeneous materials.
Collapse
Affiliation(s)
- David J Sconyers
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
38
|
Younus HA, Ahmad N, Yildiz I, Zhuiykov S, Zhang S, Verpoort F. Ligand photodissociation in Ru(ii)–1,4,7-triazacyclononane complexes enhances water oxidation and enables electrochemical generation of surface active species. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02575h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ligand transformations involved in metal complexes during water oxidation (WO), such as ligand decomposition, partial oxidation, or complete dissociation have been reported, however, ligand photodissociation has not been reported yet.
Collapse
Affiliation(s)
- Hussein A. Younus
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
| | - Nazir Ahmad
- Department of Chemistry
- G. C. University Lahore
- Pakistan
| | - Ibrahim Yildiz
- College of Arts and Sciences
- Khalifa University of Science and Technology
- Abu Dhabi 127788
- United Arab Emirates
| | - Serge Zhuiykov
- Ghent University Global Campus
- Incheon 406-840
- South Korea
| | - Shiguo Zhang
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Ghent University Global Campus
| |
Collapse
|
39
|
Lee KJ, Gruninger CT, Lodaya KM, Qadeer S, Griffith BE, Dempsey JL. Analysis of multi-electron, multi-step homogeneous catalysis by rotating disc electrode voltammetry: theory, application, and obstacles. Analyst 2020; 145:1258-1278. [PMID: 31984999 DOI: 10.1039/c9an02192b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rotating disc electrode (RDE) voltammetry has been widely adopted for the study of heterogenized molecular electrocatalysts for multi-step fuel-forming reactions but this tool has never been comprehensively applied to their homogeneous analogues. Here, the utility and limitations of RDE techniques for mechanistic and kinetic analysis of homogeneous molecular catalysts that mediate multi-electron, multi-substrate redox transformations are explored. Using the ECEC' reaction mechanism as a case study, two theoretical models are derived based on the Nernst diffusion layer model and the Hale transformation. Current-potential curves generated by these computational strategies are compared under a variety of limiting conditions to identify conditions under which the more minimalist Nernst Diffusion Layer approach can be applied. Based on this theoretical treatment, strategies for extracting kinetic information from the plateau current and the foot of the catalytic wave are derived. RDEV is applied to a cobaloxime hydrogen evolution reaction (HER) catalyst under non-aqueous conditions in order to experimentally validate this theoretical framework and explore the feasibility of RDE as a tool for studying homogeneous catalysts. Crucially, analysis of the foot-of-the-wave via this theoretical framework provides rate constants for elementary reaction steps that agree with those extracted from stationary voltammetric methods, supporting the application of RDE to study homogeneous fuel-forming catalysts. Finally, obstacles encountered during the kinetic analysis of cobaloxime, along with the voltammetric signatures used to diagnose this reactivity, are discussed with the goal of guiding groups working to improve RDE set-ups and help researchers avoid misinterpretation of RDE data.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 27599.
| | | | | | | | | | | |
Collapse
|
40
|
Sarvi B, Hosseini SM, Deljoo B, El-Sawy A, Shirazi Amin A, Aindow M, Suib SL, Najafpour MM. New findings and current controversies in the reaction of ruthenium red and ammonium cerium( iv) nitrate: focus on the precipitated compound. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02499a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During water-oxidation reaction in the presence of RuR and CAN, a heterogeneous nano-sized Ru-Ce compound is detected, which is formed by the interaction of [(NH3)5RuORu(NH3)4ORu(NH3)5],6+/7+ nitrate ions, and the products of the reduction of CAN.
Collapse
Affiliation(s)
- Bahram Sarvi
- Department of Chemistry
- Institute for Advanced Studies in Basic Science (IASBS)
- Zanjan
- Iran
| | | | - Bahareh Deljoo
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
- Department of Materials Science and Engineering
| | | | | | - Mark Aindow
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
- Department of Materials Science and Engineering
| | - Steven L. Suib
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
- Department of Materials Science and Engineering
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Science (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
41
|
McCarthy BD, Beiler AM, Johnson BA, Liseev T, Castner AT, Ott S. Analysis of Electrocatalytic Metal-Organic Frameworks. Coord Chem Rev 2019; 406. [PMID: 32499663 DOI: 10.1016/j.ccr.2019.213137] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electrochemical analysis of molecular catalysts for the conversion of bulk feedstocks into energy-rich clean fuels has seen dramatic advances in the last decade. More recently, increased attention has focused on the characterization of metal-organic frameworks (MOFs) containing well-defined redox and catalytically active sites, with the overall goal to develop structurally stable materials that are industrially relevant for large-scale solar fuel syntheses. Successful electrochemical analysis of such materials draws heavily on well-established homogeneous techniques, yet the nature of solid materials presents additional challenges. In this tutorial-style review, we cover the basics of electrochemical analysis of electroactive MOFs, including considerations of bulk stability, methods of attaching MOFs to electrodes, interpreting fundamental electrochemical data, and finally electrocatalytic kinetic characterization. We conclude with a perspective of some of the prospects and challenges in the field of electrocatalytic MOFs.
Collapse
Affiliation(s)
- Brian D McCarthy
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Anna M Beiler
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Timofey Liseev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ashleigh T Castner
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
42
|
Shilpa N, Nadeema A, Kurungot S. Glycine-Induced Electrodeposition of Nanostructured Cobalt Hydroxide: A Bifunctional Catalyst for Overall Water Splitting. CHEMSUSCHEM 2019; 12:5300-5309. [PMID: 31663670 DOI: 10.1002/cssc.201902323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Herein, an interconnected α-Co(OH)2 structure with a network-like architecture was used as a bifunctional electrocatalyst for the overall water splitting reaction in alkaline medium. The complexing ability of glycine with a transition metal was exploited to form [Co(gly)3 ]- dispersion at pH 10, which was used for the electrodeposition. High-resolution TEM, UV/Vis-diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy were used to confirm that the as-synthesized materials had an α-Co(OH)2 phase. The electrocatalytic oxygen and hydrogen evolution activity of the glycine-coordinated α-Co(OH)2 was found to be approximately 320 and 145 mV, respectively, at 10 mA cm-2 . The material required approximately 1.60 V (vs. reversible hydrogen electrode; RHE) to achieve the benchmark of 10 mA cm-2 for overall water splitting with a mass activity of approximately 63.7 A g-1 at 1.60 V (vs. RHE). The chronoamperometric response was measured to evidence the stability of the material for overall water splitting for up to 24 h. Characterization of the catalyst after the oxygen and hydrogen evolution reactions was performed by XPS and showed the presence of a CoII /CoIII oxidation state.
Collapse
Affiliation(s)
- Nagaraju Shilpa
- Physical and Materials Chemistry Division, Council of Scientific & Industrial Research-National Chemical Laboratory, Pune, 411008, India
| | - Ayasha Nadeema
- Physical and Materials Chemistry Division, Council of Scientific & Industrial Research-National Chemical Laboratory, Pune, 411008, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, Council of Scientific & Industrial Research-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
43
|
Chaurasia R, Bharty M, Nath P, Sonkar PK, Ganesan V, Maiti B, Bharti A, Butcher R. Photophysical, electrochemical and TD-DFT studies of Ni(II) and Mn(II) complexes of N′-(2-methylfuran-3-carbonyl)hydrazine carbodithioic acid ethyl ester. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Ye S, Ding C, Liu M, Wang A, Huang Q, Li C. Water Oxidation Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902069. [PMID: 31495962 DOI: 10.1002/adma.201902069] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Water oxidation is the primary reaction of both natural and artificial photosynthesis. Developing active and robust water oxidation catalysts (WOCs) is the key to constructing efficient artificial photosynthesis systems, but it is still facing enormous challenges in both fundamental and applied aspects. Here, the recent developments in molecular catalysts and heterogeneous nanoparticle catalysts are reviewed with special emphasis on biomimetic catalysts and the integration of WOCs into artificial photosystems. The highly efficient artificial photosynthesis depends largely on active WOCs integrated into light harvesting materials via rational interface engineering based on in-depth understanding of charge dynamics and the reaction mechanism.
Collapse
Affiliation(s)
- Sheng Ye
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Mingyao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Aoqi Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
45
|
Carbon dioxide electroreduction to C 2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat Commun 2019; 10:3851. [PMID: 31451700 PMCID: PMC6710288 DOI: 10.1038/s41467-019-11599-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/09/2019] [Indexed: 11/29/2022] Open
Abstract
Efficient electroreduction of carbon dioxide to multicarbon products in aqueous solution is of great importance and challenging. Unfortunately, the low efficiency of the production of C2 products limits implementation at scale. Here, we report reduction of carbon dioxide to C2 products (acetic acid and ethanol) over a 3D dendritic copper-cuprous oxide composite fabricated by in situ reduction of an electrodeposited copper complex. In potassium chloride aqueous electrolyte, the applied potential was as low as −0.4 V vs reversible hydrogen electrode, the overpotential is only 0.53 V (for acetic acid) and 0.48 V (for ethanol) with high C2 Faradaic efficiency of 80% and a current density of 11.5 mA cm−2. The outstanding performance of the electrode for producing the C2 products results mainly from near zero contacting resistance between the electrocatalysts and copper substrate, abundant exposed active sites in the 3D dendritic structure and suitable copper(I)/copper(0) ratio of the electrocatalysts. Electrocatalytic reduction of carbon dioxide is attractive for obtaining multicarbon products, but conversion efficiency is low. Here the authors use copper complex materials for electrochemical reduction of carbon dioxide to ethanol and acetic acid with high efficiencies and activities.
Collapse
|
46
|
Wang J, Huang X, Xi S, Lee JM, Wang C, Du Y, Wang X. Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2019; 58:13532-13539. [PMID: 31317633 DOI: 10.1002/anie.201906475] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 11/06/2022]
Abstract
Immobilization of planar CoII -2,3-naphthalocyanine (NapCo) complexes onto doped graphene resulted in a heterogeneous molecular Co electrocatalyst that was active and selective to reduce CO2 into CO in aqueous solution. A systematic study revealed that graphitic sulfoxide and carboxyl dopants of graphene were the efficient binding sites for the immobilization of NapCo through axial coordination and resulted in active Co sites for CO2 reduction. Compared to carboxyl dopants, the sulfoxide dopants further improved the electron communication between NapCo and graphene, which led to the increase of turnover frequency of the Co sites by about 3 times for CO production with a Faradic efficiency up to 97 %. Pristine NapCo in the absence of a graphene support did not display efficient electron communication with the electrode and thus failed to serve as the electrochemical active site for CO2 reduction under the identical conditions.
Collapse
Affiliation(s)
- Jiong Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Cheng Wang
- Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore.,Present address: National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
47
|
Wang J, Huang X, Xi S, Lee J, Wang C, Du Y, Wang X. Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906475] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiong Wang
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiang Huang
- Department of PhysicsSouthern University of Science and Technology Shenzhen 518055 China
| | - Shibo Xi
- Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Jong‐Min Lee
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Cheng Wang
- Institute for New Energy Materials & Low-Carbon TechnologiesTianjin University of Technology Tianjin 300384 P. R. China
| | - Yonghua Du
- Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
- Present address: National Synchrotron Light Source IIBrookhaven National Laboratory Upton NY 11973 USA
| | - Xin Wang
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
48
|
Langerman M, Hetterscheid DGH. Fast Oxygen Reduction Catalyzed by a Copper(II) Tris(2-pyridylmethyl)amine Complex through a Stepwise Mechanism. Angew Chem Int Ed Engl 2019; 58:12974-12978. [PMID: 31339205 DOI: 10.1002/anie.201904075] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/10/2022]
Abstract
Catalytic pathways for the reduction of dioxygen can either lead to the formation of water or peroxide as the reaction product. We demonstrate that the electrocatalytic reduction of O2 by the pyridylalkylamine copper complex [Cu(tmpa)(L)]2+ in a neutral aqueous solution follows a stepwise 4 e- /4 H+ pathway, in which H2 O2 is formed as a detectable intermediate and subsequently reduced to H2 O in two separate catalytic reactions. These homogeneous catalytic reactions are shown to be first order in catalyst. Coordination of O2 to CuI was found to be the rate-determining step in the formation of the peroxide intermediate. Furthermore, electrochemical studies of the reaction kinetics revealed a high turnover frequency of 1.5×105 s-1 , the highest reported for any molecular copper catalyst.
Collapse
Affiliation(s)
- Michiel Langerman
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300, RA, Leiden, The Netherlands
| | - Dennis G H Hetterscheid
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O Box 9502, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
49
|
Langerman M, Hetterscheid DGH. Fast Oxygen Reduction Catalyzed by a Copper(II) Tris(2‐pyridylmethyl)amine Complex through a Stepwise Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michiel Langerman
- Leiden Institute of Chemistry Leiden University Gorlaeus Laboratories P.O Box 9502 2300 RA Leiden The Netherlands
| | - Dennis G. H. Hetterscheid
- Leiden Institute of Chemistry Leiden University Gorlaeus Laboratories P.O Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
50
|
Zhang Q, Guan J. Mono-/Multinuclear Water Oxidation Catalysts. CHEMSUSCHEM 2019; 12:3209-3235. [PMID: 31077565 DOI: 10.1002/cssc.201900704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Water splitting, in which water molecules can be transformed into hydrogen and oxygen, is an appealing energy conversion and transformation strategy to address the environmental and energy crisis. The oxygen evolution reaction (OER) is dynamically slow, which limits energy conversion efficiency during the water-splitting process and requires high-efficiency water oxidation catalysts (WOCs) to overcome the OER energy barrier. It is generally accepted that multinuclear WOCs possess superior OER performances, as demonstrated by the CaMn4 O5 cluster in photosystem II (PSII), which can catalyze the OER efficiently with a very low overpotential. Inspired by the CaMn4 O5 cluster in PSII, some multinuclear WOCs were synthesized that could catalyze water oxidation. In addition, some mononuclear molecular WOCs also show high water oxidation activity. However, it cannot be excluded that the high activity arises from the formation of dimeric species. Recently, some mononuclear heterogeneous WOCs showed a high water oxidation activity, which testified that mononuclear active sites with suitable coordination surroundings could also catalyze water oxidation efficiently. This Review focuses on recent progress in the development of mono-/multinuclear homo- and heterogeneous catalysts for water oxidation. The active sites and possible catalytic mechanisms for water oxidation on the mono-/multinuclear WOCs are provided.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jingqi Guan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| |
Collapse
|