1
|
Norton RD, Haes AJ, Tivanski AV. Effects of Cosolvent on the Intermolecular Interactions between an Analyte and a Gold Nanostar Surface Studied Using SERS. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:17543-17551. [PMID: 39439879 PMCID: PMC11492375 DOI: 10.1021/acs.jpcc.4c04360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
For surface-enhanced Raman scattering (SERS), reproducible solution-phase results are typically obtained using nanoparticles functionalized with surface-stabilizing molecules that can prevent the adsorption of analyte molecules with surface affinities lower than those of the stabilizing agent. Herein, we investigate the effects of intermolecular interactions between a nonthiolated analyte and cosolvent to facilitate and modulate analyte adsorption to gold nanostars. SERS, extinction spectroscopy, transmission electron microscopy (TEM), and density functional theory (DFT) calculations are employed in this regard. Tetrahydrofuran (THF) is utilized as a cosolvent in water to facilitate the detection of acetylsalicylic acid (aspirin) on anisotropic gold nanoparticles. Intermolecular interactions between the analyte, solvent, and surface are modulated by changing the solution composition to understand how THF facilitates the SERS detection of aspirin in THF-water cosolvents. SERS signals for 5 mM aspirin arise only in the presence of THF at and above 60 mM, while no signal with or without THF below 60 mM is observed. SERS detection of aspirin is hypothesized to depend on THF forming a hydrogen-bonded complex with aspirin that reduces aspirin hydrophobicity, thus stabilizing the acid form of the molecule and allowing it to weakly interact with the gold nanoparticles. The aspirin-THF complex adsorbs to the gold surface through π-orbital overlap between the aromatic ring and gold, where additional THF weakens orbital overlap. Understanding the mechanism by which organic cosolvents facilitate the SERS detection of nonthiolated analytes such as aspirin, in aqueous media, allows other cosolvents, nonthiolated analytes, and other surfaces to obtain a SERS signal in a variety of systems.
Collapse
Affiliation(s)
- Ryan D. Norton
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexei V. Tivanski
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Markmann V, Pan J, Hansen BL, Haubro ML, Nimmrich A, Lenzen P, Levantino M, Katayama T, Adachi SI, Gorski-Bilke S, Temps F, Dohn AO, Møller KB, Nielsen MM, Haldrup K. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem Sci 2024; 15:11391-11401. [PMID: 39055005 PMCID: PMC11268492 DOI: 10.1039/d4sc01912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
This work investigates and describes the structural dynamics taking place following charge-transfer-to-solvent photo-abstraction of electrons from I- and Br- ions in aqueous solution following single- and 2-photon excitation at 202 nm and 400 nm, respectively. A Time-Resolved X-ray Solution Scattering (TR-XSS) approach with direct sensitivity to the structure of the surrounding solvent as the water molecules adopt a new equilibrium configuration following the electron-abstraction process is utilized to investigate the structural dynamics of solvent shell expansion and restructuring in real-time. The structural sensitivity of the scattering data enables a quantitative evaluation of competing models for the interaction between the nascent neutral species and surrounding water molecules. Taking the I0-O distance as the reaction coordinate, we find that the structural reorganization is delayed by 0.1 ps with respect to the photoexcitation and completes on a time scale of 0.5-1 ps. On longer time scales we determine from the evolution of the TR-XSS difference signal that I0: e- recombination takes place on two distinct time scales of ∼20 ps and 100 s of picoseconds. These dynamics are well captured by a simple model of diffusive evolution of the initial photo-abstracted electron population where the charge-transfer-to-solvent process gives rise to a broad distribution of electron ejection distances, a significant fraction of which are in the close vicinity of the nascent halogen atoms and recombine on short time scales.
Collapse
Affiliation(s)
- Verena Markmann
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Jaysree Pan
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Bianca L Hansen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Morten L Haubro
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Amke Nimmrich
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Philipp Lenzen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility CS40220 Grenoble 38043 Cedex 9 France
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | | | - Friedrich Temps
- Christian-Albrechts-University Kiel Olshausenstr. 40 24098 Kiel Germany
| | - Asmus O Dohn
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Science Institute, University of Iceland 107 Reykjavík Iceland
| | - Klaus B Møller
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Martin M Nielsen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Kristoffer Haldrup
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| |
Collapse
|
3
|
Lan J, Chergui M, Pasquarello A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat Commun 2024; 15:2544. [PMID: 38514610 PMCID: PMC11258362 DOI: 10.1038/s41467-024-46772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Charge-transfer-to-solvent states in aqueous halides are ideal systems for studying the electron-transfer dynamics to the solvent involving a complex interplay between electronic excitation and solvent polarization. Despite extensive experimental investigations, a full picture of the charge-transfer-to-solvent dynamics has remained elusive. Here, we visualise the intricate interplay between the dynamics of the electron and the solvent polarization occurring in this process. Through the combined use of ab initio molecular dynamics and machine learning methods, we investigate the structure, dynamics and free energy as the excited electron evolves through the charge-transfer-to-solvent process, which we characterize as a sequence of states denoted charge-transfer-to-solvent, contact-pair, solvent-separated, and hydrated electron states, depending on the distance between the iodine and the excited electron. Our assignment of the charge-transfer-to-solvent states is supported by the good agreement between calculated and measured vertical binding energies. Our results reveal the charge transfer process in terms of the underlying atomic processes and mechanisms.
Collapse
Affiliation(s)
- Jinggang Lan
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Department of Chemistry, New York University, New York, NY, 10003, USA.
- Simons Center for Computational Physical Chemistry at New York University, New York, NY, 10003, USA.
| | - Majed Chergui
- Lausanne Centre for Ultrafast Science (LACUS), ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Elettra - Sincrotrone Trieste, Area Science Park I - 34149, Trieste, Italy
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Reidelbach M, Bai M, Schneeberger M, Zöllner MS, Kubicek K, Kirchberg H, Bressler C, Thorwart M, Herrmann C. Solvent Dynamics of Aqueous Halides before and after Photoionization. J Phys Chem B 2023; 127:1399-1413. [PMID: 36728132 DOI: 10.1021/acs.jpcb.2c07992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron transfer reactions can be strongly influenced by solvent dynamics. We study the photoionization of halides in water as a model system for such reactions. There are no internal nuclear degrees of freedom in the solute, allowing the dynamics of the solvent to be uniquely identified. We simulate the equilibrium solvent dynamics for Cl-, Br-, I-, and their respective neutral atoms in water, comparing quantum mechanical/molecular mechanical (QM/MM) and classical molecular dynamics (MD) methods. On the basis of the obtained configurations, we calculate the extended X-ray absorption fine structure (EXAFS) spectra rigorously based on the MD snapshots and compare them in detail with other theoretical and experimental results available in the literature. We find our EXAFS spectra based on QM/MM MD simulations in good agreement with their experimental counterparts for the ions. Classical MD simulations for the ions lead to EXAFS spectra that agree equally well with the experiment when it comes to the oscillatory period of the signal, even though they differ from the QM/MM radial distribution functions extracted from the MD. The amplitude is, however, considerably overestimated. This suggests that to judge the reliability of theoretical simulation methods or to elucidate fine details of the atomistic dynamics of the solvent based on EXAFS spectra, the amplitude as well as the oscillatory period need to be considered. If simulations fail qualitatively, as does the classical MD for the aqueous neutral halogen atoms, the resulting EXAFS will also be strongly affected in both oscillatory period and amplitude. The good reliability of QM/MM-based EXAFS simulations, together with clear qualitative differences in the EXAFS spectra found between halides and their atomic counterparts, suggests that a combined theory and experimental EXAFS approach is suitable for elucidating the nonequilibrium solvent dynamics in the photoionization of halides and possibly also for electron transfer reactions in more complex systems.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Mei Bai
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Michaela Schneeberger
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Martin Sebastian Zöllner
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Katharina Kubicek
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Henning Kirchberg
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Christian Bressler
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,Department of Physics, Universität Hamburg, Notkestr. 85, 22607Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869Schenefeld, Germany
| | - Michael Thorwart
- The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607Hamburg, Germany
| | - Carmen Herrmann
- Department of Chemistry, Universität Hamburg, Harbor Bldg. 610, Luruper Chaussee 149, 22761Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
| |
Collapse
|
5
|
Jónsson EÖ, Rasti S, Galynska M, Meyer J, Jónsson H. Transferable Potential Function for Flexible H 2O Molecules Based on the Single-Center Multipole Expansion. J Chem Theory Comput 2022; 18:7528-7543. [PMID: 36395502 DOI: 10.1021/acs.jctc.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A potential function is presented for describing a system of flexible H2O molecules based on the single-center multipole expansion (SCME) of the electrostatic interaction. The model, referred to as SCME/f, includes the variation of the molecular quadrupole moment as well as the dipole moment with changes in bond length and angle so as to reproduce results of high-level electronic structure calculations. The multipole expansion also includes fixed octupole and hexadecapole moments, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model contains five adjustable parameters related to the repulsive interaction and damping functions in the electrostatic and dispersion interactions. Their values are adjusted to reproduce the lowest energy isomers of small clusters, (H2O)n with n = 2-6, as well as measured properties of the ice Ih crystal. Subsequent calculations of the energy difference between the various isomer configurations of the clusters show that SCME/f gives good agreement with results of electronic structure calculations and represents a significant improvement over the previously presented rigid SCME potential function. Analysis of the vibrational frequencies of the clusters and structural properties of ice Ih crystal show the importance of accurately describing the variation of the quadrupole moment with molecular structures.
Collapse
Affiliation(s)
- Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| | - Soroush Rasti
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RALeiden, The Netherlands
| | - Marta Galynska
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RALeiden, The Netherlands
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107Reykjavík, Iceland
| |
Collapse
|
6
|
Rankine CD, Penfold TJ. Accurate, affordable, and generalizable machine learning simulations of transition metal x-ray absorption spectra using the XANESNET deep neural network. J Chem Phys 2022; 156:164102. [PMID: 35490005 DOI: 10.1063/5.0087255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The affordable, accurate, and generalizable prediction of spectroscopic observables plays a key role in the analysis of increasingly complex experiments. In this article, we develop and deploy a deep neural network-XANESNET-for predicting the lineshape of first-row transition metal K-edge x-ray absorption near-edge structure (XANES) spectra. XANESNET predicts the spectral intensities using only information about the local coordination geometry of the transition metal complexes encoded in a feature vector of weighted atom-centered symmetry functions. We address in detail the calibration of the feature vector for the particularities of the problem at hand, and we explore the individual feature importance to reveal the physical insight that XANESNET obtains at the Fe K-edge. XANESNET relies on only a few judiciously selected features-radial information on the first and second coordination shells suffices along with angular information sufficient to separate satisfactorily key coordination geometries. The feature importance is found to reflect the XANES spectral window under consideration and is consistent with the expected underlying physics. We subsequently apply XANESNET at nine first-row transition metal (Ti-Zn) K-edges. It can be optimized in as little as a minute, predicts instantaneously, and provides K-edge XANES spectra with an average accuracy of ∼±2%-4% in which the positions of prominent peaks are matched with a >90% hit rate to sub-eV (∼0.8 eV) error.
Collapse
Affiliation(s)
- C D Rankine
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - T J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
7
|
Burdick RK, Schatz GC, Goodson T. Enhancing Entangled Two-Photon Absorption for Picosecond Quantum Spectroscopy. J Am Chem Soc 2021; 143:16930-16934. [PMID: 34613733 DOI: 10.1021/jacs.1c09728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Entangled two-photon absorption (ETPA) is known to create photoinduced transitions with extremely low light intensity, reducing the risk of phototoxicity compared to classical two-photon absorption. Previous works have predicted the ETPA cross-section, σe, to vary inversely with the product of entanglement time (Te) and entanglement area (Ae), i.e., σe ∼ 1/AeTe. The decreasing σe with increasing Te has limited ETPA to fs-scale Te, while ETPA applications for ps-scale spectroscopy have been unexplored. However, we show that spectral-spatial coupling, which reduces Ae as the SPDC bandwidth (σf) decreases, plays a significant role in determining σe when Te > ∼100 fs. We experimentally measured σe for zinc tetraphenylporphyrin at several σf values. For type-I ETPA, σe increases as σf decreases down to 0.1 ps-1. For type-II SPDC, σe is constant for a wide range of σf. With a theoretical analysis of the data, the maximum type-I σe would occur at σf = 0.1 ps-1 (Te = 10 ps). At this maximum, σe is 1 order of magnitude larger than fs-scale σe and 3 orders of magnitude larger than previous predictions of ps-scale σe. By utilizing this spectral-spatial coupling, narrowband type-I ETPA provides a new opportunity to increase the efficiency of measuring nonlinear optical signals and to control photochemical reactions requiring ps temporal precision.
Collapse
Affiliation(s)
- Ryan K Burdick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
8
|
Carter-Fenk K, Mundy CJ, Herbert JM. Natural Charge-Transfer Analysis: Eliminating Spurious Charge-Transfer States in Time-Dependent Density Functional Theory via Diabatization, with Application to Projection-Based Embedding. J Chem Theory Comput 2021; 17:4195-4210. [PMID: 34189922 DOI: 10.1021/acs.jctc.1c00412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For many types of vertical excitation energies, linear-response time-dependent density functional theory (LR-TDDFT) offers a useful degree of accuracy combined with unrivaled computational efficiency, although charge-transfer excitation energies are often systematically and dramatically underestimated, especially for large systems and those that contain explicit solvent. As a result, low-energy electronic spectra of solution-phase chromophores often contain tens to hundreds of spurious charge-transfer states, making LR-TDDFT needlessly expensive in bulk solution. Intensity borrowing by these spurious states can affect intensities of the valence excitations, altering electronic bandshapes. At higher excitation energies, it is difficult to distinguish spurious charge-transfer states from genuine charge-transfer-to-solvent (CTTS) excitations. In this work, we introduce an automated diabatization that enables fast and effective screening of the CTTS acceptor space in bulk solution. Our procedure introduces "natural charge-transfer orbitals" that provide a means to isolate orbitals that are most likely to participate in a CTTS excitation. Projection of these orbitals onto solvent-centered virtual orbitals provides a criterion for defining the most important solvent molecules in a given excitation and be used as an automated subspace selection algorithm for projection-based embedding of a high-level description of the CTTS state in a lower-level description of its environment. We apply this method to an ab initio molecular dynamics trajectory of I-(aq) and report the lowest-energy CTTS band in the absorption spectrum. Our results are in excellent agreement with the experiment, and only one-third of the water molecules in the I-(H2O)96 simulation cell need to be described with LR-TDDFT to obtain excitation energies that are converged to <0.1 eV. The tools introduced herein will improve the accuracy, efficiency, and usability of LR-TDDFT in solution-phase environments.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Kurahashi N, Thürmer S, Liu SY, Yamamoto YI, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T. Design and characterization of a magnetic bottle electron spectrometer for time-resolved extreme UV and X-ray photoemission spectroscopy of liquid microjets. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034303. [PMID: 34131579 PMCID: PMC8195612 DOI: 10.1063/4.0000107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
We describe a magnetic bottle time-of-flight electron spectrometer designed for time-resolved photoemission spectroscopy of a liquid microjet using extreme UV and X-ray radiation. The spectrometer can be easily reconfigured depending on experimental requirements and the energy range of interest. To improve the energy resolution at high electron kinetic energy, a retarding potential can be applied either via a stack of electrodes or retarding mesh grids, and a flight-tube extension can be attached to increase the flight time. A gated electron detector was developed to reject intense parasitic signal from light scattered off the surface of the cylindrically shaped liquid microjet. This detector features a two-stage multiplication with a microchannel plate plus a fast-response scintillator followed by an image-intensified photon detector. The performance of the spectrometer was tested at SPring-8 and SACLA, and time-resolved photoelectron spectra were measured for an ultrafast charge transfer to solvent reaction in an aqueous NaI solution with a 200 nm UV pump pulses from a table-top ultrafast laser and the 5.5 keV hard X-ray probe pulses from SACLA.
Collapse
Affiliation(s)
- Naoya Kurahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Suet Yi Liu
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Atanu Bhattacharya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Yoshihiro Ogi
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Takuya Horio
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | | |
Collapse
|
10
|
Madkhali MMM, Rankine CD, Penfold TJ. Enhancing the analysis of disorder in X-ray absorption spectra: application of deep neural networks to T-jump-X-ray probe experiments. Phys Chem Chem Phys 2021; 23:9259-9269. [PMID: 33885072 DOI: 10.1039/d0cp06244h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many chemical and biological reactions, including ligand exchange processes, require thermal energy for the reactants to overcome a transition barrier and reach the product state. Temperature-jump (T-jump) spectroscopy uses a near-infrared (NIR) pulse to rapidly heat a sample, offering an approach for triggering these processes and directly accessing thermally-activated pathways. However, thermal activation inherently increases the disorder of the system under study and, as a consequence, can make quantitative interpretations of structural changes challenging. In this Article, we optimise a deep neural network (DNN) for the instantaneous prediction of Co K-edge X-ray absorption near-edge structure (XANES) spectra. We apply our DNN to analyse T-jump pump/X-ray probe data pertaining to the ligand exchange processes and solvation dynamics of Co2+ in chlorinated aqueous solution. Our analysis is greatly facilitated by machine learning, as our DNN is able to predict quickly and cost-effectively the XANES spectra of thousands of geometric configurations sampled from ab initio molecular dynamics (MD) using nothing more than the local geometric environment around the X-ray absorption site. We identify directly the structural changes following the T-jump, which are dominated by sample heating and a commensurate increase in the Debye-Waller factor.
Collapse
Affiliation(s)
- Marwah M M Madkhali
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | |
Collapse
|
11
|
A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Sci Rep 2021; 11:3562. [PMID: 33574378 PMCID: PMC7878505 DOI: 10.1038/s41598-021-82597-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
Collapse
|
12
|
Eng J, Penfold TJ. Understanding and Designing Thermally Activated Delayed Fluorescence Emitters: Beyond the Energy Gap Approximation. CHEM REC 2020; 20:831-856. [PMID: 32267093 DOI: 10.1002/tcr.202000013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
In this article recent progress in the development of molecules exhibiting Thermally Activated Delayed Fluorescence (TADF) is discussed with a particular focus upon their application as emitters in highly efficient organic light emitting diodes (OLEDs). The key aspects controlling the desirable functional properties, e. g. fast intersystem crossing, high radiative rate and unity quantum yield, are introduced with a particular focus upon the competition between the key requirements needed to achieve high performance OLEDs. The design rules required for organic and metal organic materials are discussed, and the correlation between them outlined. Recent progress towards understanding the influence of the interaction between a molecule and its environment are explained as is the role of the mechanism for excited state formation in OLEDs. Finally, all of these aspects are combined to discuss the ability to implement high level design rules for achieving higher quality materials for commercial applications. This article highlights the significant progress that has been made in recent years, but also outlines the significant challenges which persist to achieve a full understanding of the TADF mechanism and improve the stability and performance of these materials.
Collapse
Affiliation(s)
- Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
13
|
Dohn AO, Jónsson EÖ, Jónsson H. Polarizable Embedding with a Transferable H 2O Potential Function II: Application to (H 2O) n Clusters and Liquid Water. J Chem Theory Comput 2019; 15:6578-6587. [PMID: 31692344 DOI: 10.1021/acs.jctc.9b00778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incorporation of polarization in multiscale quantum-mechanics/molecular-mechanics (QM/MM) simulations is important for a variety of applications, for example, charge-transfer reactions. A recently developed formalism based on a density functional theory description of the QM region and a potential energy function for H2O molecules that includes quadrupole as well as dipole polarizability of the MM region is used to simulate liquid water and water clusters. Analysis of the energy, atomic forces, MM polarization, and structure is presented. A quantitative assessment of the QM/MM-MM/MM interaction energy differences of all possible QM/MM configurations of (H2O)n clusters shows that the interquartile range of the distributions of the QM/MM binding energies is never more than 20 meV/molecule higher or lower than the binding energies produced with either of the single-model results. Comparing these interaction energy differences with the QM/MM induction differences show that they are not systematically caused by the induced MM moments of our polarizable embedding scheme. Optimized hexamer geometries as well as the liquid water structure are shown to be improved in comparison with results obtained using point-charge based embedding models neglecting polarization.
Collapse
Affiliation(s)
- Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| |
Collapse
|
14
|
Jónsson EÖ, Dohn AO, Jónsson H. Polarizable Embedding with a Transferable H 2O Potential Function I: Formulation and Tests on Dimer. J Chem Theory Comput 2019; 15:6562-6577. [PMID: 31689104 DOI: 10.1021/acs.jctc.9b00777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incorporation of mutual polarization in multiscale simulations where different regions of the system are treated at different level of theory is important in studies of, for example, electronic excitations and charge transfer processes. We present here an energy functional for describing a quantum mechanics/molecular mechanics (QM/MM) scheme that includes reciprocal polarization between the two subsystems. The inclusion of polarization alleviates shortcomings inherent in electrostatic embedding QM/MM models based on point-charge force fields. A density functional theory (DFT) description of the QM subsystem is coupled to a single center multipole expansion (SCME) description of H2O molecules in the MM subsystem that includes anisotropic dipole and quadrupole polarizability as well as static multipoles up to and including the hexadecapole. The energy functional and the coupling scheme is general and can be extended to arbitrary order in terms of both the static and induced moments. Tests of the energy surface for the H2O dimer show that the QM/MM results lie in between the pure DFT and pure SCME values. The consistency of the many-body contributions to the energy and analytical forces is demonstrated for an H2O pentamer.
Collapse
Affiliation(s)
- Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, VR-III , University of Iceland , Reykjavík 107 , Iceland
| |
Collapse
|
15
|
Cheng M, Rivas N, Lim SJ, Pichugin K, Petruk AA, Klinkova A, Smith R, Hopkins WS, Sciaini G. Trapping a Photoelectron behind a Repulsive Coulomb Barrier in Solution. J Phys Chem Lett 2019; 10:5742-5747. [PMID: 31498643 DOI: 10.1021/acs.jpclett.9b01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiply charged anions (MCAs) display unique photophysics and solvent-stabilizing effects. Well-known aqueous species such as SO42- and PO43- experience spontaneous electron detachment or charge-separation fragmentation in the gas phase owing to the strong Coulomb repulsion arising from the excess of negative charge. Thus, anions often present low photodetachment thresholds and the ability to quickly eject electrons into the solvent via charge-transfer-to-solvent (CTTS) states. Here, we report spectroscopic evidence for the existence of a repulsive Coulomb barrier (RCB) that blocks the ejection of "CTTS-like" electrons of the aqueous B12F122- dianion. Our spectroscopic experimental and theoretical studies indicate that despite the exerted Coulomb repulsion by the nascent radical monoanion B12F12-•aq, the photoexcited electron remains about the B12F12-• core. The RCB is an established feature of the potential energy landscape of MCAs in vacuo, which seems to extend to the liquid phase highlighting recent observations about the dielectric behavior of confined water.
Collapse
Affiliation(s)
- Meixin Cheng
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Nicolás Rivas
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Su Ji Lim
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Kostyantyn Pichugin
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Ariel A Petruk
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Anna Klinkova
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Rodney Smith
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - W Scott Hopkins
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| | - Germán Sciaini
- Department of Chemistry, and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue W. , Waterloo , ON N2L 3G1 , Canada
| |
Collapse
|
16
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Abstract
A review that summarizes the most recent technological developments in the field of ultrafast structural dynamics with focus on the use of ultrashort X-ray and electron pulses follows. Atomistic views of chemical processes and phase transformations have long been the exclusive domain of computer simulators. The advent of femtosecond (fs) hard X-ray and fs-electron diffraction techniques made it possible to bring such a level of scrutiny to the experimental area. The following review article provides a summary of the main ultrafast techniques that enabled the generation of atomically resolved movies utilizing ultrashort X-ray and electron pulses. Recent advances are discussed with emphasis on synchrotron-based methods, tabletop fs-X-ray plasma sources, ultrabright fs-electron diffractometers, and timing techniques developed to further improve the temporal resolution and fully exploit the use of intense and ultrashort X-ray free electron laser (XFEL) pulses.
Collapse
|
18
|
Kirchberg H, Nalbach P, Bressler C, Thorwart M. Spectroscopic Signatures of the Dynamical Hydrophobic Solvation Shell Formation. J Phys Chem B 2019; 123:2106-2113. [PMID: 30731041 DOI: 10.1021/acs.jpcb.8b11885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When a hydrophilic solute in water is suddenly turned into a hydrophobic species, for instance, by photoionization, a layer of hydrated water molecules forms around the solute on a time scale of a few picoseconds. We study the dynamic buildup of the hydration shell around a hydrophobic solute on the basis of a time-dependent dielectric continuum model. Information about the solvent is spectroscopically extracted from the relaxation dynamics of a test dipole inside a static Onsager sphere in the nonequilibrium solvent. The growth process is described phenomenologically within two approaches. First, we consider a time-dependent thickness of the hydration layer that grows from zero to a finite value over a finite time. Second, we assume a time-dependent complex permittivity within a finite layer region around the Onsager sphere. The layer is modeled as a continuous dielectric with a much slower fluctuation dynamics. We find a time-dependent frequency shift down to the blue of the resonant absorption of the dipole, together with a dynamically decreasing line width, as compared to bulk water. The blue shift reflects the work performed against the hydrogen-bonded network of the bulk solvent and is a directly measurable quantity. Our results are in agreement with an experiment on the hydrophobic solvation of iodine in water.
Collapse
Affiliation(s)
- Henning Kirchberg
- I.Institut für Theoretische Physik , Universität Hamburg , Jungiusstr. 9 , 20355 Hamburg , Germany
| | - Peter Nalbach
- Westfälische Hochschule , Münsterstr. 265 , 46397 Bocholt , Germany
| | - Christian Bressler
- The Hamburg Centre for Ultrafast Imaging , Universität Hamburg , 22607 Hamburg , Germany.,European XFEL , Holzkoppel 4 , 22869 Schenefeld , Germany
| | - Michael Thorwart
- I.Institut für Theoretische Physik , Universität Hamburg , Jungiusstr. 9 , 20355 Hamburg , Germany
| |
Collapse
|
19
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Marin TW, Janik I, Bartels DM. Ultraviolet charge-transfer-to-solvent spectroscopy of halide and hydroxide ions in subcritical and supercritical water. Phys Chem Chem Phys 2019; 21:24419-24428. [DOI: 10.1039/c9cp03805a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring charge-transfer-to-solvent excitation of aqueous halide anions by vacuum ultraviolet spectroscopy – new insights up to 380 °C.
Collapse
Affiliation(s)
- Timothy W. Marin
- Department of Physical Sciences
- Benedictine University
- Lisle
- USA
- Notre Dame Radiation Laboratory
| | | | | |
Collapse
|
21
|
Penfold TJ, Gindensperger E, Daniel C, Marian CM. Spin-Vibronic Mechanism for Intersystem Crossing. Chem Rev 2018; 118:6975-7025. [DOI: 10.1021/acs.chemrev.7b00617] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas J. Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, United Kingdom
| | - Etienne Gindensperger
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Christel M. Marian
- Institut für Theoretische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
23
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
24
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
26
|
Santomauro FG, Grilj J, Mewes L, Nedelcu G, Yakunin S, Rossi T, Capano G, Al Haddad A, Budarz J, Kinschel D, Ferreira DS, Rossi G, Gutierrez Tovar M, Grolimund D, Samson V, Nachtegaal M, Smolentsev G, Kovalenko MV, Chergui M. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044002. [PMID: 28083541 PMCID: PMC5178717 DOI: 10.1063/1.4971999] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/11/2016] [Indexed: 05/07/2023]
Abstract
We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr)3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs+ cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.
Collapse
Affiliation(s)
- Fabio G Santomauro
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Jakob Grilj
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Lars Mewes
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | | | | - Thomas Rossi
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Gloria Capano
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - André Al Haddad
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - James Budarz
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | | - Giacomo Rossi
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Mario Gutierrez Tovar
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Nowakowski PJ, Woods DA, Verlet JRR. Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface. J Phys Chem Lett 2016; 7:4079-4085. [PMID: 27684095 DOI: 10.1021/acs.jpclett.6b01985] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electron-transfer reactions at ambient aqueous interfaces represent one of the most fundamental and ubiquitous chemical reactions. Here the dynamics of the charge transfer to solvent (CTTS) reaction from iodide was probed at the ambient water/air interface by phase-sensitive transient second-harmonic generation. Using the three allowed polarization combinations, distinctive dynamics assigned to the CTTS state evolution and to the subsequent solvating electron-iodine contact pair have been resolved. The CTTS state is asymmetrically solvated in the plane of the surface, while the subsequent electron solvation dynamics are very similar to those observed in the bulk, although slightly faster. Between 3 and 30 ps, a small phase shift distinguishes an electron bound in a contact pair with iodine and a free hydrated electron at the water/air interface. Our results suggest that the hydrated electron is fully solvated in a region of reduced water density at the interface.
Collapse
Affiliation(s)
- Paweł J Nowakowski
- Department of Chemistry, University of Durham , Durham DH1 3LE, United Kingdom
| | - David A Woods
- Department of Chemistry, University of Durham , Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, University of Durham , Durham DH1 3LE, United Kingdom
| |
Collapse
|
28
|
Dohn AO, Kjær KS, Harlang TB, Canton SE, Nielsen MM, Møller KB. Electron Transfer and Solvent-Mediated Electronic Localization in Molecular Photocatalysis. Inorg Chem 2016; 55:10637-10644. [DOI: 10.1021/acs.inorgchem.6b01840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Asmus O. Dohn
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs Lyngby, Denmark
| | - Kasper S. Kjær
- Department of Physics, Technical University of Denmark, Building 307 2800 Kgs. Lyngby, Denmark
| | - Tobias B. Harlang
- Department of Physics, Technical University of Denmark, Building 307 2800 Kgs. Lyngby, Denmark
| | - Sophie E. Canton
- Center for
Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Martin M. Nielsen
- Department of Physics, Technical University of Denmark, Building 307 2800 Kgs. Lyngby, Denmark
| | - Klaus B. Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
29
|
Okuyama H, Suzuki YI, Karashima S, Suzuki T. Charge-transfer-to-solvent reactions from I− to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids. J Chem Phys 2016; 145:074502. [PMID: 27544114 DOI: 10.1063/1.4960385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Haruki Okuyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshi-Ichi Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsucho, Ishikari, Hokkaido 061-0293, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Chergui M. Time-resolved X-ray spectroscopies of chemical systems: New perspectives. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:031001. [PMID: 27376102 PMCID: PMC4902826 DOI: 10.1063/1.4953104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.
Collapse
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS) , ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Das AK, Solomon RV, Hofmann F, Meuwly M. Inner-Shell Water Rearrangement Following Photoexcitation of Tris(2,2′-bipyridine)iron(II). J Phys Chem B 2016; 120:206-16. [DOI: 10.1021/acs.jpcb.5b10980] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akshaya K. Das
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| | - R. V. Solomon
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| | - Franziska Hofmann
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| | - Markus Meuwly
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| |
Collapse
|
32
|
Kim KH, Kim J, Oang KY, Lee JH, Grolimund D, Milne CJ, Penfold TJ, Johnson SL, Galler A, Kim TW, Kim JG, Suh D, Moon J, Kim J, Hong K, Guérin L, Kim TK, Wulff M, Bressler C, Ihee H. Identifying the major intermediate species by combining time-resolved X-ray solution scattering and X-ray absorption spectroscopy. Phys Chem Chem Phys 2015; 17:23298-302. [PMID: 26300122 DOI: 10.1039/c5cp03686k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Identifying the intermediate species along a reaction pathway is a first step towards a complete understanding of the reaction mechanism, but often this task is not trivial. There has been a strong on-going debate: which of the three intermediates, the CHI2 radical, the CHI2-I isomer, and the CHI2(+) ion, is the dominant intermediate species formed in the photolysis of iodoform (CHI3)? Herein, by combining time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TR-XAS), we present strong evidence that the CHI2 radical is dominantly formed from the photolysis of CHI3 in methanol at 267 nm within the available time resolution of the techniques (∼20 ps for TRXL and ∼100 ps for TR-XAS). The TRXL measurement, conducted using the time-slicing scheme, detected no CHI2-I isomer within our signal-to-noise ratio, indicating that, if formed, the CHI2-I isomer must be a minor intermediate. The TR-XAS transient spectra measured at the iodine L1 and L3 edges support the same conclusion. The present work demonstrates that the application of these two complementary time-resolved X-ray methods to the same system can provide a detailed understanding of the reaction mechanism.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bartlett SA, Hamilton ML, Evans J. Dynamic structure elucidation of chemical reactivity by laser pulses and X-ray probes. Dalton Trans 2015; 44:6313-9. [PMID: 25741902 DOI: 10.1039/c5dt00210a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualising chemical reactions by X-ray methods is a tantalising prospect. New light sources provide the prospect for studying atomic, electronic and energy transfers accompanying chemical change by X-ray spectroscopy and inelastic scattering. Here we assess how this adventure can illuminate inorganic and catalytic chemistry. In particular X-ray inelastic scattering provides a means of exploiting X-ray free electron lasers, as a parallel to laser Raman spectroscopy.
Collapse
Affiliation(s)
- Stuart A Bartlett
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | | | | |
Collapse
|
34
|
van der Veen RM, Penfold TJ, Zewail AH. Ultrafast core-loss spectroscopy in four-dimensional electron microscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:024302. [PMID: 26798793 PMCID: PMC4711615 DOI: 10.1063/1.4916897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/23/2015] [Indexed: 05/06/2023]
Abstract
We demonstrate ultrafast core-electron energy-loss spectroscopy in four-dimensional electron microscopy as an element-specific probe of nanoscale dynamics. We apply it to the study of photoexcited graphite with femtosecond and nanosecond resolutions. The transient core-loss spectra, in combination with ab initio molecular dynamics simulations, reveal the elongation of the carbon-carbon bonds, even though the overall behavior is a contraction of the crystal lattice. A prompt energy-gap shrinkage is observed on the picosecond time scale, which is caused by local bond length elongation and the direct renormalization of band energies due to temperature-dependent electron-phonon interactions.
Collapse
Affiliation(s)
| | - Thomas J Penfold
- SwissFEL, Paul Scherrer Institut , 5232 Villigen PSI, Switzerland
| | - Ahmed H Zewail
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology , Pasadena, California 91125, USA
| |
Collapse
|
35
|
Kothe A, Wilke M, Moguilevski A, Engel N, Winter B, Kiyan IY, Aziz EF. Charge transfer to solvent dynamics in iodide aqueous solution studied at ionization threshold. Phys Chem Chem Phys 2015; 17:1918-24. [DOI: 10.1039/c4cp02482f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The population of charge-transfer-to-solvent states in iodide aqueous solution can undergo via non-resonant multiphoton electronic excitation above the vacuum level.
Collapse
Affiliation(s)
- Alexander Kothe
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Martin Wilke
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Alexandre Moguilevski
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Nicholas Engel
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Bernd Winter
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Igor Yu. Kiyan
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Emad F. Aziz
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| |
Collapse
|
36
|
|
37
|
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
38
|
Nalbach P, Achner AJA, Frey M, Grosser M, Bressler C, Thorwart M. Hydration shell effects in the relaxation dynamics of photoexcited Fe-II complexes in water. J Chem Phys 2014; 141:044304. [DOI: 10.1063/1.4890528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Bauer M. HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? Phys Chem Chem Phys 2014; 16:13827-37. [PMID: 24905791 DOI: 10.1039/c4cp00904e] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this perspective, the HERFD-XANES (high energy resolution fluorescence detected X-ray absorption near edge structure) and Kβ2,5- or V2C-XES (valence-to-core X-ray emission spectroscopy) methods are discussed as new and powerful tools for chemical research with hard X-rays. This includes a brief survey of the underlying physical processes and the introduction of experimental issues. The potential of both methods to overcome limitations of conventional XAS (X-ray absorption spectroscopy) and to push the limits for obtaining new information about the electronic and geometric structures of metal centers, in the solid state structure or heterogeneous catalysts, but also in metal complexes and homogeneous catalysts, is discussed by presenting a survey of representative references and recent own studies, rounded off by a conclusion and outlook.
Collapse
Affiliation(s)
- Matthias Bauer
- Department Chemie, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
40
|
Obara Y, Katayama T, Ogi Y, Suzuki T, Kurahashi N, Karashima S, Chiba Y, Isokawa Y, Togashi T, Inubushi Y, Yabashi M, Suzuki T, Misawa K. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method. OPTICS EXPRESS 2014; 22:1105-13. [PMID: 24515070 DOI: 10.1364/oe.22.001105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.
Collapse
|
41
|
In-situ Characterization of Molecular Processes in Liquids by Ultrafast X-ray Absorption Spectroscopy. IN-SITU MATERIALS CHARACTERIZATION 2014. [DOI: 10.1007/978-3-642-45152-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Liu J, Wang C, Guo P, Shi G, Fang H. Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces. J Chem Phys 2013; 139:234703. [DOI: 10.1063/1.4841815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
43
|
The role of Hartree–Fock exchange in the simulation of X-ray absorption spectra: A study of photoexcited. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.06.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Messina F, Bräm O, Cannizzo A, Chergui M. Real-time observation of the charge transfer to solvent dynamics. Nat Commun 2013; 4:2119. [DOI: 10.1038/ncomms3119] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 06/06/2013] [Indexed: 11/09/2022] Open
|
45
|
Penfold TJ, Karlsson S, Capano G, Lima FA, Rittmann J, Reinhard M, Rittmann-Frank MH, Braem O, Baranoff E, Abela R, Tavernelli I, Rothlisberger U, Milne CJ, Chergui M. Solvent-induced luminescence quenching: static and time-resolved X-ray absorption spectroscopy of a copper(I) phenanthroline complex. J Phys Chem A 2013; 117:4591-601. [PMID: 23617226 DOI: 10.1021/jp403751m] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a static and picosecond X-ray absorption study at the Cu K-edge of bis(2,9-dimethyl-1,10-phenanthroline)copper(I) ([Cu(dmp)2](+); dmp = 2,9-dimethyl-1,10-phenanthroline) dissolved in acetonitrile and dichloromethane. The steady-state photoluminescence spectra in dichloromethane and acetonitrile are also presented and show a shift to longer wavelengths for the latter, which points to a stronger stabilization of the excited complex. The fine structure features of the static and transient X-ray spectra allow an unambiguous assignment of the electronic and geometric structure of the molecule in both its ground and excited (3)MLCT states. Importantly, the transient spectra are remarkably similar for both solvents, and the spectral changes can be rationalized using the optimized ground- and excited-state structures of the complex. The proposed assignment of the lifetime shortening of the excited state in donor solvents (acetonitrile) to a metal-centered exciplex is not corroborated here. Molecular dynamics simulations confirm the lack of complexation; however, in both solvents the molecules come close to the metal but undergo rapid exchange with the bulk. The shortening of the lifetime of the title complex and nine additional related complexes can be rationalized by the decrease in the (3)MLCT energy. Deviations from this trend may be explained by means of the effects of the dihedral angle between the ligand planes, the solvent, and the (3)MLCT-(1)MLCT energy gap.
Collapse
Affiliation(s)
- T J Penfold
- Laboratoire De Spectroscopie Ultrarapide, École Polytechnique Fédérale De Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Záliš S, Milne CJ, El Nahhas A, Blanco-Rodríguez AM, van der Veen RM, Vlček A. Re and Br X-ray Absorption Near-Edge Structure Study of the Ground and Excited States of [ReBr(CO)3(bpy)] Interpreted by DFT and TD-DFT Calculations. Inorg Chem 2013; 52:5775-85. [DOI: 10.1021/ic3025843] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Stanislav Záliš
- J. Heyrovský Institute
of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech
Republic
| | - Chris J. Milne
- Laboratoire de
Spectroscopie
Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB, Station 6, CH-1015 Lausanne,
Switzerland
| | - Amal El Nahhas
- Laboratoire de
Spectroscopie
Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB, Station 6, CH-1015 Lausanne,
Switzerland
| | - Ana María Blanco-Rodríguez
- School of Biological
and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Renske M. van der Veen
- Laboratoire de
Spectroscopie
Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB, Station 6, CH-1015 Lausanne,
Switzerland
| | - Antonín Vlček
- J. Heyrovský Institute
of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech
Republic
- School of Biological
and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
47
|
|
48
|
Loh ZH, Leone SR. Capturing Ultrafast Quantum Dynamics with Femtosecond and Attosecond X-ray Core-Level Absorption Spectroscopy. J Phys Chem Lett 2013; 4:292-302. [PMID: 26283437 DOI: 10.1021/jz301910n] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent technical advances in ultrafast laser sources enable the generation of femtosecond and attosecond soft X-ray pulses in tabletop laser setups as well as accelerator-based synchrotron and free-electron laser sources. These new light sources can be harnessed via pump-probe spectroscopy to elucidate ultrafast quantum dynamics in atoms, molecules, and condensed matter with unprecedented time resolution and chemical sensitivity. Employing such ultrashort pulses in transient X-ray absorption spectroscopy combines the unique advantages of core-level absorption probing of chemical environments and oxidation states with the ability to obtain ultimately freeze-frame snapshots of electronic and nuclear dynamics. In this Perspective, we provide an overview of the progress in applying the recently developed technique of femtosecond to attosecond time-resolved soft X-ray transient absorption spectroscopy to the study of ultrafast phenomena, including some of our own efforts to elucidate the interaction of intense laser pulses with atoms and molecules in the strong-field, nonperturbative limit. Possible avenues for future work are outlined.
Collapse
Affiliation(s)
- Zhi-Heng Loh
- †Division of Chemistry and Biological Chemistry, and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Stephen R Leone
- ‡Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States
- §Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
El Nahhas A, van der Veen RM, Penfold TJ, Pham VT, Lima FA, Abela R, Blanco-Rodriguez AM, Zális̆ S, Vlc̆ek A, Tavernelli I, Rothlisberger U, Milne CJ, Chergui M. X-ray Absorption Spectroscopy of Ground and Excited Rhenium–Carbonyl–Diimine Complexes: Evidence for a Two-Center Electron Transfer. J Phys Chem A 2013; 117:361-9. [DOI: 10.1021/jp3106502] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. El Nahhas
- École Polytechnique Fédérale
de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - R. M. van der Veen
- École Polytechnique Fédérale
de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - T. J. Penfold
- École Polytechnique Fédérale
de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
- École Polytechnique Fédérale
de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - V. T. Pham
- École Polytechnique Fédérale
de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - F. A. Lima
- École Polytechnique Fédérale
de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - R. Abela
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - A. M. Blanco-Rodriguez
- School of Biological and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - S. Zális̆
- J. Heyrovský Institute
of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolej̆skova 3, Prague, Czech Republic
| | - A. Vlc̆ek
- J. Heyrovský Institute
of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolej̆skova 3, Prague, Czech Republic
- School of Biological and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - I. Tavernelli
- École Polytechnique Fédérale
de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - U. Rothlisberger
- École Polytechnique Fédérale
de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - C. J. Milne
- École Polytechnique Fédérale
de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - M. Chergui
- École Polytechnique Fédérale
de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Penfold T, Tavernelli I, Doemer M, Abela R, Röthlisberger U, Chergui M. Solvent rearrangements during the transition from hydrophilic to hydrophobic solvation. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|