1
|
Cano-Prieto C, Undabarrena A, de Carvalho AC, Keasling JD, Cruz-Morales P. Triumphs and Challenges of Natural Product Discovery in the Postgenomic Era. Annu Rev Biochem 2024; 93:411-445. [PMID: 38639989 DOI: 10.1146/annurev-biochem-032620-104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.
Collapse
Affiliation(s)
- Carolina Cano-Prieto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Agustina Undabarrena
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
- Department of Bioengineering, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
2
|
Liu YH, Liao YT, Shao XD, Yang ZY, Li D, Liu L, Shao LD. Biomimetic Total Synthesis of Bimagnolignan: A Natural Anti-Breast Cancer Agent. Org Lett 2024; 26:2376-2380. [PMID: 38484337 DOI: 10.1021/acs.orglett.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
A short scalable biomimetic route to bioactive natural product bimagnolignan (1) was accomplished. Compound 1 was successfully prepared through a three-step metal-free synthesis from honokiol (2). Alternatively, 1 was also synthesized by biomimetic transformations that mimic tyrosinase in four steps. The key reactions feature a regioselective acetylation, a highly efficient C(sp2)-H oxidation, a cascade aerobic oxidative cyclization/coupling, and a Cu-catalyzed direct oxidative coupling. In addition, cell-based assays validate that 1 is a promising natural lead for HER2-positive breast cancer treatment.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yu-Ting Liao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiao-Dan Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhu-Ya Yang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Lu Liu
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
3
|
Carson MC, Kozlowski MC. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Nat Prod Rep 2024; 41:208-227. [PMID: 37294301 PMCID: PMC10709532 DOI: 10.1039/d3np00009e] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covering: 2008 to 2023This review will describe oxidative phenol coupling as applied in the total synthesis of natural products. This review covers catalytic and electrochemical methods with a brief comparison to stoichiometric and enzymatic systems assessing their practicality, atom economy, and other measures. Natural products forged by C-C and C-O oxidative phenol couplings as well as from alkenyl phenol couplings will be addressed. Additionally, exploration into catalytic oxidative coupling of phenols and other related species (carbazoles, indoles, aryl ethers, etc.) will be surveyed. Future directions of this particular area of research will also be assessed.
Collapse
Affiliation(s)
- Matthew C Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
4
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
5
|
Fang JL, Gao WL, Xu WF, Lyu ZY, Ma L, Luo S, Chen XA, Mao XM, Li YQ. m4C DNA methylation regulates biosynthesis of daptomycin in Streptomyces roseosporus L30. Synth Syst Biotechnol 2022; 7:1013-1023. [PMID: 35801092 PMCID: PMC9240718 DOI: 10.1016/j.synbio.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jiao-Le Fang
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Wen-Li Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Wei-Feng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Zhong-Yuan Lyu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Lie Ma
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Shuai Luo
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
- Corresponding author. Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
6
|
Li H, Li Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering (Basel) 2022; 9:707. [PMID: 36421108 PMCID: PMC9687252 DOI: 10.3390/bioengineering9110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 10/17/2023] Open
Abstract
As an impressive mass spectrometry technology, mass spectrometric imaging (MSI) can provide mass spectra data and spatial distribution of analytes simultaneously. MSI has been widely used in diverse fields such as clinical diagnosis, the pharmaceutical industry and environmental study due to its accuracy, high resolution and developing reproducibility. Natural products (NPs) have been a critical source of leading drugs; almost half of marketed drugs are derived from NPs or their derivatives. The continuous search for bioactive NPs from microorganisms or microbiomes has always been attractive. MSI allows us to analyze and characterize NPs directly in monocultured microorganisms or a microbial community. In this review, we briefly introduce current mainstream ionization technologies for microbial samples and the key issue of sample preparation, and then summarize some applications of MSI in the exploration of microbial NPs and metabolic interaction, especially NPs from marine microbes. Additionally, remaining challenges and future prospects are discussed.
Collapse
Affiliation(s)
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Molinaro C, Kawasaki Y, Wanyoike G, Nishioka T, Yamamoto T, Snedecor B, Robinson SJ, Gosselin F. Engineered Cytochrome P450-Catalyzed Oxidative Biaryl Coupling Reaction Provides a Scalable Entry into Arylomycin Antibiotics. J Am Chem Soc 2022; 144:14838-14845. [PMID: 35905381 DOI: 10.1021/jacs.2c06019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein the first example of a cytochrome P450-catalyzed oxidative carbon-carbon coupling process for a scalable entry into arylomycin antibiotic cores. Starting from wild-type hydroxylating cytochrome P450 enzymes and engineered Escherichia coli, a combination of enzyme engineering, random mutagenesis, and optimization of reaction conditions generated a P450 variant that affords the desired arylomycin core 2d in 84% assay yield. Furthermore, this process was demonstrated as a viable route for the production of the arylomycin antibiotic core on the gram scale. Finally, this new entry affords a viable, scalable, and practical route for the synthesis of novel Gram-negative antibiotics.
Collapse
Affiliation(s)
- Carmela Molinaro
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yukie Kawasaki
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - George Wanyoike
- Production Technology Department, MicroBiopharm Japan Co. Ltd., 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan
| | - Taiki Nishioka
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Tsuyoshi Yamamoto
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Zhang F, Ramos Alvarenga RF, Throckmorton K, Chanana S, Braun DR, Fossen J, Zhao M, McCrone S, Harper MK, Rajski SR, Rose WE, Andes DR, Thomas MG, Bugni TS. Genome Mining and Metabolomics Unveil Pseudonochelin: A Siderophore Containing 5-Aminosalicylate from a Marine-Derived Pseudonocardia sp. Bacterium. Org Lett 2022; 24:3998-4002. [PMID: 35649263 PMCID: PMC9270686 DOI: 10.1021/acs.orglett.2c01408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudonochelin (1), a siderophore from a marine-derived Pseudonocardia sp. bacterium, was discovered using genome mining and metabolomics technologies. A 5-aminosalicylic acid (5-ASA) unit, not previously found in siderophore natural products, was identified in 1. Annotation of a putative psn biosynthetic gene cluster combined with bioinformatics and isotopic enrichment studies enabled us to propose the biosynthesis of 1. Moreover, 1 was found to display in vitro and in vivo antibacterial activity in an iron-dependent fashion.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - René F. Ramos Alvarenga
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: Gingko Bioworks, Boston, Massachusetts, 02210, USA
| | - Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: Enveda Biosciences, Boulder, Colorado, 80301, USA
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Jen Fossen
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: United States Food and Drug Administration, Silver Springs, Maryland 20903, USA
| | - Sue McCrone
- Pharmacy Practice Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Warren E Rose
- Pharmacy Practice Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - David R. Andes
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
9
|
Aldemir H, Shu S, Schaefers F, Hong H, Richarz R, Harteis S, Einsiedler M, Milzarek TM, Schneider S, Gulder TAM. Carrier Protein-Free Enzymatic Biaryl Coupling in Arylomycin A2 Assembly and Structure of the Cytochrome P450 AryC. Chemistry 2022; 28:e202103389. [PMID: 34725865 PMCID: PMC9299028 DOI: 10.1002/chem.202103389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/16/2022]
Abstract
The arylomycin antibiotics are potent inhibitors of bacterial type I signal peptidase. These lipohexapeptides contain a biaryl structural motif reminiscent of glycopeptide antibiotics. We herein describe the functional and structural evaluation of AryC, the cytochrome P450 performing biaryl coupling in biosynthetic arylomycin assembly. Unlike its enzymatic counterparts in glycopeptide biosynthesis, AryC converts free substrates without the requirement of any protein interaction partner, likely enabled by a strongly hydrophobic cavity at the surface of AryC pointing to the substrate tunnel. This activity enables chemo-enzymatic assembly of arylomycin A2 that combines the advantages of liquid- and solid-phase peptide synthesis with late-stage enzymatic cross-coupling. The reactivity of AryC is unprecedented in cytochrome P450-mediated biaryl construction in non-ribosomal peptides, in which peptidyl carrier protein (PCP)-tethering so far was shown crucial both in vivo and in vitro.
Collapse
Affiliation(s)
- Hülya Aldemir
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Shuangjie Shu
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Francoise Schaefers
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Hanna Hong
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - René Richarz
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Sabrina Harteis
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | - Manuel Einsiedler
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
| | - Tobias M. Milzarek
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
| | - Sabine Schneider
- Department of ChemistryLudwig-Maximillians-University MunichButenandtstraße 5–1381377MunichGermany
| | - Tobias A. M. Gulder
- Chair of Technical BiochemistryTechnical University of DresdenBergstraße 6601069DresdenGermany
- Biosystems Chemistry, Faculty of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| |
Collapse
|
10
|
Validation of De Novo Peptide Sequences with Bottom-Up Tag Convolution. Proteomes 2021; 10:proteomes10010001. [PMID: 35076636 PMCID: PMC8788492 DOI: 10.3390/proteomes10010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
De novo sequencing is indispensable for the analysis of proteins from organisms with unknown genomes, novel splice variants, and antibodies. However, despite a variety of methods developed to this end, distinguishing between the correct interpretation of a mass spectrum and a number of incorrect alternatives often remains a challenge. Tag convolution is computed for a set of peptide sequence tags of a fixed length k generated from the input tandem mass spectra and can be viewed as a generalization of the well-known spectral convolution. We demonstrate its utility for validating de novo peptide sequences by using a set of those generated by the algorithm PepNovo+ from high-resolution bottom-up data sets for carbonic anhydrase 2 and the Fab region of alemtuzumab and indicate its further potential applications.
Collapse
|
11
|
Panter F, Bader CD, Müller R. Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chem Sci 2021; 12:5994-6010. [PMID: 33995996 PMCID: PMC8098685 DOI: 10.1039/d0sc06919a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic development based on natural products has faced a long lasting decline since the 1970s, while both the speed and the extent of antimicrobial resistance (AMR) development have been severely underestimated. The discovery of antimicrobial natural products of bacterial and fungal origin featuring new chemistry and previously unknown mode of actions is increasingly challenged by rediscovery issues. Natural products that are abundantly produced by the corresponding wild type organisms often featuring strong UV signals have been extensively characterized, especially the ones produced by extensively screened microbial genera such as streptomycetes. Purely synthetic chemistry approaches aiming to replace the declining supply from natural products as starting materials to develop novel antibiotics largely failed to provide significant numbers of antibiotic drug leads. To cope with this fundamental issue, microbial natural products science is being transformed from a 'grind-and-find' study to an integrated approach based on bacterial genomics and metabolomics. Novel technologies in instrumental analytics are increasingly employed to lower detection limits and expand the space of detectable substance classes, while broadening the scope of accessible and potentially bioactive natural products. Furthermore, the almost exponential increase in publicly available bacterial genome data has shown that the biosynthetic potential of the investigated strains by far exceeds the amount of detected metabolites. This can be judged by the discrepancy between the number of biosynthetic gene clusters (BGC) encoded in the genome of each microbial strain and the number of secondary metabolites actually detected, even when considering the increased sensitivity provided by novel analytical instrumentation. In silico annotation tools for biosynthetic gene cluster classification and analysis allow fast prioritization in BGC-to-compound workflows, which is highly important to be able to process the enormous underlying data volumes. BGC prioritization is currently accompanied by novel molecular biology-based approaches to access the so-called orphan BGCs not yet correlated with a secondary metabolite. Integration of metabolomics, in silico genomics and molecular biology approaches into the mainstream of natural product research will critically influence future success and impact the natural product field in pharmaceutical, nutritional and agrochemical applications and especially in anti-infective research.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| | - Chantal D Bader
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| |
Collapse
|
12
|
Crüsemann M. Coupling Mass Spectral and Genomic Information to Improve Bacterial Natural Product Discovery Workflows. Mar Drugs 2021; 19:142. [PMID: 33807702 PMCID: PMC7998270 DOI: 10.3390/md19030142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial natural products possess potent bioactivities and high structural diversity and are typically encoded in biosynthetic gene clusters. Traditional natural product discovery approaches rely on UV- and bioassay-guided fractionation and are limited in terms of dereplication. Recent advances in mass spectrometry, sequencing and bioinformatics have led to large-scale accumulation of genomic and mass spectral data that is increasingly used for signature-based or correlation-based mass spectrometry genome mining approaches that enable rapid linking of metabolomic and genomic information to accelerate and rationalize natural product discovery. In this mini-review, these approaches are presented, and discovery examples provided. Finally, future opportunities and challenges for paired omics-based natural products discovery workflows are discussed.
Collapse
Affiliation(s)
- Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
13
|
Upert G, Luther A, Obrecht D, Ermert P. Emerging peptide antibiotics with therapeutic potential. MEDICINE IN DRUG DISCOVERY 2021; 9:100078. [PMID: 33398258 PMCID: PMC7773004 DOI: 10.1016/j.medidd.2020.100078] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 02/09/2023] Open
Abstract
This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.
Collapse
Key Words
- ADMET, absorption, distribution, metabolism and excretion – toxicity in pharmacokinetics
- AMP, antimicrobial peptide
- AMR, antimicrobial resistance
- ATCC, ATCC cell collection
- Antibiotic
- BAM, β-barrel assembly machinery
- CC50, cytotoxic concentration to kill 50% of cells
- CD, circular dichroism
- CFU, colony forming unit
- CLSI, clinical and laboratory standards institute
- CMS, colistin methane sulfonate
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- ESKAPE, acronym encompassing six bacterial pathogens (often carrying antibiotic resistance): Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp
- FDA, U. S. Food and Drug Administration
- HABP, hospital acquired bacterial pneumonia
- HDP, host-defense peptide
- HEK293, human embryonic kidney 293 cells
- HK-2, human kidney 2 cells (proximal tubular cell line)
- HepG2, human hepatocellular carcinoma cell line
- Hpg, 4-hydroxy-phenyl glycine
- ITC, isothermal titration calorimetry
- KPC, Klebsiella pneumoniae metallo-β-lactamase C resistant
- LPS, lipopolysaccharide
- LptA, lipopolysaccharide transport protein A
- LptC, lipopolysaccharide transport protein C
- LptD, lipopolysaccharide transport protein D
- MDR, multidrug-resistant
- MH-I, Müller-Hinton broth I
- MH-II, Müller-Hinton broth II (cation adjusted)
- MIC, minimal inhibitory concentration
- MRSA, methicilline-resistant S. aureus
- MSSA, methicilline-sensitive S. aureus
- MoA, mechanism (mode) of action
- NDM-1, New Delhi metallo-β-lactamase resistant
- NOAEL, no adverse effect level
- ODL, odilorhabdin
- OMPTA (outer membrane targeting antibiotic)
- OMPTA, outer membrane targeting antibiotic
- Omp, outer membrane protein
- PBMC, peripheral mononuclear blood cell
- PBP, penicillin-binding protein
- PBS, phosphate-buffered saline
- PK, pharmacokinetics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- POPG, 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-(1-glycerol)
- PrAMPs, polyproline antimicrobial peptides
- RBC, red blood cell
- SAR, structure-activity relationship
- SPR, surface plasmon resonance
- SPase I, signal peptidase I
- VABP, ventilator associated bacterial pneumonia
- VIM-1, beta-lactamase 2 (K. pneumoniae)
- VISA, vancomycin-intermediate S. aureus
- VRE, vancomycin-resistant enterococcus
- WHO, World Health Organization
- WT, wild type
- WTA, wall teichoic acid
- XDR, extremely drug-resistant
- antimicrobial peptide
- antimicrobial resistance
- bid, bis in die (two times a day)
- i.p., intraperitoneal
- i.v., intravenous
- lipopeptide
- mITT population, minimal intend-to-treat population
- peptide antibiotic
- s.c., subcutaneous
Collapse
Affiliation(s)
- Gregory Upert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Anatol Luther
- Bachem AG, Hauptstrasse 114, 4416 Bubendorf, Switzerland
| | - Daniel Obrecht
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Philipp Ermert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| |
Collapse
|
14
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
15
|
Zhang C, Seyedsayamdost MR. Discovery of a Cryptic Depsipeptide from
Streptomyces ghanaensis
via MALDI‐MS‐Guided High‐Throughput Elicitor Screening. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Zhang
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry Princeton University Princeton NJ 08544 USA
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
16
|
Zhang C, Seyedsayamdost MR. Discovery of a Cryptic Depsipeptide from Streptomyces ghanaensis via MALDI-MS-Guided High-Throughput Elicitor Screening. Angew Chem Int Ed Engl 2020; 59:23005-23009. [PMID: 32790054 DOI: 10.1002/anie.202009611] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 11/06/2022]
Abstract
Microbial genomes harbor an abundance of biosynthetic gene clusters, but most are expressed at low levels and need to be activated for characterization of their cognate natural products. In this work, we report the combination of high-throughput elicitor screening (HiTES) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid identification of cryptic peptide natural products. Application to Streptomyces ghanaensis identified amygdalin as an elicitor of a novel non-ribosomal peptide, which we term cinnapeptin. Complete structural elucidation revealed cinnapeptin as a cyclic depsipeptide with an unusual 2-methyl-cinnamoyl group. Insights into its biosynthesis were provided by whole genome sequencing and gene deletion studies, while bioactivity assays showed antimicrobial activity against Gram-positive bacteria and fission yeast. MALDI-HiTES is a broadly applicable tool for the discovery of cryptic peptides encoded in microbial genomes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
17
|
Wang S, Tian L, Liu H, Li X, Zhang J, Chen X, Jia X, Zheng X, Wu S, Chen Y, Yan J, Wu L. Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. MOLECULAR PLANT 2020; 13:1078-1093. [PMID: 32445888 DOI: 10.1016/j.molp.2020.05.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Non-conventional peptides (NCPs), which include small open reading frame-encoded peptides, play critical roles in fundamental biological processes. In this study, we developed an integrated peptidogenomic pipeline using high-throughput mass spectra to probe a customized six-frame translation database and applied it to large-scale identification of NCPs in plants.A total of 1993 and 1860 NCPs were unambiguously identified in maize and Arabidopsis, respectively. These NCPs showed distinct characteristics compared with conventional peptides and were derived from introns, 3' UTRs, 5' UTRs, junctions, and intergenic regions. Furthermore, our results showed that translation events in unannotated transcripts occur more broadly than previously thought. In addition, we found that dozens of maize NCPs are enriched within regions associated with phenotypic variations and domestication selection, indicating that they potentially are involved in genetic regulation of complex traits and domestication in maize. Taken together, our study developed an integrated peptidogenomic pipeline for large-scale identification of NCPs in plants, which would facilitate global characterization of NCPs from other plants. The identification of large-scale NCPs in both monocot (maize) and dicot (Arabidopsis) plants indicates that a large portion of plant genome can be translated into biologically functional molecules, which has important implications for functional genomic studies.
Collapse
Affiliation(s)
- Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingmeng Jia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xu Zheng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shubiao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
18
|
Genome Mining as New Challenge in Natural Products Discovery. Mar Drugs 2020; 18:md18040199. [PMID: 32283638 PMCID: PMC7230286 DOI: 10.3390/md18040199] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Drug discovery is based on bioactivity screening of natural sources, traditionally represented by bacteria fungi and plants. Bioactive natural products and their secondary metabolites have represented the main source for new therapeutic agents, used as drug leads for new antibiotics and anticancer agents. After the discovery of the first biosynthetic genes in the last decades, the researchers had in their hands the tool to understand the biosynthetic logic and genetic basis leading to the production of these compounds. Furthermore, in the genomic era, in which the number of available genomes is increasing, genome mining joined to synthetic biology are offering a significant help in drug discovery. In the present review we discuss the importance of genome mining and synthetic biology approaches to identify new natural products, also underlining considering the possible advantages and disadvantages of this technique. Moreover, we debate the associated techniques that can be applied following to genome mining for validation of data. Finally, we review on the literature describing all novel natural drugs isolated from bacteria, fungi, and other living organisms, not only from the marine environment, by a genome-mining approach, focusing on the literature available in the last ten years.
Collapse
|
19
|
Ben‐Lulu M, Gaster E, Libman A, Pappo D. Synthesis of Biaryl‐Bridged Cyclic Peptides via Catalytic Oxidative Cross‐Coupling Reactions. Angew Chem Int Ed Engl 2020; 59:4835-4839. [DOI: 10.1002/anie.201913305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Mor Ben‐Lulu
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| | - Eden Gaster
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| | - Anna Libman
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| | - Doron Pappo
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| |
Collapse
|
20
|
Ben‐Lulu M, Gaster E, Libman A, Pappo D. Synthesis of Biaryl‐Bridged Cyclic Peptides via Catalytic Oxidative Cross‐Coupling Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mor Ben‐Lulu
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| | - Eden Gaster
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| | - Anna Libman
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| | - Doron Pappo
- Department of ChemistryBen-Gurion University of the Negev Beer Sheva 84105 Israel
| |
Collapse
|
21
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Izoré T, Cryle MJ. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 2019; 35:1120-1139. [PMID: 30207358 DOI: 10.1039/c8np00038g] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to July 2018 Non-ribosomal peptide synthetase (NRPS) machineries are complex, multi-domain proteins that are responsible for the biosynthesis of many important, peptide-derived compounds. By decoupling peptide synthesis from the ribosome, NRPS assembly lines are able to access a significant pool of amino acid monomers for peptide synthesis. This is combined with a modular protein architecture that allows for great variation in stereochemistry, peptide length, cyclisation state and further modifications. The architecture of NRPS assembly lines relies upon a repetitive set of catalytic domains, which are organised into modules responsible for amino acid incorporation. Central to NRPS-mediated biosynthesis is the carrier protein (CP) domain, to which all intermediates following initial monomer activation are bound during peptide synthesis up until the final handover to the thioesterase domain that cleaves the mature peptide from the NRPS. This mechanism makes understanding the protein-protein interactions that occur between different NRPS domains during peptide biosynthesis of crucial importance to understanding overall NRPS function. This endeavour is also highly challenging due to the inherent flexibility and dynamics of NRPS systems. In this review, we present the current state of understanding of the protein-protein interactions that govern NRPS-mediated biosynthesis, with a focus on insights gained from structural studies relating to CP domain interactions within these impressive peptide assembly lines.
Collapse
Affiliation(s)
- Thierry Izoré
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
23
|
Martin H C, Ibáñez R, Nothias LF, Boya P CA, Reinert LK, Rollins-Smith LA, Dorrestein PC, Gutiérrez M. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry and molecular networking. Sci Rep 2019; 9:3019. [PMID: 30816229 PMCID: PMC6395710 DOI: 10.1038/s41598-019-39583-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Amphibian populations worldwide have declined and in some cases become extinct due to chytridiomycosis, a pandemic disease caused by the fungus Batrachochytrium dendrobatidis; however, some species have survived these fungal epidemics. Previous studies have suggested that the resistance of these species is due to the presence of cutaneous bacteria producing antifungal metabolites. As our understanding of these metabolites is still limited, we assessed the potential of such compounds against human-relevant fungi such as Aspergillus. In this work we isolated 201 bacterial strains from fifteen samples belonging to seven frog species collected in the highlands of Panama and tested them against Aspergillus fumigatus. Among the 29 bacterial isolates that exhibited antifungal activity, Pseudomonas cichorii showed the greatest inhibition. To visualize the distribution of compounds and identify them in the inhibition zone produced by P. cichorii, we employed MALDI imaging mass spectrometry (MALDI IMS) and MS/MS molecular networking. We identified viscosin and massetolides A, F, G and H in the inhibition zone. Furthermore, viscosin was isolated and evaluated in vitro against A. fumigatus and B. dendrobatidis showing MIC values of 62.50 µg/mL and 31.25 µg/mL, respectively. This is the first report of cyclic depsipeptides with antifungal activity isolated from frog cutaneous bacteria.
Collapse
Affiliation(s)
- Christian Martin H
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.,Departamento de Zoología, Universidad de Panamá, Panama, Republic of Panama
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.
| |
Collapse
|
24
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
25
|
Lim YH, Wong FT, Yeo WL, Ching KC, Lim YW, Heng E, Chen S, Tsai DJ, Lauderdale TL, Shia KS, Ho YS, Hoon S, Ang EL, Zhang MM, Zhao H. Auroramycin: A Potent Antibiotic from Streptomyces roseosporus by CRISPR-Cas9 Activation. Chembiochem 2018; 19:1716-1719. [PMID: 29799651 DOI: 10.1002/cbic.201800266] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 11/09/2022]
Abstract
Silent biosynthetic gene clusters represent a potentially rich source of new bioactive compounds. We report the discovery, characterization, and biosynthesis of a novel doubly glycosylated 24-membered polyene macrolactam from a silent biosynthetic gene cluster in Streptomyces roseosporus by using the CRISPR-Cas9 gene cluster activation strategy. Structural characterization of this polyketide, named auroramycin, revealed a rare isobutyrylmalonyl extender unit and a unique pair of amino sugars. Relative and absolute stereochemistry were determined by using a combination of spectroscopic analyses, chemical derivatization, and computational analysis. The activated gene cluster for auroramycin production was also verified by transcriptional analyses and gene deletions. Finally, auroramycin exhibited potent anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity towards clinical drug-resistant isolates.
Collapse
Affiliation(s)
- Yee Hwee Lim
- Organic Chemistry, Institute of Chemical and Engineering Sciences (ICES), A*STAR, 8 Biomedical Grove, Neuros #07-01/02/03, Singapore, 138665, Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab (MEL), Biomedical Science Institutes, A*STAR, 61 Biopolis Drive, Proteos #13-02, Singapore, 138673, Singapore
| | - Wan Lin Yeo
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore
| | - Kuan Chieh Ching
- Organic Chemistry, Institute of Chemical and Engineering Sciences (ICES), A*STAR, 8 Biomedical Grove, Neuros #07-01/02/03, Singapore, 138665, Singapore
| | - Yi Wee Lim
- Organic Chemistry, Institute of Chemical and Engineering Sciences (ICES), A*STAR, 8 Biomedical Grove, Neuros #07-01/02/03, Singapore, 138665, Singapore
| | - Elena Heng
- Molecular Engineering Lab (MEL), Biomedical Science Institutes, A*STAR, 61 Biopolis Drive, Proteos #13-02, Singapore, 138673, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute (BTI), A*STAR, 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| | - De-Juin Tsai
- National Institute of Infectious Diseases and Vaccinology (DJT & TLL), and, Institute of Biotechnology and Pharmaceutical Research (KSS), National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan, R.O.C
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology (DJT & TLL), and, Institute of Biotechnology and Pharmaceutical Research (KSS), National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan, R.O.C
| | - Kak-Shan Shia
- National Institute of Infectious Diseases and Vaccinology (DJT & TLL), and, Institute of Biotechnology and Pharmaceutical Research (KSS), National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan, R.O.C
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), A*STAR, 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| | - Shawn Hoon
- Molecular Engineering Lab (MEL), Biomedical Science Institutes, A*STAR, 61 Biopolis Drive, Proteos #13-02, Singapore, 138673, Singapore
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore
| | - Mingzi M Zhang
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory (MERL), Science and Engineering Institutes, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore, 138669, Singapore
- 215 Roger Adams Laboratory, Box C3, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018; 7:E44. [PMID: 29789481 PMCID: PMC6022970 DOI: 10.3390/antibiotics7020044] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
Collapse
Affiliation(s)
- Joachim J Hug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Katarina Cirnski
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
27
|
Parkinson EI, Tryon JH, Goering AW, Ju KS, McClure RA, Kemball JD, Zhukovsky S, Labeda DP, Thomson RJ, Kelleher NL, Metcalf WW. Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster via Metabologenomics. ACS Chem Biol 2018; 13:1029-1037. [PMID: 29510029 DOI: 10.1021/acschembio.7b01089] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural products (NPs) are a rich source of medicines, but traditional discovery methods are often unsuccessful due to high rates of rediscovery. Genetic approaches for NP discovery are promising, but progress has been slow due to the difficulty of identifying unique biosynthetic gene clusters (BGCs) and poor gene expression. We previously developed the metabologenomics method, which combines genomic and metabolomic data to discover new NPs and their BGCs. Here, we utilize metabologenomics in combination with molecular networking to discover a novel class of NPs, the tyrobetaines: nonribosomal peptides with an unusual trimethylammonium tyrosine residue. The BGC for this unusual class of compounds was identified using metabologenomics and computational structure prediction data. Heterologous expression confirmed the BGC and suggests an unusual mechanism for trimethylammonium formation. Overall, the discovery of the tyrobetaines shows the great potential of metabologenomics combined with molecular networking and computational structure prediction for identifying interesting biosynthetic reactions and novel NPs.
Collapse
Affiliation(s)
- Elizabeth I. Parkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James H. Tryon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony W. Goering
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kou-San Ju
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ryan A. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy D. Kemball
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sara Zhukovsky
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David P. Labeda
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William W. Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| |
Collapse
|
28
|
Peters DS, Romesberg FE, Baran PS. Scalable Access to Arylomycins via C-H Functionalization Logic. J Am Chem Soc 2018; 140:2072-2075. [PMID: 29381350 PMCID: PMC5817625 DOI: 10.1021/jacs.8b00087] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Arylomycins
are a promising class of “latent” antibacterial
natural products currently in preclinical development. Access to analogues
within this family has previously required a lengthy route involving
multiple functional group manipulations that is costly and time-intensive
on scale. This study presents a simplified route predicated on simple
C–H functionalization logic that is enabled by a Cu-mediated
oxidative phenol coupling that mimics the putative biosynthesis. This
operationally simple macrocyclization is the largest of its
kind and can be easily performed on gram scale. The application of
this new route to a formal synthesis of the natural product and a
collection of new analogues along with their biological evaluation
is also reported.
Collapse
Affiliation(s)
- David S Peters
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
29
|
Tailhades J, Schoppet M, Greule A, Peschke M, Brieke C, Cryle MJ. A route to diastereomerically pure phenylglycine thioester peptides: crucial intermediates for investigating glycopeptide antibiotic biosynthesis. Chem Commun (Camb) 2018; 54:2146-2149. [DOI: 10.1039/c7cc09409d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-ribosomal peptides contain an array of amino acid building blocks that can present challenges for the synthesis of important intermediates. Here we report a route to incorporate phenylglycine residues in peptide thioesters without significant racemisation.
Collapse
Affiliation(s)
- Julien Tailhades
- EMBL Australia, Monash University
- Clayton
- Australia
- The Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging
| | - Melanie Schoppet
- EMBL Australia, Monash University
- Clayton
- Australia
- The Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging
| | - Anja Greule
- EMBL Australia, Monash University
- Clayton
- Australia
- The Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging
| | - Madeleine Peschke
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- Jahnstrasse 29
- Germany
| | - Clara Brieke
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- Jahnstrasse 29
- Germany
| | - Max J. Cryle
- EMBL Australia, Monash University
- Clayton
- Australia
- The Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging
| |
Collapse
|
30
|
Hsu CC, Baker MW, Gaasterland T, Meehan MJ, Macagno ER, Dorrestein PC. Top-Down Atmospheric Ionization Mass Spectrometry Microscopy Combined With Proteogenomics. Anal Chem 2017; 89:8251-8258. [PMID: 28692290 DOI: 10.1021/acs.analchem.7b01096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry-based protein analysis has become an important methodology for proteogenomic mapping by providing evidence for the existence of proteins predicted at the genomic level. However, screening and identification of proteins directly on tissue samples, where histological information is preserved, remain challenging. Here we demonstrate that the ambient ionization source, nanospray desorption electrospray ionization (nanoDESI), interfaced with light microscopy allows for protein profiling directly on animal tissues at the microscopic scale. Peptide fragments for mass spectrometry analysis were obtained directly on ganglia of the medicinal leech (Hirudo medicinalis) without in-gel digestion. We found that a hypothetical protein, which is predicted by the leech genome, is highly expressed on the specialized neural cells that are uniquely found in adult sex segmental ganglia. Via this top-down analysis, a post-translational modification (PTM) of tyrosine sulfation to this neuropeptide was resolved. This three-in-one platform, including mass spectrometry, microscopy, and genome mining, provides an effective way for mappings of proteomes under the lens of a light microscope.
Collapse
Affiliation(s)
- Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
32
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Covington BC, McLean JA, Bachmann BO. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 2017; 34:6-24. [PMID: 27604382 PMCID: PMC5214543 DOI: 10.1039/c6np00048g] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2000 to 2016The labor-intensive process of microbial natural product discovery is contingent upon identifying discrete secondary metabolites of interest within complex biological extracts, which contain inventories of all extractable small molecules produced by an organism or consortium. Historically, compound isolation prioritization has been driven by observed biological activity and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. Decades of discovery using variants of these methods has generated the natural pharmacopeia but also contributes to recent high rediscovery rates. However, genomic sequencing reveals substantial untapped potential in previously mined organisms, and can provide useful prescience of potentially new secondary metabolites that ultimately enables isolation. Recently, advances in comparative metabolomics analyses have been coupled to secondary metabolic predictions to accelerate bioactivity and abundance-independent discovery work flows. In this review we will discuss the various analytical and computational techniques that enable MS-based metabolomic applications to natural product discovery and discuss the future prospects for comparative metabolomics in natural product discovery.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| | - John A McLean
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA. and Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
34
|
Vanbellingen QP, Castellanos A, Rodriguez-Silva M, Paudel I, Chambers JW, Fernandez-Lima FA. Analysis of Chemotherapeutic Drug Delivery at the Single Cell Level Using 3D-MSI-TOF-SIMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:2033-2040. [PMID: 27582118 PMCID: PMC5088064 DOI: 10.1007/s13361-016-1485-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 05/18/2023]
Abstract
In this work, we show the advantages of label-free, tridimensional mass spectrometry imaging using dual beam analysis (25 keV Bi3+) and depth profiling (20 keV with a distribution centered at Ar1500+) coupled to time of flight secondary ion mass spectrometry (3D-MSI-TOF-SIMS) for the study of A-172 human glioblastoma cell line treated with B-cell lymphoma 2 (Bcl-2) inhibitor ABT-737. The high spatial (~250 nm) and high mass resolution (m/Δm ~10,000) of TOF-SIMS permitted the localization and identification of the intact, unlabeled drug molecular ion (m/z 811.26 C42H44ClN6O5S2- [M - H]-) as well as characteristic fragment ions. We propose a novel approach based on the inspection of the drug secondary ion yield, which showed a good correlation with the drug concentration during cell treatment at therapeutic dosages (0-200 μM with 4 h incubation). Chemical maps using endogenous molecular markers showed that the ABT-737 is mainly localized in subsurface regions and absent in the nucleus. A semiquantitative workflow is proposed to account for the biological cell diversity based on the spatial distribution of endogenous molecular markers (e.g., nuclei and cytoplasm) and secondary ion confirmation based on the ratio of drug-specific fragments to molecular ion as a function of the therapeutic dosage. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Quentin P Vanbellingen
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Anthony Castellanos
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Monica Rodriguez-Silva
- Department of Cellular Biology and Pharmacology, Department of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Iru Paudel
- Department of Cellular Biology and Pharmacology, Department of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Jeremy W Chambers
- Department of Cellular Biology and Pharmacology, Department of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | - Francisco A Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
35
|
Yu X, Liu F, Zou Y, Tang MC, Hang L, Houk KN, Tang Y. Biosynthesis of Strained Piperazine Alkaloids: Uncovering the Concise Pathway of Herquline A. J Am Chem Soc 2016; 138:13529-13532. [PMID: 27690412 DOI: 10.1021/jacs.6b09464] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature synthesizes many strained natural products that have diverse biological activities. Uncovering these biosynthetic pathways may lead to biomimetic strategies for organic synthesis of such compounds. In this work, we elucidated the concise biosynthetic pathway of herquline A, a highly strained and reduced fungal piperazine alkaloid. The pathway builds on a nonribosomal peptide synthetase derived dityrosine piperazine intermediate. Following enzymatic reduction of the P450-cross-linked dicyclohexadienone, N-methylation of the piperazine serves as a trigger that leads to a cascade of stereoselective and nonenzymatic transformations. Computational analysis of key steps in the pathway rationalizes the observed reactivities.
Collapse
Affiliation(s)
- Xia Yu
- School of Pharmaceutical Sciences, Central South University , Changsha, Hunan 410013, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 2016; 70:25-40. [PMID: 27381522 DOI: 10.1038/ja.2016.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.
Collapse
|
37
|
Tian X, Zhang Z, Yang T, Chen M, Li J, Chen F, Yang J, Li W, Zhang B, Zhang Z, Wu J, Zhang C, Long L, Xiao J. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level. Front Microbiol 2016; 7:998. [PMID: 27446038 PMCID: PMC4921485 DOI: 10.3389/fmicb.2016.00998] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.
Collapse
Affiliation(s)
- Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Zhewen Zhang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Tingting Yang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Meili Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jie Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Fei Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jin Yang
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Wenjie Li
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Zhang Zhang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jiayan Wu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Jingfa Xiao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| |
Collapse
|
38
|
Gonsior M, Mühlenweg A, Tietzmann M, Rausch S, Poch A, Süssmuth RD. Biosynthesis of the Peptide Antibiotic Feglymycin by a Linear Nonribosomal Peptide Synthetase Mechanism. Chembiochem 2015; 16:2610-4. [PMID: 26515424 DOI: 10.1002/cbic.201500432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/12/2022]
Abstract
Feglymycin, a peptide antibiotic produced by Streptomyces sp. DSM 11171, consists mostly of nonproteinogenic phenylglycine-type amino acids. It possesses antibacterial activity against methicillin-resistant Staphylococcus aureus strains and antiviral activity against HIV. Inhibition of the early steps of bacterial peptidoglycan synthesis indicated a mode of action different from those of other peptide antibiotics. Here we describe the identification and assignment of the feglymycin (feg) biosynthesis gene cluster, which codes for a 13-module nonribosomal peptide synthetase (NRPS) system. Inactivation of an NRPS gene and supplementation of a hydroxymandelate oxidase mutant with the amino acid l-Hpg proved the identity of the feg cluster. Feeding of Hpg-related unnatural amino acids was not successful. This characterization of the feg cluster is an important step to understanding the biosynthesis of this potent antibacterial peptide.
Collapse
Affiliation(s)
- Melanie Gonsior
- Institut für Chemie, Technische Universität BerlinStrasse des 17. Juni 124, 10623, Berlin, Germany
| | - Agnes Mühlenweg
- Institut für Chemie, Technische Universität BerlinStrasse des 17. Juni 124, 10623, Berlin, Germany
| | - Marcel Tietzmann
- Institut für Chemie, Technische Universität BerlinStrasse des 17. Juni 124, 10623, Berlin, Germany
| | - Saskia Rausch
- Institut für Chemie, Technische Universität BerlinStrasse des 17. Juni 124, 10623, Berlin, Germany
| | - Annette Poch
- Institut für Chemie, Technische Universität BerlinStrasse des 17. Juni 124, 10623, Berlin, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität BerlinStrasse des 17. Juni 124, 10623, Berlin, Germany.
| |
Collapse
|
39
|
Vyatkina K, Wu S, Dekker LJM, VanDuijn MM, Liu X, Tolić N, Dvorkin M, Alexandrova S, Luider TM, Paša-Tolić L, Pevzner PA. De Novo Sequencing of Peptides from Top-Down Tandem Mass Spectra. J Proteome Res 2015; 14:4450-62. [DOI: 10.1021/pr501244v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kira Vyatkina
- Algorithmic
Biology Laboratory, Saint Petersburg Academic University, 8/3 Khlopina
Str, Saint Petersburg 194021, Russia
- Center
for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Si Wu
- Department
of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson
Pkwy, Norman, Oklahoma 73019, United States
| | - Lennard J. M. Dekker
- Department
of Neurology, Erasmus University Medical Center, Postbus 2040,
3000 CA Rotterdam, The Netherlands
| | - Martijn M. VanDuijn
- Department
of Neurology, Erasmus University Medical Center, Postbus 2040,
3000 CA Rotterdam, The Netherlands
| | - Xiaowen Liu
- Department
of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 535 West Michigan Street, IT 475, Indianapolis, Indiana 46202, United States
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 West 10th Street, Suite 5000, Indianapolis, Indiana 46202, United States
| | - Nikola Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mikhail Dvorkin
- Algorithmic
Biology Laboratory, Saint Petersburg Academic University, 8/3 Khlopina
Str, Saint Petersburg 194021, Russia
| | - Sonya Alexandrova
- Algorithmic
Biology Laboratory, Saint Petersburg Academic University, 8/3 Khlopina
Str, Saint Petersburg 194021, Russia
| | - Theo M. Luider
- Department
of Neurology, Erasmus University Medical Center, Postbus 2040,
3000 CA Rotterdam, The Netherlands
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Pavel A. Pevzner
- Center
for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
- Department
of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
41
|
Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass spectrometry tools and workflows for revealing microbial chemistry. Analyst 2015; 140:4949-66. [PMID: 25996313 PMCID: PMC5444374 DOI: 10.1039/c5an00171d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the time Van Leeuwenhoek was able to observe microbes through a microscope, an innovation that led to the birth of the field of microbiology, we have aimed to understand how microorganisms function, interact and communicate. The exciting progress in the development of analytical technologies and workflows has demonstrated that mass spectrometry is a very powerful technique for the interrogation of microbiology at the molecular level. In this review, we aim to highlight the available and emerging tools in mass spectrometry for microbial analysis by overviewing the methods and workflow advances for taxonomic identification, microbial interaction, dereplication and drug discovery. We emphasize their potential for future development and point out unsolved problems and future directions that would aid in the analysis of the chemistry produced by microbes.
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
42
|
Johnson AR, Carlson EE. Collision-Induced Dissociation Mass Spectrometry: A Powerful Tool for Natural Product Structure Elucidation. Anal Chem 2015; 87:10668-78. [PMID: 26132379 DOI: 10.1021/acs.analchem.5b01543] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mass spectrometry is a powerful tool in natural product structure elucidation, but our ability to directly correlate fragmentation spectra to these structures lags far behind similar efforts in peptide sequencing and proteomics. Often, manual data interpretation is required and our knowledge of the expected fragmentation patterns for many scaffolds is limited, further complicating analysis. Here, we summarize advances in natural product structure elucidation based upon the application of collision induced dissociation fragmentation mechanisms.
Collapse
Affiliation(s)
- Andrew R Johnson
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Erin E Carlson
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.,Department of Molecular and Cellular Biochemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| |
Collapse
|
43
|
Wu C, Kim HK, van Wezel GP, Choi YH. Metabolomics in the natural products field--a gateway to novel antibiotics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 13:11-17. [PMID: 26190678 DOI: 10.1016/j.ddtec.2015.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Metabolomics is a high throughput analytical technique used to globally measure low molecular weight metabolites, allowing simultaneous metabolic comparison of different biological samples and thus highlighting differentially produced compounds as potential biomarkers. Although microbes are renowned as prolific sources of antibiotics, the traditional approach for new anti-infectives discovery is time-consuming and labor-intensive. In this review, the use of NMR- or MS-based metabolomics is proposed as an efficient approach to find antimicrobials in microbial single- or co-cultures.
Collapse
Affiliation(s)
- Changsheng Wu
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
44
|
Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep 2015; 32:1207-35. [DOI: 10.1039/c5np00025d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylglycine-type amino acids occur in a wide variety of peptide natural products. Herein structures and properties of these peptides as well as the biosynthetic origin and incorporation of phenylglycines are discussed.
Collapse
Affiliation(s)
| | - Clara Brieke
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | - Max J. Cryle
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | | |
Collapse
|
45
|
|
46
|
Waters AL, Peraud O, Kasanah N, Sims JW, Kothalawala N, Anderson MA, Abbas SH, Rao KV, Jupally VR, Kelly M, Dass A, Hill RT, Hamann MT. An analysis of the sponge Acanthostrongylophora igens' microbiome yields an actinomycete that produces the natural product manzamine A. FRONTIERS IN MARINE SCIENCE 2014; 1:54. [PMID: 27785452 PMCID: PMC5076551 DOI: 10.3389/fmars.2014.00054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp.) that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899) (Class Demospongiae, Order Haplosclerida, Family Petrosiidae). These findings suggest that a general strategy of analysis of the macroorganism's microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.
Collapse
Affiliation(s)
- Amanda L. Waters
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Olivier Peraud
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Baltimore, MD, USA
| | - Noer Kasanah
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
- Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| | - James W. Sims
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Nuwan Kothalawala
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Matthew A. Anderson
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Baltimore, MD, USA
| | - Samuel H. Abbas
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Karumanchi V. Rao
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Vijay R. Jupally
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Michelle Kelly
- National Center for Coasts and Oceans, National Institute of Water and Atmospheric Research, Auckland, New Zealand
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Baltimore, MD, USA
| | - Mark T. Hamann
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
- Division of Pharmacology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
- National Center for Natural Product Research, University of Mississippi, University, MS, USA
| |
Collapse
|
47
|
Abstract
Antibiotics have been a cornerstone of innovation in the fields of public health, agriculture, and medicine. However, recent studies have shed new light on the collateral damage they impart on the indigenous host-associated communities. These drugs have been found to alter the taxonomic, genomic, and functional capacity of the human gut microbiota, with effects that are rapid and sometimes persistent. Broad-spectrum antibiotics reduce bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Furthermore, antibiotic treatment selects for resistant bacteria, increases opportunities for horizontal gene transfer, and enables intrusion of pathogenic organisms through depletion of occupied natural niches, with profound implications for the emergence of resistance. Because these pervasive alterations can be viewed as an uncoupling of mutualistic host-microbe relationships, it is valuable to reconsider antimicrobial therapies in the context of an ecological framework. Understanding the biology of competitive exclusion, interspecies protection, and gene flow of adaptive functions in the gut environment may inform the design of new strategies that treat infections while preserving the ecology of our beneficial constituents.
Collapse
|
48
|
Aldemir H, Richarz R, Gulder TAM. Das biokatalytische Repertoire natürlicher Biarylbildung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Aldemir H, Richarz R, Gulder TAM. The Biocatalytic Repertoire of Natural Biaryl Formation. Angew Chem Int Ed Engl 2014; 53:8286-93. [DOI: 10.1002/anie.201401075] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 02/04/2023]
|
50
|
Brieke C, Cryle MJ. A Facile Fmoc Solid Phase Synthesis Strategy To Access Epimerization-Prone Biosynthetic Intermediates of Glycopeptide Antibiotics. Org Lett 2014; 16:2454-7. [DOI: 10.1021/ol500840f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Clara Brieke
- Department
of Biomolecular
Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse
29, 69120 Heidelberg, Germany
| | - Max J. Cryle
- Department
of Biomolecular
Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse
29, 69120 Heidelberg, Germany
| |
Collapse
|