1
|
Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem 2024; 7:89. [PMID: 38637654 PMCID: PMC11026467 DOI: 10.1038/s42004-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| | - Sanjeevan Rajendran
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Lei Li
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| |
Collapse
|
2
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
3
|
Okorafor IC, Chen M, Tang Y. High-Titer Production of Olivetolic Acid and Analogs in Engineered Fungal Host Using a Nonplant Biosynthetic Pathway. ACS Synth Biol 2021; 10:2159-2166. [PMID: 34415146 DOI: 10.1021/acssynbio.1c00309] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The microbial synthesis of cannabinoids and related molecules requires access to the intermediate olivetolic acid (OA). Whereas plant enzymes have been explored for E. coli and yeast biosynthesis, moderate yields and shunt product formation are major hurdles. Here, based on the chemical logic to form 2,4-dihydroxybenzoate-containing natural products, we discovered a set of fungal tandem polyketide synthases that can produce OA and the related octanoyl-primed derivative sphaerophorolcarboxylic acid in high titers using the model organism Aspergillus nidulans. This new set of enzymes will enable new synthetic biology strategies to access microbial cannabinoids.
Collapse
|
4
|
Kamdem RST, Ogbole O, Wafo P, Philip FU, Ali Z, Ntie-Kang F, Khan IA, Spiteller P. Rational engineering of specialized metabolites in bacteria and fungi. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Bacteria and fungi have a high potential to produce compounds that display large structural change and diversity, thus displaying an extensive range of biological activities. Secondary metabolism or specialized metabolism is a term for pathways and small molecule products of metabolism that are not mandatory for the subsistence of the organism but improve and control their phenotype. Their interesting biological activities have occasioned their application in the fields of agriculture, food, and pharmaceuticals. Metabolic engineering is a powerful approach to improve access to these treasured molecules or to rationally engineer new ones. A thorough overview of engineering methods in secondary metabolism is presented, both in heterologous and epigenetic modification. Engineering methods to modify the structure of some secondary metabolite classes in their host are also intensively assessed.
Collapse
Affiliation(s)
- Ramsay Soup Teoua Kamdem
- Institut für Organische und Analytische Chemie , Universität Bremen , Leobener Strasse 7 (NW2C) , Bremen 28359 , Germany
- Department of Organic Chemistry, Higher Teachers’ Training College , University of Yaounde I. , P. O. Box 47 , Yaoundé , Cameroon
| | - Omonike Ogbole
- Department of Pharmacognosy , University of Ibadan , Ibadan , Nigeria
| | - Pascal Wafo
- Department of Organic Chemistry, Higher Teachers’ Training College , University of Yaounde I. , P. O. Box 47 , Yaoundé , Cameroon
| | - F. Uzor Philip
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences , University of Nigeria , Nsukka , 410001 Nigeria
| | - Zulfiqar Ali
- National Center for Natural Products Research , School of Pharmacy , University of Mississippi , MS 38677 , USA
| | - Fidele Ntie-Kang
- Chemistry Department , University of Buea , P. O. Box 63 , Buea , Cameroon
- Department of Pharmaceutical Chemistry , Martin-Luther-Universitat Halle-Wittenberg , Wolfgang-Langenbeck Str. 4 , Halle (Saale) 06120 , Germany
- Department of Informatics and Chemistry , University of Chemistry and Technology Prague , Technická 5 166 28 , Prague 6 Dejvice , Czech Republic
| | - Ikhlas A. Khan
- National Center for Natural Products Research , School of Pharmacy , University of Mississippi , MS 38677 , USA
| | - Peter Spiteller
- Institut für Organische und Analytische Chemie , Universität Bremen , Leobener Strasse 7 (NW2C) , Bremen 28359 , Germany
| |
Collapse
|
5
|
Asai T. Synthetic Biology Based Construction of Fungal Diterpenoid Pyrone Library. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
6
|
Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nat Commun 2020; 11:1830. [PMID: 32286350 PMCID: PMC7156458 DOI: 10.1038/s41467-020-15664-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
A synthetic biology method based on heterologous biosynthesis coupled with genome mining is a promising approach for increasing the opportunities to rationally access natural product with novel structures and biological activities through total biosynthesis and combinatorial biosynthesis. Here, we demonstrate the advantage of the synthetic biology method to explore biological activity-related chemical space through the comprehensive heterologous biosynthesis of fungal decalin-containing diterpenoid pyrones (DDPs). Genome mining reveals putative DDP biosynthetic gene clusters distributed in five fungal genera. In addition, we design extended DDP pathways by combinatorial biosynthesis. In total, ten DDP pathways, including five native pathways, four extended pathways and one shunt pathway, are heterologously reconstituted in a genetically tractable heterologous host, Aspergillus oryzae, resulting in the production of 22 DDPs, including 15 new analogues. We also demonstrate the advantage of expanding the diversity of DDPs to probe various bioactive molecules through a wide range of biological evaluations. Combining genome mining and heterologous expression in a genetically tractable host can lead to bioactive natural products discovery and production. Here, the authors employ this strategy for new decalin-containing diterpenoid pyrenes production by expressing native, extended, and shunt pathways in Aspergillus oryzae.
Collapse
|
7
|
Abstract
The genes for Monascus naphthoquinone (monasone) biosynthesis are embedded in and form a composite supercluster with the Monascus azaphilone pigment biosynthetic gene cluster. Early biosynthetic intermediates are shared by the two pathways. Some enzymes encoded by the supercluster play double duty in contributing to both pathways, while others are specific for one or the other pathway. The monasone subcluster is independently regulated and inducible by elicitation with competing microorganisms. This study illustrates genomic and biosynthetic parsimony in fungi and proposes a potential path for the evolution of the mosaic-like azaphilone-naphthoquinone supercluster. The monasone subcluster also encodes a two-tiered self-resistance mechanism that models resistance determinants that may transfer to target microorganisms or emerge in cancer cells in case of naphthoquinone-type cytotoxic agents. Despite the important biological activities of natural product naphthoquinones, the biosynthetic pathways of and resistance mechanisms against such compounds remain poorly understood in fungi. Here, we report that the genes responsible for the biosynthesis of Monascus naphthoquinones (monasones) reside within the gene cluster for Monascus azaphilone pigments (MonAzPs). We elucidate the biosynthetic pathway of monasones by a combination of comparative genome analysis, gene knockouts, heterologous coexpression, and in vivo and in vitro enzymatic reactions to show that this pathway branches from the first polyketide intermediate of MonAzPs. Furthermore, we propose that the monasone subset of biosynthetic genes also encodes a two-tiered resistance strategy in which an inducible monasone-specific exporter expels monasones from the mycelia, while residual intracellular monasones may be rendered nontoxic through a multistep reduction cascade.
Collapse
|
8
|
Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1351-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
9
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
10
|
Herbst DA, Huitt-Roehl CR, Jakob RP, Kravetz JM, Storm PA, Alley JR, Townsend CA, Maier T. The structural organization of substrate loading in iterative polyketide synthases. Nat Chem Biol 2018; 14:474-479. [PMID: 29610486 DOI: 10.1038/s41589-018-0026-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 11/09/2022]
Abstract
Polyketide synthases (PKSs) are microbial multienzymes for the biosynthesis of biologically potent secondary metabolites. Polyketide production is initiated by the loading of a starter unit onto an integral acyl carrier protein (ACP) and its subsequent transfer to the ketosynthase (KS). Initial substrate loading is achieved either by multidomain loading modules or by the integration of designated loading domains, such as starter unit acyltransferases (SAT), whose structural integration into PKS remains unresolved. A crystal structure of the loading/condensing region of the nonreducing PKS CTB1 demonstrates the ordered insertion of a pseudodimeric SAT into the condensing region, which is aided by the SAT-KS linker. Cryo-electron microscopy of the post-loading state trapped by mechanism-based crosslinking of ACP to KS reveals asymmetry across the CTB1 loading/-condensing region, in accord with preferential 1:2 binding stoichiometry. These results are critical for re-engineering the loading step in polyketide biosynthesis and support functional relevance of asymmetric conformations of PKSs.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | | | - Roman P Jakob
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | - Jacob M Kravetz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Philip A Storm
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie R Alley
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Timm Maier
- Department of Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Bai J, Lu Y, Xu YM, Zhang W, Chen M, Lin M, Gunatilaka AAL, Xu Y, Molnár I. Diversity-Oriented Combinatorial Biosynthesis of Hybrid Polyketide Scaffolds from Azaphilone and Benzenediol Lactone Biosynthons. Org Lett 2016; 18:1262-5. [PMID: 26934205 DOI: 10.1021/acs.orglett.6b00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two disparate polyketide families, the benzenediol lactones and the azaphilones, are produced by fungi using iterative polyketide synthase (iPKS) enzymes consisting of collaborating partner subunits. Exploitation of this common biosynthetic logic using iPKS subunit shuffling allowed the diversity-oriented combinatorial biosynthesis of unprecedented polyketide scaffolds new to nature, bearing structural motifs from both of these orthogonal natural product families. Starter unit acyltransferase domain replacements proved necessary but not sufficient to guarantee communication between iPKS subunits.
Collapse
Affiliation(s)
- Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China.,Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuanyuan Lu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Ya-ming Xu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Wei Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Ming Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Min Lin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
12
|
Vesth TC, Brandl J, Andersen MR. FunGeneClusterS: Predicting fungal gene clusters from genome and transcriptome data. Synth Syst Biotechnol 2016; 1:122-129. [PMID: 29062935 PMCID: PMC5640693 DOI: 10.1016/j.synbio.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 12/04/2022] Open
Abstract
Introduction Secondary metabolites of fungi are receiving an increasing amount of interest due to their prolific bioactivities and the fact that fungal biosynthesis of secondary metabolites often occurs from co-regulated and co-located gene clusters. This makes the gene clusters attractive for synthetic biology and industrial biotechnology applications. We have previously published a method for accurate prediction of clusters from genome and transcriptome data, which could also suggest cross-chemistry, however, this method was limited both in the number of parameters which could be adjusted as well as in user-friendliness. Furthermore, sensitivity to the transcriptome data required manual curation of the predictions. In the present work, we have aimed at improving these features. Results FunGeneClusterS is an improved implementation of our previous method with a graphical user interface for off- and on-line use. The new method adds options to adjust the size of the gene cluster(s) being sought as well as an option for the algorithm to be flexible with genes in the cluster which may not seem to be co-regulated with the remainder of the cluster. We have benchmarked the method using data from the well-studied Aspergillus nidulans and found that the method is an improvement over the previous one. In particular, it makes it possible to predict clusters with more than 10 genes more accurately, and allows identification of co-regulated gene clusters irrespective of the function of the genes. It also greatly reduces the need for manual curation of the prediction results. We furthermore applied the method to transcriptome data from A. niger. Using the identified best set of parameters, we were able to identify clusters for 31 out of 76 previously predicted secondary metabolite synthases/synthetases. Furthermore, we identified additional putative secondary metabolite gene clusters. In total, we predicted 432 co-transcribed gene clusters in A. niger (spanning 1.323 genes, 12% of the genome). Some of these had functions related to primary metabolism, e.g. we have identified a cluster for biosynthesis of biotin, as well as several for degradation of aromatic compounds. The data identifies that suggests that larger parts of the fungal genome than previously anticipated operates as gene clusters. This includes both primary and secondary metabolism as well as other cellular maintenance functions. Conclusion We have developed FunGeneClusterS in a graphical implementation and made the method capable of adjustments to different datasets and target clusters. The method is versatile in that it can predict co-regulated clusters not limited to secondary metabolism. Our analysis of data has shown not only the validity of the method, but also strongly suggests that large parts of fungal primary metabolism and cellular functions are both co-regulated and co-located.
Collapse
Affiliation(s)
- Tammi C Vesth
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads 223, Denmark
| | - Julian Brandl
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads 223, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads 223, Denmark
| |
Collapse
|
13
|
Metabolic Engineering for Production of Small Molecule Drugs: Challenges and Solutions. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Genetic regulation and manipulation for natural product discovery. Appl Microbiol Biotechnol 2016; 100:2953-65. [PMID: 26860941 DOI: 10.1007/s00253-016-7357-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/13/2022]
Abstract
Natural products are an important source of modern medical development, e.g., antibiotics, anticancers, immune modulators, etc. and will continue to be a powerful driving force for the discovery of novel potential drugs. In the heterologous hosts, natural products are biosynthesized using dedicated metabolic networks. By gene engineering, pathway reconstructing, and enzyme engineering, metabolic networks can be modified to synthesize novel compounds containing enhanced structural feature or produce a large quantity of known valuable bioactive compounds. The review introduces some important technical platforms and relevant examples of genetic regulation and manipulation to improve natural product titers or drive novel secondary metabolite discoveries.
Collapse
|
15
|
Rational biosynthetic approaches for the production of new-to-nature compounds in fungi. Fungal Genet Biol 2016; 89:89-101. [PMID: 26872866 DOI: 10.1016/j.fgb.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Abstract
Filamentous fungi have the ability to produce a wide range of secondary metabolites some of which are potent toxins whereas others are exploited as food additives or drugs. Fungal natural products still play an important role in the discovery of new chemical entities for potential use as pharmaceuticals. However, in most cases they cannot be directly used as drugs due to toxic side effects or suboptimal pharmacokinetics. To improve drug-like properties, including bioactivity and stability or to produce better precursors for semi-synthetic routes, one needs to generate non-natural derivatives from known fungal secondary metabolites. In this minireview, we describe past and recent biosynthetic approaches for the diversification of fungal natural products, covering examples from precursor-directed biosynthesis, mutasynthesis, metabolic engineering and biocombinatorial synthesis. To illustrate the current state-of-the-art, challenges and pitfalls, we lay particular emphasis on the class of fungal cyclodepsipeptides which have been studied longtime for product diversification and which are of pharmaceutical relevance as drugs.
Collapse
|
16
|
Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides. Nat Chem 2015; 7:737-43. [DOI: 10.1038/nchem.2308] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/23/2015] [Indexed: 01/20/2023]
|
17
|
Reen FJ, Romano S, Dobson ADW, O'Gara F. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms. Mar Drugs 2015; 13:4754-83. [PMID: 26264003 PMCID: PMC4557003 DOI: 10.3390/md13084754] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Stefano Romano
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
18
|
Winter JM, Cascio D, Dietrich D, Sato M, Watanabe K, Sawaya MR, Vederas JC, Tang Y. Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis. J Am Chem Soc 2015; 137:9885-93. [PMID: 26172141 DOI: 10.1021/jacs.5b04520] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM's SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that is also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. The crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.
Collapse
Affiliation(s)
- Jaclyn M Winter
- †Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Duilio Cascio
- §Department of Energy (DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - David Dietrich
- ∥Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michio Sato
- ⊥Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- ⊥Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michael R Sawaya
- §Department of Energy (DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - John C Vederas
- ∥Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yi Tang
- †Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States.,‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Mattern DJ, Valiante V, Unkles SE, Brakhage AA. Synthetic biology of fungal natural products. Front Microbiol 2015; 6:775. [PMID: 26284053 PMCID: PMC4519758 DOI: 10.3389/fmicb.2015.00775] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/14/2015] [Indexed: 01/08/2023] Open
Abstract
Synthetic biology is an ever-expanding field in science, also encompassing the research area of fungal natural product (NP) discovery and production. Until now, different aspects of synthetic biology have been covered in fungal NP studies from the manipulation of different regulatory elements and heterologous expression of biosynthetic pathways to the engineering of different multidomain biosynthetic enzymes such as polyketide synthases or non-ribosomal peptide synthetases. The following review will cover some of the exemplary studies of synthetic biology in filamentous fungi showing the capacity of these eukaryotes to be used as model organisms in the field. From the vast array of different NPs produced to the ease for genetic manipulation, filamentous fungi have proven to be an invaluable source for the further development of synthetic biology tools.
Collapse
Affiliation(s)
- Derek J Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Institute for Microbiology, Friedrich Schiller University , Jena, Germany
| | - Vito Valiante
- Leibniz Junior Research Group "Biobricks of Microbial Natural Product Syntheses" , Jena, Germany
| | - Shiela E Unkles
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews , St Andrews, UK
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany ; Institute for Microbiology, Friedrich Schiller University , Jena, Germany
| |
Collapse
|
20
|
Hashimoto M, Wakana D, Ueda M, Kobayashi D, Goda Y, Fujii I. Product identification of non-reducing polyketide synthases with C-terminus methyltransferase domain from Talaromyces stipitatus using Aspergillus oryzae heterologous expression. Bioorg Med Chem Lett 2015; 25:1381-4. [PMID: 25770780 DOI: 10.1016/j.bmcl.2015.02.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/26/2023]
Abstract
Talaromyces stipitatus ATCC 10500 possesses 17 non-reducing polyketide synthase (NR-PKS) genes. During the course of our functional analysis of PKS genes with a C-terminus methyltransferase domain from T. stipitatus, we expressed tspks2, tspks3 and tspks4 genes in the heterologous host Aspergillus oryzae, respectively. Although the tspks4 transformant gave no apparent product in HPLC analysis, a novel azaphilone pentaketide (3) was identified along with two known related products from the tspks2 transformant. Of four hexaketide products from the tspks3 transformant, two new compounds were identified to be 2-acetyl-7-methyl-3,6,8-trihydroxynaphthalene (4) and its derivative fused with α-methyl-α,β-unsaturated γ-lactone (7).
Collapse
Affiliation(s)
- Makoto Hashimoto
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Daigo Wakana
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Miki Ueda
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Daisuke Kobayashi
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan.
| |
Collapse
|
21
|
Sun H, Liu Z, Zhao H, Ang EL. Recent advances in combinatorial biosynthesis for drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:823-33. [PMID: 25709407 PMCID: PMC4334309 DOI: 10.2147/dddt.s63023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1) precursor-directed biosynthesis; 2) enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3) pathway-level recombination. Recent examples of combinatorial biosynthesis employing these strategies will also be highlighted in this review.
Collapse
Affiliation(s)
- Huihua Sun
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Zihe Liu
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
22
|
Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases. Proc Natl Acad Sci U S A 2014; 111:12354-9. [PMID: 25049383 DOI: 10.1073/pnas.1406999111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Combinatorial biosynthesis aspires to exploit the promiscuity of microbial anabolic pathways to engineer the synthesis of new chemical entities. Fungal benzenediol lactone (BDL) polyketides are important pharmacophores with wide-ranging bioactivities, including heat shock response and immune system modulatory effects. Their biosynthesis on a pair of sequentially acting iterative polyketide synthases (iPKSs) offers a test case for the modularization of secondary metabolic pathways into "build-couple-pair" combinatorial synthetic schemes. Expression of random pairs of iPKS subunits from four BDL model systems in a yeast heterologous host created a diverse library of BDL congeners, including a polyketide with an unnatural skeleton and heat shock response-inducing activity. Pairwise heterocombinations of the iPKS subunits also helped to illuminate the innate, idiosyncratic programming of these enzymes. Even in combinatorial contexts, these biosynthetic programs remained largely unchanged, so that the iPKSs built their cognate biosynthons, coupled these building blocks into chimeric polyketide intermediates, and catalyzed intramolecular pairing to release macrocycles or α-pyrones. However, some heterocombinations also provoked stuttering, i.e., the relaxation of iPKSs chain length control to assemble larger homologous products. The success of such a plug and play approach to biosynthesize novel chemical diversity bodes well for bioprospecting unnatural polyketides for drug discovery.
Collapse
|
23
|
Liu T, Sanchez JF, Chiang YM, Oakley BR, Wang CCC. Rational domain swaps reveal insights about chain length control by ketosynthase domains in fungal nonreducing polyketide synthases. Org Lett 2014; 16:1676-9. [PMID: 24593241 PMCID: PMC3993715 DOI: 10.1021/ol5003384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
A facile
genetic methodology in the filamentous fungus Aspergillus
nidulans allowed exchange of the starter unit ACP transacylase
(SAT) domain
in the nonreduced polyketide synthase (NR-PKS) AfoE of the asperfuranone
pathway with the SAT domains from 10 other NR-PKSs. The newly created
hybrid with the NR-PKS AN3386 is able to accept a longer starter unit
in place of the native substrate to create a novel aromatic polyketide in vivo.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy , Los Angeles, California 90089, United States
| | | | | | | | | |
Collapse
|
24
|
Soehano I, Yang L, Ding F, Sun H, Low ZJ, Liu X, Liang ZX. Insights into the programmed ketoreduction of partially reducing polyketide synthases: stereo- and substrate-specificity of the ketoreductase domain. Org Biomol Chem 2014; 12:8542-9. [DOI: 10.1039/c4ob01777c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evidence are provided to support that partially reducing polyketide synthases achieve programmed ketoreduction by differential recognition of polyketide intermediates.
Collapse
Affiliation(s)
- Ishin Soehano
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Lifeng Yang
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Feiqing Ding
- School of Mathematics and Physics
- Nanyang Technological University
- , Singapore
| | - Huihua Sun
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Zhen Jie Low
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Xuewei Liu
- School of Mathematics and Physics
- Nanyang Technological University
- , Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences Nanyang Technological University
- , Singapore
| |
Collapse
|
25
|
Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 2013; 41:301-13. [PMID: 24146366 DOI: 10.1007/s10295-013-1366-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Fungi are well known for their ability to produce a multitude of natural products. On the one hand their potential to provide beneficial antibiotics and immunosuppressants has been maximized by the pharmaceutical industry to service the market with cost-efficient drugs. On the other hand identification of trace amounts of known mycotoxins in food and feed samples is of major importance to ensure consumer health and safety. Although several fungal natural products, their biosynthesis and regulation are known today, recent genome sequences of hundreds of fungal species illustrate that the secondary metabolite potential of fungi has been substantially underestimated. Since expression of genes and subsequent production of the encoded metabolites are frequently cryptic or silent under standard laboratory conditions, strategies for activating these hidden new compounds are essential. This review will cover the latest advances in fungal genome mining undertaken to unlock novel products.
Collapse
|
26
|
Deane CD, Mitchell DA. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor. J Ind Microbiol Biotechnol 2013; 41:315-31. [PMID: 24142337 DOI: 10.1007/s10295-013-1361-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/30/2013] [Indexed: 12/24/2022]
Abstract
Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as "reverse-discovered" natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome-size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs.
Collapse
Affiliation(s)
- Caitlin D Deane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
27
|
Deane CD, Melby JO, Molohon KJ, Susarrey AR, Mitchell DA. Engineering unnatural variants of plantazolicin through codon reprogramming. ACS Chem Biol 2013; 8:1998-2008. [PMID: 23823732 DOI: 10.1021/cb4003392] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plantazolicin (PZN) is a polyheterocyclic natural product derived from a ribosomal peptide that harbors remarkable antibiotic selectivity for the causative agent of anthrax, Bacillus anthracis. To simultaneously establish the structure-activity relationship of PZN and the substrate tolerance of the biosynthetic pathway, an Escherichia coli expression strain was engineered to heterologously produce PZN analogues. Variant PZN precursor genes were produced by site-directed mutagenesis and later screened by mass spectrometry to assess post-translational modification and export by E. coli. From a screen of 72 precursor peptides, 29 PZN variants were detected. This analogue collection provided insight into the selectivity of the post-translational modifying enzymes and established the boundaries of the natural biosynthetic pathway. Unlike other studied thiazole/oxazole-modified microcins, the biosynthetic machinery appeared to be finely tuned toward the production of PZN, such that the cognate enzymes did not process even other naturally occurring sequences from similar biosynthetic clusters. The modifying enzymes were exquisitely selective, installing heterocycles only at predefined positions within the precursor peptides while leaving neighboring residues unmodified. Nearly all substitutions at positions normally harboring heterocycles prevented maturation of a PZN variant, though some exceptions were successfully produced lacking a heterocycle at the penultimate residue. No variants containing additional heterocycles were detected, although several peptide sequences yielded multiple PZN variants as a result of varying oxidation states of select residues. Eleven PZN variants were produced in sufficient quantity to facilitate purification and assessment of their antibacterial activity, providing insight into the structure-activity relationship of PZN.
Collapse
Affiliation(s)
- Caitlin D. Deane
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joel O. Melby
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Katie J. Molohon
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Aziz R. Susarrey
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Xu Y, Zhou T, Zhang S, Xuan LJ, Zhan J, Molnár I. Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis. J Am Chem Soc 2013; 135:10783-91. [PMID: 23822773 PMCID: PMC3780601 DOI: 10.1021/ja4041362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A crucial step during the programmed biosynthesis of fungal polyketide natural products is the release of the final polyketide intermediate from the iterative polyketide synthases (iPKSs), most frequently by a thioesterase (TE) domain. Realization of combinatorial biosynthesis with iPKSs requires TE domains that can accept altered polyketide intermediates generated by hybrid synthase enzymes and successfully release "unnatural products" with the desired structure. Achieving precise control over product release is of paramount importance with O-C bond-forming TE domains capable of macrocyclization, hydrolysis, transesterification, and pyrone formation that channel reactive, pluripotent polyketide intermediates to defined structural classes of bioactive secondary metabolites. By exploiting chimeric iPKS enzymes to offer substrates with controlled structural variety to two orthologous O-C bond-forming TE domains in situ, we show that these enzymes act as nonequivalent decision gates, determining context-dependent release mechanisms and overall product flux. Inappropriate choice of a TE could eradicate product formation in an otherwise highly productive chassis. Conversely, a judicious choice of a TE may allow the production of a desired hybrid metabolite. Finally, a serendipitous choice of a TE may reveal the unexpected productivity of some chassis. The ultimate decision gating role of TE domains influences the observable outcome of combinatorial domain swaps, emphasizing that the deduced programming rules are context dependent. These factors may complicate engineering the biosynthesis of a desired "unnatural product" but may also open additional avenues to create biosynthetic novelty based on fungal nonreduced polyketides.
Collapse
Affiliation(s)
- Yuquan Xu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Tong Zhou
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Li-Jiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
- Bio5 Institute, The University of Arizona, 1657 E. Helen St., Tucson, AZ 85721, USA
| |
Collapse
|
29
|
Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 2013; 97:6337-45. [DOI: 10.1007/s00253-013-4745-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
|
30
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial Domain Swaps Provide Insights into the Rules of Fungal Polyketide Synthase Programming and the Rational Synthesis of Non-Native Aromatic Products. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial domain swaps provide insights into the rules of fungal polyketide synthase programming and the rational synthesis of non-native aromatic products. Angew Chem Int Ed Engl 2013; 52:1718-21. [PMID: 23283670 DOI: 10.1002/anie.201208550] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Anna L Vagstad
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
32
|
Scharf DH, Brakhage AA. Engineering fungal secondary metabolism: A roadmap to novel compounds. J Biotechnol 2013; 163:179-83. [DOI: 10.1016/j.jbiotec.2012.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 02/03/2023]
|
33
|
Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A 2012; 110:E99-107. [PMID: 23248299 DOI: 10.1073/pnas.1205532110] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.
Collapse
|
34
|
Abstract
The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| |
Collapse
|
35
|
Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Appl Environ Microbiol 2012; 78:8234-44. [PMID: 23001671 DOI: 10.1128/aem.01808-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.
Collapse
|
36
|
Wang WJ, Vogel H, Yao YJ, Ping L. The nonribosomal peptide and polyketide synthetic gene clusters in two strains of entomopathogenic fungi inCordyceps. FEMS Microbiol Lett 2012; 336:89-97. [DOI: 10.1111/j.1574-6968.2012.02658.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/01/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Heiko Vogel
- Department of Entomology; Max-Planck-Institute for Chemical Ecology; Jena; Germany
| | - Yi-Jian Yao
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing; China
| | - Liyan Ping
- Department of Bioorganic Chemistry; Max-Planck-Institute for Chemical Ecology; Jena; Germany
| |
Collapse
|
37
|
Sun H, Ho CL, Ding F, Soehano I, Liu XW, Liang ZX. Synthesis of (R)-Mellein by a Partially Reducing Iterative Polyketide Synthase. J Am Chem Soc 2012; 134:11924-7. [DOI: 10.1021/ja304905e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huihua Sun
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
| | - Chun Loong Ho
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
| | - Feiqing Ding
- School
of Mathematics and Physics, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Ishin Soehano
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
| | - Xue-Wei Liu
- School
of Mathematics and Physics, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
| |
Collapse
|
38
|
Abstract
Recursive pathways are broadly defined as those that catalyze a series of reactions such that the key, bond-forming functional group of the substrate is always regenerated in each cycle, allowing for a new cycle of reactions to begin. Recursive carbon-chain elongation pathways in nature produce fatty acids, polyketides, isoprenoids and α-keto acids (αKAs), which all use modular or iterative approaches for chain elongation. Recently, an artificial pathway for αKA elongation has been built that uses an engineered isopropylmalate synthase to recursively condense acetyl-CoA with αKAs. This synthetic approach expands the possibilities for recursive pathways beyond the modular or iterative synthesis of natural products and serves as a case study for understanding the challenges of building recursive pathways from nonrecursive enzymes. There exists the potential to design synthetic recursive pathways far beyond what nature has evolved.
Collapse
|
39
|
Davison J, al Fahad A, Cai M, Song Z, Yehia SY, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ. Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. Proc Natl Acad Sci U S A 2012; 109:7642-7. [PMID: 22508998 PMCID: PMC3356636 DOI: 10.1073/pnas.1201469109] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A gene cluster encoding the biosynthesis of the fungal tropolone stipitatic acid was discovered in Talaromyces stipitatus (Penicillium stipitatum) and investigated by targeted gene knockout. A minimum of three genes are required to form the tropolone nucleus: tropA encodes a nonreducing polyketide synthase which releases 3-methylorcinaldehyde; tropB encodes a FAD-dependent monooxygenase which dearomatizes 3-methylorcinaldehyde via hydroxylation at C-3; and tropC encodes a non-heme Fe(II)-dependent dioxygenase which catalyzes the oxidative ring expansion to the tropolone nucleus via hydroxylation of the 3-methyl group. The tropA gene was characterized by heterologous expression in Aspergillus oryzae, whereas tropB and tropC were successfully expressed in Escherichia coli and the purified TropB and TropC proteins converted 3-methylorcinaldehyde to a tropolone in vitro. Finally, knockout of the tropD gene, encoding a cytochrome P450 monooxygenase, indicated its place as the next gene in the pathway, probably responsible for hydroxylation of the 6-methyl group. Comparison of the T. stipitatus tropolone biosynthetic cluster with other known gene clusters allows clarification of important steps during the biosynthesis of other fungal compounds including the xenovulenes, citrinin, sepedonin, sclerotiorin, and asperfuranone.
Collapse
Affiliation(s)
- Jack Davison
- University of Bristol, School of Chemistry, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Ahmed al Fahad
- University of Bristol, School of Chemistry, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Zhongshu Song
- University of Bristol, School of Chemistry, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Samar Y. Yehia
- Future University in Egypt, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, New Cairo, Egypt 11477; and
| | - Colin M. Lazarus
- University of Bristol, School of Biological Sciences, Woodland Road, Bristol BS8 1UG, United Kingdom
| | - Andrew M. Bailey
- University of Bristol, School of Biological Sciences, Woodland Road, Bristol BS8 1UG, United Kingdom
| | - Thomas J. Simpson
- University of Bristol, School of Chemistry, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Russell J. Cox
- University of Bristol, School of Chemistry, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
40
|
Ahuja M, Chiang YM, Chang SL, Praseuth MB, Entwistle R, Sanchez JF, Lo HC, Yeh HH, Oakley BR, Wang CCC. Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc 2012; 134:8212-21. [PMID: 22510154 DOI: 10.1021/ja3016395] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome sequencing has revealed that fungi have the ability to synthesize many more natural products (NPs) than are currently known, but methods for obtaining suitable expression of NPs have been inadequate. We have developed a successful strategy that bypasses normal regulatory mechanisms. By efficient gene targeting, we have replaced, en masse, the promoters of nonreducing polyketide synthase (NR-PKS) genes, key genes in NP biosynthetic pathways, and other genes necessary for NR-PKS product formation or release. This has allowed us to determine the products of eight NR-PKSs of Aspergillus nidulans, including seven novel compounds, as well as the NR-PKS genes required for the synthesis of the toxins alternariol (8) and cichorine (19).
Collapse
Affiliation(s)
- Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nikolouli K, Mossialos D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 2012; 34:1393-403. [PMID: 22481301 DOI: 10.1007/s10529-012-0919-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Eolou, 41221, Larissa, Greece
| | | |
Collapse
|
42
|
Condurso HL, Bruner SD. Structure guided approaches toward exploiting and manipulating nonribosomal peptide and polyketide biosynthetic pathways. Curr Opin Chem Biol 2012; 16:162-9. [DOI: 10.1016/j.cbpa.2012.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
|
43
|
Klejnstrup ML, Frandsen RJN, Holm DK, Nielsen MT, Mortensen UH, Larsen TO, Nielsen JB. Genetics of Polyketide Metabolism in Aspergillus nidulans. Metabolites 2012; 2:100-33. [PMID: 24957370 PMCID: PMC3901194 DOI: 10.3390/metabo2010100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/23/2011] [Accepted: 01/17/2012] [Indexed: 12/12/2022] Open
Abstract
Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly organized in gene clusters, which often are silent or barely expressed under laboratory conditions, making discovery and analysis difficult. Fortunately, the genome sequences of several filamentous fungi are publicly available, greatly facilitating the establishment of links between genes and metabolites. This review covers the attempts being made to trigger the activation of polyketide metabolism in the fungal model organism Aspergillus nidulans. Moreover, it will provide an overview of the pathways where ten polyketide synthase genes have been coupled to polyketide products. Therefore, the proposed biosynthesis of the following metabolites will be presented; naphthopyrone, sterigmatocystin, aspyridones, emericellamides, asperthecin, asperfuranone, monodictyphenone/emodin, orsellinic acid, and the austinols.
Collapse
Affiliation(s)
- Marie L Klejnstrup
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B221, DK-2800 Kgs. Lyngby, Denmark.
| | - Rasmus J N Frandsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B223, DK-2800 Kgs. Lyngby, Denmark.
| | - Dorte K Holm
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B223, DK-2800 Kgs. Lyngby, Denmark.
| | - Morten T Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B223, DK-2800 Kgs. Lyngby, Denmark.
| | - Uffe H Mortensen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B223, DK-2800 Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B221, DK-2800 Kgs. Lyngby, Denmark.
| | - Jakob B Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B223, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
44
|
Winter JM, Tang Y. Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol 2012; 23:736-43. [PMID: 22221832 DOI: 10.1016/j.copbio.2011.12.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Small molecules produced in Nature possess exquisite chemical diversity and continue to be an inspiration for the development of new therapeutic agents. In their host organisms, natural products are assembled and modified using dedicated biosynthetic pathways. By rationally reprogramming and manipulating these pathways, unnatural metabolites containing enhanced structural features that were otherwise inaccessible can be obtained. Additionally, new chemical entities can be synthesized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds.
Collapse
Affiliation(s)
- Jaclyn M Winter
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | | |
Collapse
|