1
|
Wang H, Sang Z, Chen Y, Wei S, Qiu K, Liu Z, Zhang J, Tan H. The chemical constituents of endophytic fungus Nigrospora chinensis of Gannan navel orange. Nat Prod Res 2024; 38:530-538. [PMID: 36125431 DOI: 10.1080/14786419.2022.2125969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
A new drimane sesquiterpene 11-methoxyl-danilol (1) was obtained from endophytic fungus Nigrospora chinensis of Gannan navel orange pulp. Its structure was established to possess a natural rarely-occurring tricyclic acetal fused ring system by means of spectroscopic data analyses. Meanwhile, five known compounds danilol (2), redoxcitrinin (3), euphorbol (4), ergosta-7,24(24')-dien-3β-ol (5), and ergosta-4,6,8(14),22-tetraen-3-one (6) were also co-isolated in this fungus. The results of antibacterial and cytotoxic activity screenings showed that compound 5 displayed antibacterial activities against Staphylococcus aureus and MRSA (methicillin-resistant S. aureus) with MIC value of 50 μg/mL. [Figure: see text].
Collapse
Affiliation(s)
- Huan Wang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zihuan Sang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, People's Republic of China
| | - Yan Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, People's Republic of China
| | - Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Ziyue Liu
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China
| | - Haibo Tan
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Su YH, Wu JS, Dai YZ, Chen YT, Lin YX, Tzeng YM, Liao JW. Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin. TOXICS 2023; 11:547. [PMID: 37368647 DOI: 10.3390/toxics11060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Antrocin is a novel compound isolated from Antrodia cinnamomea, and is classified as a sesquiterpene lactone. The therapeutic efficacy of antrocin has been studied, and it has shown an antiproliferative effect on various cancers. The aim of this study was to evaluate the anti-oxidant activity, potential genotoxicity, and oral toxicity of antrocin. Ames tests with five different strains of Salmonella typhimurium, chromosomal aberration tests in CHO-K1 cells, and micronucleus tests in ICR mice were conducted. The results of anti-oxidant capacity assays showed that antrocin has great anti-oxidant activity and is a moderately strong antimutagenic agent. In the results of the genotoxicity assays, antrocin did not show any mutagenic potential. In the 28-day oral toxicity test, Sprague Dawley rats were gavaged with 7.5 or 37.5 mg/kg of antrocin for 28 consecutive days. In addition, 7.5 mg/kg sorafenib, an anti-cancer drug, was used as a positive control for toxicity comparison. At the end of the study, antrocin did not produce any toxic effects according to hematology, serum chemistry, urine analysis, or histopathological examinations. According to the results of the genotoxicity and 28-day oral toxicity study, antrocin, at a dose of 37.5 mg/kg, did not cause adverse effects and can be a reference dose for therapeutic agents in humans.
Collapse
Affiliation(s)
- Yi-Hui Su
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Shuan Wu
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402, Taiwan
| | - Yan-Zhen Dai
- Research Center for Animal Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yng-Tay Chen
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402, Taiwan
| | - Yan-Xiu Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Chen TH, Chen CT, Lee CF, Huang RJ, Chen KL, Lu YC, Liang SY, Pham MT, Rao YK, Wu SH, Chein RJ, Lin HC. The Biosynthetic Gene Cluster of Mushroom-Derived Antrocin Encodes Two Dual-Functional Haloacid Dehalogenase-like Terpene Cyclases. Angew Chem Int Ed Engl 2023; 62:e202215566. [PMID: 36583947 DOI: 10.1002/anie.202215566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
(-)-Antrocin (1), produced by the medicinal mushroom Antrodia cinnamomea, is a potent antiproliferative compound. The biosynthetic gene cluster of 1 was identified, and the pathway was characterized by heterologous expression. We characterized a haloacid dehalogenase-like terpene cyclase AncC that biosynthesizes the drimane-type sesquiterpene (+)-albicanol (2) from farnesyl pyrophosphate (FPP). Biochemical characterization of AncC, including kinetic studies and mutagenesis, demonstrated the functions of two domains: a terpene cyclase (TC) and a pyrophosphatase (PPase). The TC domain first cyclizes FPP to albicanyl pyrophosphate, and the PPase domain then removes the pyrophosphate to form 2. Intriguingly, AncA (94 % sequence identity to AncC), in the same gene cluster, converts FPP into (R)-trans-γ-monocyclofarnesol instead of 2. Notably, Y283/F375 in the TC domain of AncA serve as a gatekeeper in controlling the formation of a cyclofarnesoid rather than a drimane-type scaffold.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Chien-Ting Chen
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Chi-Fang Lee
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Rou-Jie Huang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C.,Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan R.O.C
| | - Kuan-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Yuan-Chun Lu
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Yerra Koteswara Rao
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan R.O.C
| |
Collapse
|
4
|
Shih ML, Lee JC, Cheng SY, Lawal B, Ho CL, Wu CC, Tzeng DTW, Chen JH, Wu ATH. Transcriptomic discovery of a theranostic signature (SERPINE1/MMP3/COL1A1/SPP1) for head and neck squamous cell carcinomas and identification of antrocinol as a candidate drug. Comput Biol Med 2022; 150:106185. [PMID: 37859283 DOI: 10.1016/j.compbiomed.2022.106185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are prevalent malignancies with a disappointing prognosis, necessitating the search for theranostic biomarkers for better management. Based on a meta-analysis of transcriptomic data containing ten clinical datasets of HNSCC and matched nonmalignant samples, we identified SERPINE1/MMP3/COL1A1/SPP1 as essential hub genes as the potential theranostic biomarkers. Our analysis suggests these hub genes are associated with the extracellular matrix, peptidoglycans, cell migration, wound-healing processes, complement and coagulation cascades, and the AGE-RAGE signaling pathway within the tumor microenvironment. Also, these hub genes were associated with tumor-immune infiltrating cells and immunosuppressive phenotypes of HNSCC. Further investigation of The Cancer Genome Atlas (TCGA) cohorts revealed that these hub genes were associated with staging, metastasis, and poor survival in HNSCC patients. Molecular docking simulations were performed to evaluate binding activities between the hub genes and antrocinol, a novel small-molecule derivative of an anticancer phytochemical antrocin previously discovered by our group. Antrocinol showed high affinities to MMP3 and COL1A1. Notably, antrocinol presented satisfactory drug-like and ADMET properties for therapeutic applications. These results hinted at the potential of antrocinol as an anti-HNSCC candidate via targeting MMP3 and COL1A1. In conclusion, we identified hub genes: SERPINE1/MMP3/COL1A1/SPP1 as potential diagnostic biomarkers and antrocinol as a potential new drug for HNSCC.
Collapse
Affiliation(s)
- Ming-Lang Shih
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, 325, Section 2, Chenggong Road, Taipei, 114, Taiwan
| | - Sheng-Yao Cheng
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, 325, Section 2, Chenggong Road, Taipei, 114, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ching-Liang Ho
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jia-Hong Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 110, Taiwan.
| |
Collapse
|
5
|
He SD, Guo XQ, Li J, Zhang YC, Chen LM, Kang TR. Base‐Promoted Reaction of Phenols with Spirocylic λ3‐iodanes: Access to both 2‐Iodovinyl Aryl Ethers and Diaryl Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shun-Dong He
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu CHINA
| | - Xiao-Qiang Guo
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Jun Li
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Yu-Cheng Zhang
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
6
|
Donkor B, Umar AR, Opoku E. Mechanistic elucidation of the tandem Diels–Alder/(3 + 2) cycloadditions in the design and syntheses of heterosteroids. J Mol Model 2022; 28:70. [DOI: 10.1007/s00894-022-05063-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
|
7
|
Wu M, Han Z, Ni H, Wang N, Ding K, Lu Y. Phosphine-catalyzed Divergent Domino Processes between γ-Substituted Allenoates and Carbonyl-Activated Alkenes. Chem Sci 2022; 13:3161-3168. [PMID: 35414887 PMCID: PMC8926293 DOI: 10.1039/d1sc06364b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Highly enantioselective and chemodivergent domino reactions between γ-substituted allenoates and activated alkenes have been developed. In the presence of NUSIOC-Phos, triketone enone substrates smoothly reacted with γ-substituted allenoates to form bicyclic furofurans in good yields with high stereoselectivities. Alternatively, the reaction between diester-activated enone substrates and γ-substituted allenoates formed chiral conjugated 1,3-dienes in good yields with excellent enantioselectivities. Notably, by employing substrates with subtle structural difference, under virtually identical reaction conditions, we were able to access two types of chiral products, which are of biological relevance and synthetic importance. Highly enantioselective and chemodivergent domino reactions between γ-substituted allenoates and activated alkenes have been developed.![]()
Collapse
Affiliation(s)
- Mingyue Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Huanzhen Ni
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Nengzhong Wang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
8
|
Ura T, Shimbo D, Yudasaka M, Tada N, Itoh A. Synthesis of Phenol-Derived cis-Vinyl Ethers Using Ethynyl Benziodoxolone. Chem Asian J 2020; 15:4000-4004. [PMID: 33058543 DOI: 10.1002/asia.202001102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Indexed: 12/19/2022]
Abstract
The stereoselective synthesis of cis-β-phenoxyvinyl benziodoxolones (cis-β-phenol-VBXs) from an ethynyl benziodoxolone-acetonitrile complex (EBX-MeCN) and various phenols is reported herein. The reaction tolerates different phenol derivatives, including complex natural products, and can be conducted under mild conditions. The synthesis was performed in an aqueous solvent in the absence and presence of a catalytic amount of a base. Selectively mono- and di-deuterated cis-β-phenol-VBXs were also prepared. cis-β-Phenol-VBXs were stereospecifically derivatized to cis-alkynylvinyl ethers and cis-iodovinyl ethers without loss of stereoselectivity or reduction in the deuterium/hydrogen ratio.
Collapse
Affiliation(s)
- Tomoki Ura
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Daisuke Shimbo
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masaharu Yudasaka
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Norihiro Tada
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
9
|
Cai X, Liang W, Liu M, Li X, Dai M. Catalytic Hydroxycyclopropanol Ring-Opening Carbonylative Lactonization to Fused Bicyclic Lactones. J Am Chem Soc 2020; 142:13677-13682. [PMID: 32687339 PMCID: PMC8232350 DOI: 10.1021/jacs.0c06179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel palladium-catalyzed ring opening carbonylative lactonization of readily available hydroxycyclopropanols was developed to efficiently synthesize tetrahydrofuran (THF) or tetrahydropyran (THP)-fused bicyclic γ-lactones, two privileged scaffolds often found in natural products. The reaction features mild reaction conditions, good functional group tolerability, and scalability. Its application was demonstrated in a short total synthesis of (±)-paeonilide. The fused bicyclic γ-lactone products can be easily diversified to other medicinally important scaffolds, which further broadens the application of this new carbonylation method.
Collapse
Affiliation(s)
- Xinpei Cai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Weida Liang
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mingxin Liu
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiating Li
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Kuang Y, Li B, Wang Z, Qiao X, Ye M. Terpenoids from the medicinal mushroom Antrodia camphorata: chemistry and medicinal potential. Nat Prod Rep 2020; 38:83-102. [PMID: 32720965 DOI: 10.1039/d0np00023j] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to February 2020Antrodia camphorata is a medicinal mushroom endemic to Taiwan for the treatment of intoxication, liver injury, cancer, and inflammation. Owing to its rare occurrence and potent pharmacological activities, efforts have been devoted to identify its bioactive constituents, especially terpenoids. Since 1995, a total of 162 terpenoids including triterpenoids, meroterpenoids, sesquiterpenoids, diterpenoids, and steroids have been characterized. The ergostane-type triterpenoids (antcins) and meroterpenoids (antroquinonols) are characteristic constituents of A. camphorata. The terpenoids show anti-cancer, hepatoprotective, anti-inflammatory, anti-diabetic, and neuroprotective activities. This review summarizes the research progress on terpenoids in A. camphorata during 1995-2020, including structural diversity, resources, biosynthesis, pharmacological activities, metabolism, and toxicity. The medicinal potential of the terpenoids is also discussed.
Collapse
Affiliation(s)
- Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
11
|
Pandit YB, Liu R. Gold‐Catalyzed Aminoaromatizations of 1,2‐Bis(alkynyl)benzenes with Anthranils to Yield 1‐Amino‐2‐napthaldehyde Products. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yashwant Bhaskar Pandit
- Frontier Research Center for Fundamental and Basic Science of MattersDepartment of ChemistryNational Tsing-Hua University Hsinchu Taiwan, ROC
| | - Rai‐Shung Liu
- Frontier Research Center for Fundamental and Basic Science of MattersDepartment of ChemistryNational Tsing-Hua University Hsinchu Taiwan, ROC
| |
Collapse
|
12
|
Tessier R, Nandi RK, Dwyer BG, Abegg D, Sornay C, Ceballos J, Erb S, Cianférani S, Wagner A, Chaubet G, Adibekian A, Waser J. Ethynylation of Cysteine Residues: From Peptides to Proteins in Vitro and in Living Cells. Angew Chem Int Ed Engl 2020; 59:10961-10970. [DOI: 10.1002/anie.202002626] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Romain Tessier
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
- Present address: Department of Chemical BiologyMax Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Raj Kumar Nandi
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
- Present address: Department of ChemistryDiamond Harbour Women's University Sarisha South 24 Parganas West Bengal 743368 India
| | - Brendan G. Dwyer
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Daniel Abegg
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199)LabEx Medalis, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Javier Ceballos
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO)Université de StrasbourgCNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO)Université de StrasbourgCNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199)LabEx Medalis, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199)LabEx Medalis, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Alexander Adibekian
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
13
|
Tessier R, Nandi RK, Dwyer BG, Abegg D, Sornay C, Ceballos J, Erb S, Cianférani S, Wagner A, Chaubet G, Adibekian A, Waser J. Ethynylation of Cysteine Residues: From Peptides to Proteins in Vitro and in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Romain Tessier
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
- Present address: Department of Chemical BiologyMax Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Raj Kumar Nandi
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
- Present address: Department of ChemistryDiamond Harbour Women's University Sarisha South 24 Parganas West Bengal 743368 India
| | - Brendan G. Dwyer
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Daniel Abegg
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199)LabEx Medalis, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Javier Ceballos
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO)Université de StrasbourgCNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO)Université de StrasbourgCNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199)LabEx Medalis, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199)LabEx Medalis, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Alexander Adibekian
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
14
|
Synthesis of Natural (-)-Antrocin and its Enantiomer via Stereoselective Aldol Reaction. Molecules 2020; 25:molecules25040831. [PMID: 32075004 PMCID: PMC7070359 DOI: 10.3390/molecules25040831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The total synthesis of (-)-antrocin and its enantiomer are presented. Antrocin (-)-1 is an important natural product which acts as an antiproliferative agent in a metastatic breast cancer cell line (IC50: 0.6 μM). The key features of this synthesis are: (a) selective anti-addition of trimethylsilyl cyanide (TMSCN) to α,β-unsaturated ketone; (b) resolution of (±)-7 using chiral auxiliary L-dimethyl tartrate through formation of cyclic ketal diastereomers followed by simple column chromatography separation and acid hydrolysis; (c) substrate-controlled stereoselective aldol condensation of (+)-12 with monomeric formaldehyde and pyridinium chlorochromate (PCC) oxidation for synthesis of essential lactone core in (-)-14; and (d) non-basic Lombardo olefination of the carbonyl at the final step to yield (-)-antrocin. In addition, (+)-9 cyclic ketal diastereomer was converted to (+)-antrocin with similar reaction sequences.
Collapse
|
15
|
He C, Cai J, Zheng Y, Pei C, Qiu L, Xu X. Gold-Catalyzed Hydroalkoxylation/Povarov Reaction Cascade of Alkynols with N-Aryl Imines: Synthesis of Tetrahydroquinolines. ACS OMEGA 2019; 4:15754-15763. [PMID: 31572879 PMCID: PMC6761745 DOI: 10.1021/acsomega.9b02693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 05/10/2023]
Abstract
A one-pot gold-catalyzed hydroalkoxylation/Povarov reaction cascade of alkynols with N-aryl imines or in situ generated iminium has been developed. The protocol provides a facile access to a series of fused tricyclic tetrahydroquinolines with a broad substrate scope using readily available materials under mild conditions. The unique mechanistic feature is the dual function of the gold catalyst, which first catalyzed the intramolecular hydroalkoxylation of alkynols, and upon the formation of dihydrofuran species, promoted the following Povarov reaction with high stereoselectivity.
Collapse
Affiliation(s)
- Ciwang He
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ju Cai
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yang Zheng
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Pei
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lihua Qiu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Guangdong
Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- E-mail:
| |
Collapse
|
16
|
Yudasaka M, Shimbo D, Maruyama T, Tada N, Itoh A. Synthesis, Characterization, and Reactivity of an Ethynyl Benziodoxolone (EBX)-Acetonitrile Complex. Org Lett 2019; 21:1098-1102. [PMID: 30707031 DOI: 10.1021/acs.orglett.9b00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a crystalline ethynyl-1,2-benziodoxol-3(1 H)-one (EBX)-acetonitrile complex is described. EBX has been widely used as an active species for a variety of reactions; however, its high instability has so far prevented its isolation. The EBX-acetonitrile is self-assembled into a double-layered honeycomb structure through weak hypervalent iodine secondary interactions and hydrogen bonding. The N-ethynylation of a variety of sulfonamides using the EBX-acetonitrile complex as a substrate under mild conditions is also described.
Collapse
Affiliation(s)
- Masaharu Yudasaka
- Gifu Pharmaceutical University1-25-4 , Daigaku-nishi , Gifu 501-1196 , Japan
| | - Daisuke Shimbo
- Gifu Pharmaceutical University1-25-4 , Daigaku-nishi , Gifu 501-1196 , Japan
| | - Toshifumi Maruyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering , Gifu University , Yanagido 1-1 , Gifu 501-1193 , Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University1-25-4 , Daigaku-nishi , Gifu 501-1196 , Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University1-25-4 , Daigaku-nishi , Gifu 501-1196 , Japan
| |
Collapse
|
17
|
Teodoro BVM, Silva LF. Sequential Michael Addition/Electrophilic Alkynylation: Synthesis of α-Alkynyl-β-Substituted Ketones and Chromanones. J Org Chem 2018; 83:13604-13611. [PMID: 30284445 DOI: 10.1021/acs.joc.8b02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the synthesis of α-alkynyl-β-substituted cyclic ketones and analogue chromanones via one-pot Michael addition/hypervalent iodine-based α-alkynylation. Cu(I)-catalyzed Michael addition using either alkyl-aluminum or Grignard reagents, followed by diastereoselective electrophilic alkynylation of the resulting enolate by 1-ethynyl-1λ3,2-benziodoxol-3(1H)-one (EBX) resulted in the α-alkynyl-β-substituted cyclic ketones or chromanones within 34-89% yield (16 examples). The reaction was successfully upscaled to the 5 mmol scale, and further functionalization of a model alkynylated ketone was demonstrated.
Collapse
Affiliation(s)
- Bruno V M Teodoro
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , São Paulo 05508-000 , Brazil
| | - Luiz F Silva
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , São Paulo 05508-000 , Brazil
| |
Collapse
|
18
|
Ouyang XH, Tan FL, Song RJ, Deng W, Li JH. Palladium-Catalyzed Oxidative [2 + 2 + 1] Annulation of 1,7-Diynes with H2O: Entry to Furo[3,4-c]quinolin-4(5H)-ones. Org Lett 2018; 20:6765-6768. [DOI: 10.1021/acs.orglett.8b02883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang-Lin Tan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Wei Deng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Liu B, Lim CH, Miyake GM. Light-Driven Intermolecular Charge Transfer Induced Reactivity of Ethynylbenziodoxol(on)e and Phenols. J Am Chem Soc 2018; 140:12829-12835. [PMID: 30216713 DOI: 10.1021/jacs.8b05870] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ethynylbenziodoxol(on)es (EBXs) have been widely used in organic synthesis as electrophilic alkyne-transfer reagents involving carbon- and heteroatom-based nucleophiles. However, potential reactions of EBXs with phenols remain uninvestigated. Here, we present the formation of ( Z)-2-iodovinyl phenyl ethers with excellent regio- and stereoselectivity through the reactivity between EBXs and phenols driven by visible light. We propose that this light-activated transformation proceeds through electron donor-acceptor complexes to enable new reactivity beyond existing mechanisms for alkynylation of carbon- and heteroatom-based nucleophiles. This operationally robust process was employed for the synthesis of diverse ( Z)-2-iodovinyl phenyl ethers through irradiating a solution containing a phenyl-EBX, a phenol, and the base Cs2CO3 with a commercially available blue LED at room temperature. The ( Z)-2-iodovinyl phenyl ether products can be further stereospecifically functionalized to form trisubstituted alkenes, demonstrating the potential of these products en route to chemical complexity.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Chern-Hooi Lim
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Garret M Miyake
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
20
|
Affiliation(s)
- Patrick Y. Toullec
- Institute of Molecular Sciences; University of Bordeaux; 351, cours de la Libération 33405 Talence France
| | - Véronique Michelet
- University Côte d'Azur; Institut de Chimie de Nice, UMR 7272 CNRS; Parc Valrose, Faculté des Sciences 06100 Nice France
| |
Collapse
|
21
|
Li FZ, Li S, Zhang PP, Huang ZH, Zhang WB, Gong J, Yang Z. A chiral pool approach for asymmetric syntheses of (-)-antrocin, (+)-asperolide C, and (-)-trans-ozic acid. Chem Commun (Camb) 2018; 52:12426-12429. [PMID: 27711326 DOI: 10.1039/c6cc06794h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ozonolysis of aromatic abietane (+)-carnosic acid (4) is used to create an important intermediate in an enantiomerically pure form, resulting in a simple, concise, readily scalable, and asymmetric synthesis of (-)-antrocin (1). This strategy not only provides an efficient approach to (-)-antrocin (1) synthesis but can also be readily adopted for the syntheses of optically pure (+)-asperolide C (2) and (-)-trans-ozic acid (3) from the naturally abundant aromatic abietanes (+)-podocarpic acid (5) and (+)-dehydroabietic acid (6). The strategy presented here is an example of the use of naturally occurring aromatic abietanes as a chiral pool and offers an account of the asymmetric synthesis of terpenoids.
Collapse
Affiliation(s)
- Fu-Zhuo Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shuang Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Peng-Peng Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhi-Hui Huang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei-Bin Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jianxian Gong
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Bihelovic F, Vulovic B, Saicic RN. Gold(I)-Catalyzed C−O/C−C Bond-Forming Domino Reactions and Their Synthetic Applications. Isr J Chem 2017. [DOI: 10.1002/ijch.201700033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Filip Bihelovic
- Faculty of Chemistry; University of Belgrade; Studentski trg 16, P.O. Box 51 11158 Belgrade Serbia
| | - Bojan Vulovic
- Faculty of Chemistry; University of Belgrade; Studentski trg 16, P.O. Box 51 11158 Belgrade Serbia
| | - Radomir N. Saicic
- Faculty of Chemistry; University of Belgrade; Studentski trg 16, P.O. Box 51 11158 Belgrade Serbia
- Serbian Academy of Sciences and Arts; Knez Mihailova 35 Belgrade
| |
Collapse
|
23
|
Zheng M, Chen P, Huang L, Wu W, Jiang H. Nucleo-Palladation-Triggering Alkene Functionalization: A Route to γ-Lactones. Org Lett 2017; 19:5756-5759. [DOI: 10.1021/acs.orglett.7b02688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meifang Zheng
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Pengquan Chen
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
24
|
Fürstner A. Gold-Katalyse für die Heterocyclenchemie: eine repräsentative Fallstudie zu Naturstoffen der Pyron-Reihe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707260] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Deutschland
| |
Collapse
|
25
|
Fürstner A. Gold Catalysis for Heterocyclic Chemistry: A Representative Case Study on Pyrone Natural Products. Angew Chem Int Ed Engl 2017; 57:4215-4233. [PMID: 28862364 DOI: 10.1002/anie.201707260] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 11/06/2022]
Abstract
2-Pyrones and 4-pyrones are common structural motifs in bioactive natural products. However, traditional methods for their synthesis, which try to emulate the biosynthetic pathway of cyclization of a 1,3,5-tricarbonyl precursor, are often harsh and, therefore, not particularly suitable for applications to polyfunctionalized and/or sensitive target compounds. π-Acid catalysis, in contrast, has proved to be better for a systematic exploration of the pyrone estate. To this end, alkynes are used as stable ketone surrogates, which can be activated under exceedingly mild conditions due to the pronounced carbophilicity of [LAu]+ fragments (L=two electron donor ligand); attack of a tethered ester carbonyl group onto the transient alkyne-gold complex then forges the pyrone ring in a fully regiocontrolled manner.
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
26
|
Li Y, Dai M. Total Syntheses of the Reported Structures of Curcusones I and J through Tandem Gold Catalysis. Angew Chem Int Ed Engl 2017; 56:11624-11627. [PMID: 28708291 PMCID: PMC5682107 DOI: 10.1002/anie.201706845] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/12/2022]
Abstract
Total syntheses of the reported structures of the rhamnofolane diterpene natural products curcusones I and J in racemic form were achieved. The synthetic strategy features a novel tandem gold-catalyzed furan formation and furan-allene [4+3] cycloaddition to build the 5,7-fused ring system with an oxa-bridge in one step, and a stereoselective exo-Diels-Alder reaction to form the 6-membered ring. The newly developed tandem gold catalysis is quite general and can be scaled up. Our syntheses suggest that structural revisions of curcusones I and J are needed.
Collapse
Affiliation(s)
- Yong Li
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
27
|
Huang SH, Liang KH, Lu JS, Chang WS, Su MD, Yang TF. Total Synthesis of (+)-Antrocin and Its Diastereomer and Clarification of the Absolute Stereochemistry of (-)-Antrocin. J Org Chem 2017; 82:9576-9584. [PMID: 28825480 DOI: 10.1021/acs.joc.7b01600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using 2,2-dimethyl cyclohexanone as the starting compound, (+)-antrocin and its diastereomer have been synthesized. The absolute stereochemistry of (-)-antrocin, a natural sesqui-terpenoid and an antagonist in some types of cancer cells, was clarified using the character data of (+)-antrocin. The synthetic procedure involved two key steps: (1) the reaction of vinyl magnesium bromide with 2,2-dimethyl-6-t-butyl-dimethyl-silyoxy-methyl-1-cyclo-hexanone to give a vinyl cyclohexanol derivative and (2) a highly stereoselective intramolecular Diels-Alder (IMDA) reaction of the camphanate-containing triene intermediate. The relative energy levels of the possible transition states of the IMDA reaction of the camphanate-containing triene were obtained from density functional theory calculations, proving the stereospecific formation of the target molecule.
Collapse
Affiliation(s)
- Sheng-Han Huang
- Department of Applied Chemistry, National Chi Nan University , 1 University Road, Puli, 545 Nantou, Taiwan
| | - Kai-Hsiang Liang
- Department of Applied Chemistry, National Chi Nan University , 1 University Road, Puli, 545 Nantou, Taiwan
| | - Jia-Syun Lu
- Department of Applied Chemistry, National Chiayi University , 60004 Chiayi, Taiwan
| | - Wei-Sheng Chang
- Department of Applied Chemistry, National Chi Nan University , 1 University Road, Puli, 545 Nantou, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University , 60004 Chiayi, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , 80708 Kaohsiung, Taiwan
| | - Te-Fang Yang
- Department of Applied Chemistry, National Chi Nan University , 1 University Road, Puli, 545 Nantou, Taiwan
| |
Collapse
|
28
|
Teodoro BVM, Silva LF. Metal-Free Synthesis of Homopropargylic Alcohols from Aldehydes. J Org Chem 2017; 82:11787-11791. [DOI: 10.1021/acs.joc.7b01629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruno V. M. Teodoro
- Departamento de
Química
Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luiz F. Silva
- Departamento de
Química
Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
29
|
Li Y, Dai M. Total Syntheses of the Reported Structures of Curcusones I and J through Tandem Gold Catalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yong Li
- Department of Chemistry and Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
30
|
Bihelovic F, Vulovic B, Saicic RN. Synthesis of Natural Products and the Development of Synthetic Methodology: The Case Study of (–)-Atrop-abyssomicin C. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During our attempt to follow the planned synthetic route to the naturally occurring antibiotic (–)- atrop-abyssomicin C, we encountered two shortcomings, which forced us to reconsider our tactics and find new methods to overcome the problems. These methods turned out to be of general applicability, as demonstrated later in total syntheses of two other natural products: (+)-allokainic acid and (-)-gabosine H. The paper provides a brief account of these endeavors.
Collapse
Affiliation(s)
- Filip Bihelovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, POB 51, 11158 Belgrade 118, Serbia
| | - Bojan Vulovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, POB 51, 11158 Belgrade 118, Serbia
| | - Radomir N. Saicic
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, POB 51, 11158 Belgrade 118, Serbia
| |
Collapse
|
31
|
Li Y, Li J, Ding H, Li A. Recent advances on the total synthesis of alkaloids in mainland China. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AbstractAlkaloids are a large family of natural products that mostly contain basic nitrogen atoms. Because of their intriguing structures and important functions, they have long been popular targets for synthetic organic chemists. China's chemists have made significant progress in the area of alkaloid synthesis over past decades. In this article, selected total syntheses of alkaloids from research groups in mainland China during the period 2011–16 are highlighted.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
32
|
Gu Y, Huang J, Gong J, Yang Z. Total synthesis of orientalol F via gold-catalyzed cycloisomerization of alkynediol. Org Chem Front 2017. [DOI: 10.1039/c7qo00654c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis of orientalol F was accomplished in 13 steps using gold-catalyzed tandem cycloisomerization of alkynediol as a key step.
Collapse
Affiliation(s)
- Yueqing Gu
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Jun Huang
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Jianxian Gong
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Zhen Yang
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| |
Collapse
|
33
|
Wang AF, Zhou P, Zhu YL, Hao WJ, Li G, Tu SJ, Jiang B. Metal-free benzannulation of 1,7-diynes towards unexpected 1-aroyl-2-naphthaldehydes and their application in fused aza-heterocyclic synthesis. Chem Commun (Camb) 2017; 53:3369-3372. [DOI: 10.1039/c7cc00323d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel I2-mediated benzannulation of 1,7-diyne-involved 1,4-oxo-migration was established, providing unexpected 1-aroyl-2-naphthaldehydes. The resulting 1-aroyl-2-naphthaldehydes were successfully applied in the synthesis of polycyclic isoindoles.
Collapse
Affiliation(s)
- Ai-Fang Wang
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Peng Zhou
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Yi-Long Zhu
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Guigen Li
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Shu-Jiang Tu
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
34
|
Bebbington MWP. Natural product analogues: towards a blueprint for analogue-focused synthesis. Chem Soc Rev 2017; 46:5059-5109. [DOI: 10.1039/c6cs00842a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A review of approaches to natural product analogues leads to the suggestion of new methods for the generation of biologically active natural product-like scaffolds.
Collapse
|
35
|
|
36
|
Vulovic B, Kolarski D, Bihelovic F, Matovic R, Gruden M, Saicic RN. Gold(I)-Catalyzed Domino Cyclizations of Diynes for the Synthesis of Functionalized Cyclohexenone Derivatives. Total Synthesis of (−)-Gabosine H and (−)-6-epi-Gabosine H. Org Lett 2016; 18:3886-9. [DOI: 10.1021/acs.orglett.6b01898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bojan Vulovic
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Dusan Kolarski
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Filip Bihelovic
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Radomir Matovic
- ICTM Center for Chemistry, Njegoseva 12, 11000 Belgrade, Serbia
| | - Maja Gruden
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Radomir N. Saicic
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| |
Collapse
|
37
|
Abstract
In this critical review the reactivity patterns observed with different types of diyne substrates in gold catalysis are discussed. Apart from the many examples from homogeneous catalysis, the few examples from heterogeneous gold catalysis are also included. With a proper arrangement of the two alkynes unique and exciting reactivity patterns like 1,3-carbonyl transpositions, carbene transfer reactions, cascade annulations, macrocyclisations or the formation of gold vinylidene intermediates are observed. These reactions are of interest for organic synthesis, for pharmaceutical and medicinal chemistry and for material science.
Collapse
Affiliation(s)
- Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
38
|
Gu YQ, Zhang PP, Fu JK, Liu S, Lan Y, Gong JX, Yang Z. Regio- and Stereoselective Syntheses of 7-Oxabicyclo[2.2.1]heptanes via
a Gold(I)-Catalyzed Cycloisomerization of Alkynediols: Asymmetric Total Synthesis of Farnesiferol C. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Li Y, Hari DP, Vita MV, Waser J. Cyclic Hypervalent Iodine Reagents for Atom-Transfer Reactions: Beyond Trifluoromethylation. Angew Chem Int Ed Engl 2016; 55:4436-54. [DOI: 10.1002/anie.201509073] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Yifan Li
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Switzerland
| | - Durga Prasad Hari
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Switzerland
| | - Maria Victoria Vita
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Switzerland
| |
Collapse
|
40
|
Li Y, Hari DP, Vita MV, Waser J. Cyclische hypervalente Iodreagentien für Atomtransferreaktionen - jenseits der Trifluormethylierung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509073] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yifan Li
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Schweiz
| | - Durga Prasad Hari
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Schweiz
| | - Maria Victoria Vita
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Schweiz
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis; Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; BCH 4306 1015 Lausanne CH Schweiz
| |
Collapse
|
41
|
Shi H, Tan C, Zhang W, Zhang Z, Long R, Gong J, Luo T, Yang Z. Gold-Catalyzed Enantio- and Diastereoselective Syntheses of Left Fragments of Azadirachtin/Meliacarpin-Type Limonoids. J Org Chem 2016; 81:751-71. [DOI: 10.1021/acs.joc.5b02560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hang Shi
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Ceheng Tan
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Weibin Zhang
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zichun Zhang
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Rong Long
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jianxian Gong
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Tuoping Luo
- State
Key Key Laboratory of Bioorganic Chemistry and Molecular Engineering
of Ministry of Education and Beijing National Laboratory for Molecular
Science (BNLMS), College of Chemistry, and Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Yang
- Laboratory
of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- State
Key Key Laboratory of Bioorganic Chemistry and Molecular Engineering
of Ministry of Education and Beijing National Laboratory for Molecular
Science (BNLMS), College of Chemistry, and Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, China
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
42
|
Reddy BVS, Medaboina D, Reddy SG, Reddy VH, Singarapu KK, Sridhar B. Domino Strategy for the Stereoselective Construction of Angularly Fused Tricyclic Ethers. J Org Chem 2015; 80:12580-7. [PMID: 26562722 DOI: 10.1021/acs.joc.5b02241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereoselective synthesis of decahydrofuro[3,2-d]isochromene derivatives has been achieved by the condensation of 2-cyclohexenylbutane-1,4-diol with aldehydes in the presence of a stochiometric amount of BF3·OEt2 in dichloromethane at -78 °C. Similarly, the condensation of 2-cyclopentenylbutan-1,4-diol with aldehydes provides the corresponding octahydro-2H-cyclopenta[c]furo[2,3-d]pyran derivatives in good yields with high diastereoselectivity. It is an elegant strategy for the quick construction of tricyclic architectures with four contiguous stereogenic centers in a single step. These tricyclic frameworks are the integral part of numerous natural products.
Collapse
Affiliation(s)
- B V Subba Reddy
- Natural Product Chemistry, ‡Centre for Nuclear Magnetic Resonance, §Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology , Hyderabad - 500 007, India
| | - Durgaprasad Medaboina
- Natural Product Chemistry, ‡Centre for Nuclear Magnetic Resonance, §Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology , Hyderabad - 500 007, India
| | - S Gopal Reddy
- Natural Product Chemistry, ‡Centre for Nuclear Magnetic Resonance, §Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology , Hyderabad - 500 007, India
| | - V Hanuman Reddy
- Natural Product Chemistry, ‡Centre for Nuclear Magnetic Resonance, §Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology , Hyderabad - 500 007, India
| | - Kiran Kumar Singarapu
- Natural Product Chemistry, ‡Centre for Nuclear Magnetic Resonance, §Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology , Hyderabad - 500 007, India
| | - Balasubramanian Sridhar
- Natural Product Chemistry, ‡Centre for Nuclear Magnetic Resonance, §Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology , Hyderabad - 500 007, India
| |
Collapse
|
43
|
Gobé V, Retailleau P, Guinchard X. Self-Relay Gold(I)-Catalyzed Pictet-Spengler/Cyclization Cascade Reaction for the Rapid Elaboration of Pentacyclic Indole Derivatives. Chemistry 2015; 21:17587-90. [DOI: 10.1002/chem.201503941] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 11/08/2022]
|
44
|
Towards a general diastereoselective route to oxabicyclo[3.2.1]octanes via a gold-catalysed cascade reaction. Nat Commun 2015; 6:8617. [PMID: 26509323 PMCID: PMC4634332 DOI: 10.1038/ncomms9617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/10/2015] [Indexed: 11/15/2022] Open
Abstract
The development of an efficient diastereoselective synthesis of the oxabicyclo[3.2.1]octane ring system bearing two oxygenated quaternary chiral centres represents a significant challenge. This motif can be found in a wide range of natural products with significant biological activities. Here we report the synthesis of such kind of scaffold using a cyclohexane-trans-1,4-diol with an alkyne side chain in the presence of Au(I) catalyst. This is a domino process in which two C–H, two C–O and one C–C bond is assembled through a sequence of cyclization/semi-pinacol rearrangements. This strategy has been successfully applied to the asymmetric formal total synthesis of (+)-cortistatins. Oxygenated bicyclic cores are common to many natural and bioactive compounds, but their efficient synthesis can be difficult. Here, the authors report a gold-catalysed diastereoselective process for the synthesis of oxabicyclo[3.2.1]octanes via a domino process.
Collapse
|
45
|
Dorel R, Echavarren AM. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem Rev 2015; 115:9028-72. [PMID: 25844920 PMCID: PMC4580024 DOI: 10.1021/cr500691k] [Citation(s) in RCA: 1325] [Impact Index Per Article: 147.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ruth Dorel
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
46
|
Yu Y, Li G, Jiang L, Zu L. An Indoxyl-Based Strategy for the Synthesis of Indolines and Indolenines. Angew Chem Int Ed Engl 2015; 54:12627-31. [DOI: 10.1002/anie.201505173] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Indexed: 11/07/2022]
|
47
|
Yu Y, Li G, Jiang L, Zu L. An Indoxyl-Based Strategy for the Synthesis of Indolines and Indolenines. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Yan J, Tay GL, Neo C, Lee BR, Chan PWH. Gold-Catalyzed Cycloisomerization and Diels-Alder Reaction of 1,6-Diyne Esters with Alkenes and Diazenes to Hydronaphthalenes and -cinnolines. Org Lett 2015; 17:4176-9. [PMID: 26291118 DOI: 10.1021/acs.orglett.5b01935] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A method for the efficient preparation of hydronaphthalene and -cinnoline derivatives by Au(I)-catalyzed cycloisomerzation of 1,6-diyne esters followed by a Diels-Alder reaction with alkenes or diazenes under mild conditions at room temperature with catalyst loadings as low as 1 mol % is described.
Collapse
Affiliation(s)
- Jianming Yan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | - Guan Liang Tay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | - Cuien Neo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | - Bo Ra Lee
- School of Chemistry, Monash University , Clayton, Victoria 3800, Australia
| | - Philip Wai Hong Chan
- School of Chemistry, Monash University , Clayton, Victoria 3800, Australia.,Department of Chemistry, University of Warwick , Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
49
|
Le Vaillant F, Courant T, Waser J. Room-Temperature Decarboxylative Alkynylation of Carboxylic Acids Using Photoredox Catalysis and EBX Reagents. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201505111] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Le Vaillant F, Courant T, Waser J. Room-Temperature Decarboxylative Alkynylation of Carboxylic Acids Using Photoredox Catalysis and EBX Reagents. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505111] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|