1
|
Schweitzer-Stenner R, Kurbaj R, O'Neill N, Andrews B, Shah R, Urbanc B. Conformational Manifold Sampled by Two Short Linear Motif Segments Probed by Circular Dichroism, Vibrational, and Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2023; 62:2571-2586. [PMID: 37595285 DOI: 10.1021/acs.biochem.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Disordered protein segments called short linear motifs (SLiM) serve as recognition sites for a variety of biological processes and act as targeting signals, modification, and ligand binding sites. While SLiMs do not adopt one of the known regular secondary structures, the conformational distribution might still reflect the structural propensities of their amino acid residues and possible interactions between them. In the past, conformational analyses of short peptides provided compelling evidence for the notion that individual residues are less conformationally flexible than locally expected for a random coil. Here, we combined various spectroscopies (NMR, IR, vibrational, and UV circular dichroism) to determine the Ramachandran plots of two SLiM motifs, i.e., GRRDSG and GRRTSG. They are two representatives of RxxS motifs that are capable of being phosphorylated by protein kinase A, an enzyme that plays a fundamental role in a variety of biological processes. Our results reveal that the nearest and non-nearest interactions between residues cause redistributions between polyproline II and β-strand basins while concomitantly stabilizing extended relative to turn-forming and helical structures. They also cause shifts in basin positions. With increasing temperature, β-strand populations become more populated at the expense of polyproline II. While molecular dynamics simulations with Amber ff14SB and CHARMM 36m force fields indicate residue-residue interactions, they do not account for the observed structural changes.
Collapse
Affiliation(s)
| | - Raghed Kurbaj
- Department of Chemistry, Drexel University, Philadelphia, PA19104Pennsylvania,United States
| | - Nichole O'Neill
- Department of Chemistry, Drexel University, Philadelphia, PA19104Pennsylvania,United States
| | - Brian Andrews
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| | - Riya Shah
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| |
Collapse
|
2
|
Schweitzer-Stenner R. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins. Phys Chem Chem Phys 2023; 25:11908-11933. [PMID: 37096579 DOI: 10.1039/d3cp00483j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Over the last thirty years the unfolded state of proteins has attracted considerable interest owing to the discovery of intrinsically disordered proteins which perform a plethora of functions despite resembling unfolded proteins to a significant extent. Research on both, unfolded and disordered proteins has revealed that their conformational properties can deviate locally from random coil behavior. In this context results from work on short oligopeptides suggest that individual amino acid residues sample the sterically allowed fraction of the Ramachandran plot to a different extent. Alanine has been found to exhibit a peculiarity in that it has a very high propensity for adopting polyproline II like conformations. This Perspectives article reviews work on short peptides aimed at exploring the Ramachandran distributions of amino acid residues in different contexts with experimental and computational means. Based on the thus provided overview the article discussed to what extent short peptides can serve as tools for exploring unfolded and disordered proteins and as benchmarks for the development of a molecular dynamics force field.
Collapse
|
3
|
Schweitzer-Stenner R. Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides. Int J Mol Sci 2022; 23:ijms23105643. [PMID: 35628453 PMCID: PMC9147007 DOI: 10.3390/ijms23105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Flory isolated pair hypothesis (IPH) is one of the corner stones of the random coil model, which is generally invoked to describe the conformational dynamics of unfolded and intrinsically disordered proteins (IDPs). It stipulates, that individual residues sample the entire sterically allowed space of the Ramachandran plot without exhibiting any correlations with the conformational dynamics of its neighbors. However, multiple lines of computational, bioinformatic and experimental evidence suggest that nearest neighbors have a significant influence on the conformational sampling of amino acid residues. This implies that the conformational entropy of unfolded polypeptides and proteins is much less than one would expect based on the Ramachandran plots of individual residues. A further implication is that the Gibbs energies of residues in unfolded proteins or polypeptides are not additive. This review provides an overview of what is currently known and what has yet to be explored regarding nearest neighbor interactions in unfolded proteins.
Collapse
|
4
|
Zhang S, Schweitzer-Stenner R, Urbanc B. Do Molecular Dynamics Force Fields Capture Conformational Dynamics of Alanine in Water? J Chem Theory Comput 2019; 16:510-527. [PMID: 31751129 DOI: 10.1021/acs.jctc.9b00588] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examine the ability of six molecular dynamics (MD) force fields (Amber ff14SB, Amber ff99SBnmr1, Amber ff03ws, OPLS-AA/L, OPLS-AA/M, and CHARMM36) to reproduce conformational ensembles of the central alanine in GAG and AAA in a way that is consistent with five (GAG) or six (AAA) J coupling constants and amide I' profiles. MD-derived Ramachandran plots for all six force fields under study differ from those obtained by the Gaussian fit to experimental data in three major ways: (i) the polyproline II (pPII) basin in the Ramachandran plot is too concentrated, (ii) the antiparallel β (aβ) basin is overpopulated, and (iii) the transitional β (βt) basin is underpopulated. Amber ff14SB outperforms the other five MD force fields and yields the highest pPII populations of the central alanine residue in GAG (55%) and AAA (63%), in good agreement with the predictions of the Gaussian model (59 and 76%). The analysis of the hydration layer around the central alanine residue reveals considerable reorientation of water molecules and reduction in both the average number of water molecules and the average number of water-water hydrogen bonds when glycines (in GAG) are replaced by alanines (in AAA), elucidating water-mediated nearest neighbor effects on alanine's conformational dynamics.
Collapse
|
5
|
Kubyshkin V, Grage SL, Ulrich AS, Budisa N. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Phys Chem Chem Phys 2019; 21:22396-22408. [PMID: 31577299 DOI: 10.1039/c9cp02996f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of protein folds relies fundamentally on the set of secondary structures found in the proteomes. Yet, there also exist intriguing structures and motifs that are underrepresented in natural biopolymeric systems. One example is the polyproline II helix, which is usually considered to have a polar character and therefore does not form membrane spanning sections of membrane proteins. In our work, we have introduced specially designed polyproline II helices into the hydrophobic membrane milieu and used 19F NMR to monitor the helix alignment in oriented lipid bilayers. Our results show that these artificial hydrophobic peptides can adopt several different alignment states. If the helix is shorter than the thickness of the hydrophobic core of the membrane, it is submerged into the bilayer with its long axis parallel to the membrane plane. The polyproline helix adopts a transmembrane alignment when its length exceeds the bilayer thickness. If the peptide length roughly matches the lipid thickness, a coexistence of both states is observed. We thus show that the lipid thickness plays a determining role in the occurrence of a transmembrane polyproline II helix. We also found that the adaptation of polyproline II helices to hydrophobic mismatch is in some notable aspects different from α-helices. Finally, our results prove that the polyproline II helix is a competent structure for the construction of transmembrane peptide segments, despite the fact that no such motif has ever been reported in natural systems.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany and Institute of Organic Chemistry, KIT, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| |
Collapse
|
6
|
Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV, Marchesan S. Chirality Effects on Peptide Self-Assembly Unraveled from Molecules to Materials. Chem 2018. [DOI: 10.1016/j.chempr.2018.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Zhang Y, Zhou Y, He L, Fu Y, Zhang W, Hu J, Shi Z. Hydration effects on Leu's polyproline II population in AcLXPNH 2. Chem Commun (Camb) 2018; 54:5764-5767. [PMID: 29781018 DOI: 10.1039/c8cc02402b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration is important in many fundamental processes. To investigate hydration effects on peptide conformations, we examined neighboring-residue and side-chain blocking effects in AcLXPNH2. A correlation between two effects suggests that hydration stabilizes PII more than β-structures. Our results are important for understanding the hydration effects on peptide conformations and hydration-forces in general.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The third most abundant polypeptide conformation in nature, the polyproline-II helix, is a polar, extended secondary structure with a local organization stabilized by intercarbonyl interactions within the peptide chain. Here we design a hydrophobic polyproline-II helical peptide based on an oligomeric octahydroindole-2-carboxylic acid scaffold and demonstrate its transmembrane alignment in model lipid bilayers by means of solid-state 19F NMR. As result, we provide a first example of a purely artificial transmembrane peptide with a structural organization that is not based on hydrogen-bonding.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry , Technical University of Berlin , Müller-Breslau-Strasse 10 , Berlin 10623 , Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2) , Karlsruhe Institute of Technology (KIT) , P.O.B. 3640, Karlsruhe 76021 , Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2) , Karlsruhe Institute of Technology (KIT) , P.O.B. 3640, Karlsruhe 76021 , Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2) , Karlsruhe Institute of Technology (KIT) , P.O.B. 3640, Karlsruhe 76021 , Germany
- Institute of Organic Chemistry , KIT , Fritz-Haber-Weg 6 , Karlsruhe 76131 , Germany
| | - Nediljko Budisa
- Institute of Chemistry , Technical University of Berlin , Müller-Breslau-Strasse 10 , Berlin 10623 , Germany
| |
Collapse
|
9
|
Lanza G, Chiacchio MA. Quantum Mechanics Study on Hydrophilic and Hydrophobic Interactions in the Trivaline-Water System. J Phys Chem B 2018; 122:4289-4298. [PMID: 29584432 DOI: 10.1021/acs.jpcb.8b00833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the aim to elucidate hydrophobic effects in the unfolded state of peptides, DFT-M062X computations on the Val3H+· nH2O ( n up to 22) clusters have been accomplished. As far as the main chain is concerned, four conformers with β-strand and/or polyproline type II conformations, PPII (indicated as β-β, β-PPII, PPII-β, and PPII-PPII), have been found by changing the ϕ and ψ angles. For bare peptide, the side chain (isopropyl) of each residue can independently take on three different orientations with negligible effects on energetics. The great isopropyl spatial separations in β-β and β-PPII conformers allow for the construction of synergic and extensive water-water and water-peptide H-bonding in the minimal hydration Val3H+·22H2O models without significant steric encumbrance. Conversely, due to the proximity of the isopropyl of the central residue with the other two, some restrictions in the water shell construction around the peptide become evident for the PPII-PPII conformer and the number of energetically accessible structures decreases. This is indicative of correlated motion involving isopropyls and backbone mediated by water molecules, the origin of the nearest neighbor effects. Comparing the thermodynamic data of Ala3H+·22H2O and Val3H+·22H2O, what emerges is that both hydration enthalpy and entropy drive the β-strand stability of the latter.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale A. Doria 6 , Catania 95125 , Italy
| | - Maria A Chiacchio
- Dipartimento di Scienze del Farmaco , Università di Catania , Viale A. Doria 6 , Catania 95125 , Italy
| |
Collapse
|
10
|
Kubyshkin V, Budisa N. Hydrolysis, polarity, and conformational impact of C-terminal partially fluorinated ethyl esters in peptide models. Beilstein J Org Chem 2017; 13:2442-2457. [PMID: 29234471 PMCID: PMC5704756 DOI: 10.3762/bjoc.13.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
Fluorinated moieties are highly valuable to chemists due to the sensitive NMR detectability of the 19F nucleus. Fluorination of molecular scaffolds can also selectively influence a molecule's polarity, conformational preferences and chemical reactivity, properties that can be exploited for various chemical applications. A powerful route for incorporating fluorine atoms in biomolecules is last-stage fluorination of peptide scaffolds. One of these methods involves esterification of the C-terminus of peptides using a diazomethane species. Here, we provide an investigation of the physicochemical consequences of peptide esterification with partially fluorinated ethyl groups. Derivatives of N-acetylproline are used to model the effects of fluorination on the lipophilicity, hydrolytic stability and on conformational properties. The conformational impact of the 2,2-difluoromethyl ester on several neutral and charged oligopeptides was also investigated. Our results demonstrate that partially fluorinated esters undergo variable hydrolysis in biologically relevant buffers. The hydrolytic stability can be tailored over a broad pH range by varying the number of fluorine atoms in the ester moiety or by introducing adjacent charges in the peptide sequence.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin 10623, Germany
| | - Nediljko Budisa
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin 10623, Germany
| |
Collapse
|
11
|
Mykhailiuk PK, Kishko I, Kubyshkin V, Budisa N, Cossy J. Selective19F-Labeling of Functionalized Carboxylic Acids with Difluoromethyl Diazomethane (CF2HCHN2). Chemistry 2017; 23:13279-13283. [DOI: 10.1002/chem.201703446] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Pavel K. Mykhailiuk
- Taras Shevchenko National University of Kyiv; Chemistry Department; Volodymyrska 64 01601 Kyiv Ukraine
| | - Igor Kishko
- Taras Shevchenko National University of Kyiv; Chemistry Department; Volodymyrska 64 01601 Kyiv Ukraine
- Enamine Ltd.; Chervonotkatska 78 02094 Kyiv Ukraine
| | - Vladimir Kubyshkin
- Institute of Chemistry; Technical University of Berlin; Müller-Breslau-Str., 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institute of Chemistry; Technical University of Berlin; Müller-Breslau-Str., 10 10623 Berlin Germany
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI); ESPCI Paris/ (UMR 8231) CNRS/PSL Research University; 10 rue Vauquelin Paris 75231 Cedex 05 France)
| |
Collapse
|
12
|
Afonin S, Kubyshkin V, Mykhailiuk PK, Komarov IV, Ulrich AS. Conformational Plasticity of the Cell-Penetrating Peptide SAP As Revealed by Solid-State 19F-NMR and Circular Dichroism Spectroscopies. J Phys Chem B 2017; 121:6479-6491. [PMID: 28608690 DOI: 10.1021/acs.jpcb.7b02852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF3-Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF3-MePro) were used as labels for 19F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF3-MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology , P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Vladimir Kubyshkin
- Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Pavel K Mykhailiuk
- Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,Enamine Ltd. , Vul. Chervonotkatska 78, 02660 Kyiv, Ukraine
| | - Igor V Komarov
- Institute of High Technologies, Taras Shevchenko National University of Kyiv , Prosp. Glushkova 4-g, 02033 Kyiv, Ukraine
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology , P.O.B. 3640, 76021 Karlsruhe, Germany.,Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Lella M, Mahalakshmi R. Solvation driven conformational transitions in the second transmembrane domain of mycobacteriophage holin. Biopolymers 2017; 108. [DOI: 10.1002/bip.22894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Muralikrishna Lella
- Molecular Biophysics Laboratory, Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal 462023 India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences; Indian Institute of Science Education and Research; Bhopal 462023 India
| |
Collapse
|
14
|
Lanza G, Chiacchio MA. Effects of Hydration on the Zwitterion Trialanine Conformation by Electronic Structure Theory. J Phys Chem B 2016; 120:11705-11719. [DOI: 10.1021/acs.jpcb.6b08108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Giuseppe Lanza
- Dipartimento
di Scienze del
Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria A. Chiacchio
- Dipartimento
di Scienze del
Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
15
|
Zhou Y, He L, Zhang W, Hu J, Shi Z. Populations of the Minor α-Conformation in AcGXGNH2 and the α-Helical Nucleation Propensities. Sci Rep 2016; 6:27197. [PMID: 27256621 PMCID: PMC4891685 DOI: 10.1038/srep27197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
Intrinsic backbone conformational preferences of different amino acids are important for understanding the local structure of unfolded protein chains. Recent evidence suggests α-structure is relatively minor among three major backbone conformations for unfolded proteins. The α-helices are the dominant structures in many proteins. For these proteins, how could the α-structures occur from the least in unfolded to the most in folded states? Populations of the minor α-conformation in model peptides provide vital information. Reliable determination of populations of the α-conformers in these peptides that exist in multiple equilibriums of different conformations remains a challenge. Combined analyses on data from AcGXPNH2 and AcGXGNH2 peptides allow us to derive the populations of PII, β and α in AcGXGNH2. Our results show that on average residue X in AcGXGNH2 adopt PII, β, and α 44.7%, 44.5% and 10.8% of time, respectively. The contents of α-conformations for different amino acids define an α-helix nucleation propensity scale. With derived PII, β and α-contents, we can construct a free energy-conformation diagram on each AcGXGNH2 in aqueous solution for the three major backbone conformations. Our results would have broad implications on early-stage events of protein folding.
Collapse
Affiliation(s)
- Yanjun Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Liu He
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Wenwen Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Jingjing Hu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Zhengshuang Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P.R. China
| |
Collapse
|
16
|
Guo P, Lei X, Gao Y. Conformational flexibility of PPII-helix: A density functional theory study. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
He E, Yan G, Zhang J, Wang J, Li W. Effects of phosphorylation on the intrinsic propensity of backbone conformations of serine/threonine. J Biol Phys 2016; 42:247-58. [PMID: 26759163 DOI: 10.1007/s10867-015-9405-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022] Open
Abstract
Each amino acid has its intrinsic propensity for certain local backbone conformations, which can be further modulated by the physicochemical environment and post-translational modifications. In this work, we study the effects of phosphorylation on the intrinsic propensity for different local backbone conformations of serine/threonine by molecular dynamics simulations. We showed that phosphorylation has very different effects on the intrinsic propensity for certain local backbone conformations for the serine and threonine. The phosphorylation of serine increases the propensity of forming polyproline II, whereas that of threonine has the opposite effect. Detailed analysis showed that such different responses to phosphorylation mainly arise from their different perturbations to the backbone hydration and the geometrical constraints by forming side-chain-backbone hydrogen bonds due to phosphorylation. Such an effect of phosphorylation on backbone conformations can be crucial for understanding the molecular mechanism of phosphorylation-regulated protein structures/dynamics and functions.
Collapse
Affiliation(s)
- Erbin He
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Guanghui Yan
- Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, People's Republic of China
| | - Jian Zhang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
18
|
Delpuech JJ, Selmeczi K, Gizzi P, Henry B. Long-range magnetic non-equivalence of methylene protons and pK's of amide bonds in peptides. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Henry B, Gizzi P, Delpuech JJ. Magnetic non-equivalence and dynamic NMR of N-methylene protons in a Histamine-containing pseudopeptide: Alanyl-Glycyl-Histamine. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Gao Y, Li Y, Mou L, Hu W, Zheng J, Zhang JZH, Mei Y. Coupled Two-Dimensional Main-Chain Torsional Potential for Protein Dynamics II: Performance and Validation. J Phys Chem B 2015; 119:4188-93. [DOI: 10.1021/jp510215c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ya Gao
- College
of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yongxiu Li
- College
of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China
- Key
Laboratory of Catalysis and Materials Science of the State Ethnic
Affairs Commission and Ministry of Education, Hubei Province, South-Central University for Nationalities, Wuhan 430074, China
| | - Lirong Mou
- Institutes
for Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, China
| | - Wenxin Hu
- Computing Center, School of Information Science & Technology, East China Normal University, Shanghai 200062, China
| | - Jun Zheng
- Computing Center, School of Information Science & Technology, East China Normal University, Shanghai 200062, China
| | - John Z. H. Zhang
- College
of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China
- NYU-ECNU Center
for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Ye Mei
- Center
for Laser and Computational Biophysics, State Key Laboratory of Precision
Spectroscopy, Department of Physics and Institute of Theoretical and
Computational Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center
for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
21
|
Toal SE, Kubatova N, Richter C, Linhard V, Schwalbe H, Schweitzer-Stenner R. Randomizing the unfolded state of peptides (and proteins) by nearest neighbor interactions between unlike residues. Chemistry 2015; 21:5173-92. [PMID: 25728043 DOI: 10.1002/chem.201406539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/29/2022]
Abstract
To explore the influence of nearest neighbors on conformational biases in unfolded peptides, we combined vibrational and 2D NMR spectroscopy to obtain the conformational distributions of selected "GxyG" host-guest peptides in aqueous solution: GDyG, GSyG, GxLG, GxVG, where x/y=A, K, L, V. Large changes of conformational propensities were observed due to nearest-neighbor interactions, at variance with the isolated pair hypothesis. We found that protonated aspartic acid and serine lose their above-the-average preference for turn-like structures in favor of polyproline II (pPII) populations in the presence of neighbors with bulky side chains. Such residues also decrease the above-the-average pPII preference of alanine. These observations suggest that the underlying mechanism involves a disruption of the hydration shell. Thermodynamic analysis of (3) J(H(N) ,H(α) ) (T) data for each x,y residue reveals that modest changes in the conformational ensemble masks larger changes of enthalpy and entropy governing the pPII↔β equilibrium indicating a significant residue dependent temperature dependence of the peptides' conformational ensembles. These results suggest that nearest-neighbor interactions between unlike residues act as conformational randomizers close to the enthalpy-entropy compensation temperature, eliminating intrinsic biases in favor of largely balanced pPII/β dominated ensembles at physiological temperatures.
Collapse
Affiliation(s)
- Siobhan E Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 10104 (USA); Present address: Department of Biophysics and Biochemistry, Yale University, New Haven, CT 06250 (USA)
| | | | | | | | | | | |
Collapse
|
22
|
Xiao X, Kallenbach N, Zhang Y. Peptide Conformation Analysis Using an Integrated Bayesian Approach. J Chem Theory Comput 2014; 10:4152-4159. [PMID: 25221447 PMCID: PMC4159213 DOI: 10.1021/ct500433d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 01/22/2023]
Abstract
Unlike native proteins that are amenable to structural analysis at atomic resolution, unfolded proteins occupy a manifold of dynamically interconverting structures. Defining the conformations of unfolded proteins is of significant interest and importance, for folding studies and for understanding the properties of intrinsically disordered proteins. Short chain protein fragments, i.e., oligopeptides, provide an excellent test-bed in efforts to define the conformational ensemble of unfolded chains. Oligomers of alanine in particular have been extensively studied as minimalist models of the intrinsic conformational preferences of the peptide backbone. Even short alanine peptides occupy an ensemble of substates that are distinguished by small free energy differences, so that the problem of quantifying the conformational preferences of the backbone remains a fundamental challenge in protein biophysics. Here, we demonstrate an integrated computational-experimental-Bayesian approach to quantify the conformational ensembles of the model trialanine peptide in water. In this approach, peptide conformational substates are first determined objectively by clustering molecular dynamics snapshots based on both structural and dynamic information. Next, a set of spectroscopic data for each conformational substate is computed. Finally, a Bayesian statistical analysis of both experimentally measured spectroscopic data and computational results is carried out to provide a current best estimate of the substate population ensemble together with corresponding confidence intervals. This distribution of substates can be further systematically refined with additional high-quality experimental data and more accurate computational modeling. Using an experimental data set of NMR coupling constants, we have also applied this approach to characterize the conformation ensemble of trivaline in water.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Neville Kallenbach
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University , New York, New York 10003, United States ; NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| |
Collapse
|
23
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, García-García L, Berbis MÁ, Valero-Gónzalez J, Martín-Santamaría S, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Corzana F, Peregrina JM. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry 2014; 20:12616-27. [DOI: 10.1002/chem.201403700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/17/2022]
|
24
|
Toal S, Schweitzer-Stenner R. Local order in the unfolded state: conformational biases and nearest neighbor interactions. Biomolecules 2014; 4:725-73. [PMID: 25062017 PMCID: PMC4192670 DOI: 10.3390/biom4030725] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
The discovery of Intrinsically Disordered Proteins, which contain significant levels of disorder yet perform complex biologically functions, as well as unwanted aggregation, has motivated numerous experimental and theoretical studies aimed at describing residue-level conformational ensembles. Multiple lines of evidence gathered over the last 15 years strongly suggest that amino acids residues display unique and restricted conformational preferences in the unfolded state of peptides and proteins, contrary to one of the basic assumptions of the canonical random coil model. To fully understand residue level order/disorder, however, one has to gain a quantitative, experimentally based picture of conformational distributions and to determine the physical basis underlying residue-level conformational biases. Here, we review the experimental, computational and bioinformatic evidence for conformational preferences of amino acid residues in (mostly short) peptides that can be utilized as suitable model systems for unfolded states of peptides and proteins. In this context particular attention is paid to the alleged high polyproline II preference of alanine. We discuss how these conformational propensities may be modulated by peptide solvent interactions and so called nearest-neighbor interactions. The relevance of conformational propensities for the protein folding problem and the understanding of IDPs is briefly discussed.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19026, USA.
| | | |
Collapse
|
25
|
Lanza G, Chiacchio MA. Ab Initio MP2 and Density Functional Theory Computational Study of AcAlaNH2Peptide Hydration: A Bottom-Up Approach. Chemphyschem 2014; 15:2785-93. [DOI: 10.1002/cphc.201402222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 01/15/2023]
|
26
|
Fears KP, Clark TD, Petrovykh DY. Residue-Dependent Adsorption of Model Oligopeptides on Gold. J Am Chem Soc 2013; 135:15040-52. [DOI: 10.1021/ja404346p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kenan P. Fears
- Division
of Chemistry, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Thomas D. Clark
- Division
of Chemistry, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Dmitri Y. Petrovykh
- Division
of Chemistry, Naval Research Laboratory, Washington, D.C. 20375, United States
- Department
of Physics, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Fears KP, Petrovykh DY, Clark TD. Evaluating protocols and analytical methods for peptide adsorption experiments. Biointerphases 2013; 8:20. [PMID: 24706133 DOI: 10.1186/1559-4106-8-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 11/10/2022] Open
Abstract
This paper evaluates analytical techniques that are relevant for performing reliable quantitative analysis of peptide adsorption on surfaces. Two salient problems are addressed: determining the solution concentrations of model GG-X-GG, X5, and X10 oligopeptides (G = glycine, X = a natural amino acid), and quantitative analysis of these peptides following adsorption on surfaces. To establish a uniform methodology for measuring peptide concentrations in water across the entire GG-X-GG and X n series, three methods were assessed: UV spectroscopy of peptides having a C-terminal tyrosine, the bicinchoninic acid (BCA) protein assay, and amino acid (AA) analysis. Due to shortcomings or caveats associated with each of the different methods, none were effective at measuring concentrations across the entire range of representative model peptides. In general, reliable measurements were within 30% of the nominal concentration based on the weight of as-received lyophilized peptide. In quantitative analysis of model peptides adsorbed on surfaces, X-ray photoelectron spectroscopy (XPS) data for a series of lysine-based peptides (GGKGG, K5, and K10) on Au substrates, and for controls incubated in buffer in the absence of peptides, suggested a significant presence of aliphatic carbon species. Detailed analysis indicated that this carbonaceous contamination adsorbed from the atmosphere after the peptide deposition. The inferred adventitious nature of the observed aliphatic carbon was supported by control experiments in which substrates were sputter-cleaned by Ar(+) ions under ultra-high vacuum (UHV) then re-exposed to ambient air. In contrast to carbon contamination, no adventitious nitrogen species were detected on the controls; therefore, the relative surface densities of irreversibly-adsorbed peptides were calculated by normalizing the N/Au ratios by the average number of nitrogen atoms per residue.
Collapse
Affiliation(s)
- Kenan P Fears
- Division of Chemistry, Naval Research Laboratory, Washington, DC, 20375-5342, USA,
| | | | | |
Collapse
|
28
|
Polyproline-II Helix in Proteins: Structure and Function. J Mol Biol 2013; 425:2100-32. [DOI: 10.1016/j.jmb.2013.03.018] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
|
29
|
Toal S, Meral D, Verbaro D, Urbanc B, Schweitzer-Stenner R. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study. J Phys Chem B 2013; 117:3689-706. [PMID: 23448349 DOI: 10.1021/jp310466b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several lines of evidence now well establish that unfolded peptides in general, and alanine in specific, have an intrinsic preference for the polyproline II (pPII) conformation. Investigation of local order in the unfolded state is, however, complicated by experimental limitations and the inherent dynamics of the system, which has in some cases yielded inconsistent results from different types of experiments. One method of studying these systems is the use of short model peptides, and specifically short alanine peptides, known for predominantly sampling pPII structure in aqueous solution. Recently, He et al. ( J. Am. Chem. Soc. 2012 , 134 , 1571 - 1576 ) proposed that unblocked tripeptides may not be suitable models for studying conformational propensities in unfolded peptides due to the presence of end effect, that is, electrostatic interactions between investigated amino acid residues and terminal charges. To determine whether changing the protonation states of the N- and C-termini influence the conformational manifold of the central amino acid residue in tripeptides, we have examined the pH-dependence of unblocked trialanine and the conformational preferences of alanine in the alanine dipeptide. To this end, we measured and globally analyzed amide I' band profiles and NMR J-coupling constants. We described conformational distributions as the superposition of two-dimensional Gaussian distributions assignable to specific subspaces of the Ramachandran plot. Results show that the conformational ensemble of trialanine as a whole, and the pPII content (χpPII = 0.84) in particular, remains practically unaffected by changing the protonation state. We found that compared to trialanine, the alanine dipeptide has slightly lower pPII content (χpPII = 0.74) and an ensemble more reminiscent of the unblocked Gly-Ala-Gly model peptide. In addition, a two-state thermodynamic analysis of the conformational sensitive Δε(T) and (3)J(H(N)H(α))(T) data obtained from electronic circular dichroism and H NMR spectra indicate that the free energy landscape of trialanine is similar in all protonation states. MD simulations for the investigated peptides corroborate this notion and show further that the hydration shell around unblocked trialanine is unaffected by the protonation/deprotonation of the C-terminal group. In contrast, the alanine dipeptide shows a reduced water density around the central residue as well as a less ordered hydration shell, which decreases the pPII propensity and reduces the lifetime of sampled conformations.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
30
|
Rybka K, Toal SE, Verbaro DJ, Mathieu D, Schwalbe H, Schweitzer-Stenner R. Disorder and order in unfolded and disordered peptides and proteins: a view derived from tripeptide conformational analysis. II. Tripeptides with short side chains populating asx and β-type like turn conformations. Proteins 2013; 81:968-83. [PMID: 23229867 DOI: 10.1002/prot.24226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/07/2012] [Accepted: 11/21/2012] [Indexed: 11/08/2022]
Abstract
In the preceding paper, we found that ensembles of tripeptides with long or bulky chains can include up to 20% of various turns. Here, we determine the structural and thermodynamic characteristics of GxG peptides with short polar and/or ionizable central residues (D, N, C), whose conformational distributions exhibit higher than average percentage (>20%) of turn conformations. To probe the side-chain conformations of these peptides, we determined the (3)J(H(α),H(β)) coupling constants and derived the population of three rotamers with χ1 -angles of -60°, 180° and 60°, which were correlated with residue propensities by DFT-calculations. For protonated GDG, the rotamer distribution provides additional evidence for asx-turns. A comparison of vibrational spectra and NMR coupling constants of protonated GDG, ionized GDG, and the protonated aspartic acid dipeptide revealed that side chain protonation increases the pPII content at the expense of turn populations. The charged terminal groups, however, have negligible influence on the conformational properties of the central residue. Like protonated GDG, cationic GCG samples asx-turns to a significant extent. The temperature dependence of the UVCD spectra and (3)J(H(N)H(α)) constants suggest that the turn populations of GDG and GNG are practically temperature-independent, indicating enthalpic and entropic stabilization. The temperature-independent J-coupling and UVCD spectra of GNG require a three-state model. Our results indicate that short side chains with hydrogen bonding capability in GxG segments of proteins may serve as hinge regions for establishing compact structures of unfolded proteins and peptides.
Collapse
Affiliation(s)
- Karin Rybka
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Schweitzer-Stenner R, Hagarman A, Toal S, Mathieu D, Schwalbe H. Disorder and order in unfolded and disordered peptides and proteins: a view derived from tripeptide conformational analysis. I. Tripeptides with long and predominantly hydrophobic side chains. Proteins 2013; 81:955-67. [PMID: 23229832 DOI: 10.1002/prot.24225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 11/10/2022]
Abstract
We performed a conformational analysis of the central residues of three tripeptides glycyl-L-isoleucyl-glycine (GIG), glycyl-L-tyrosyl-glycine (GYG) and glycyl-L-arginyl-glycine (GRG) in aqueous solution, based on a global analysis of amide I' band profiles and NMR J-coupling constants. The results are compared with recently reported distributions of GVG, GFG and GEG. For GIG and GYG, we found that even though the polyproline II (pPII) fraction is below 0.5, it is still the most populated conformation, whereas GVG and GFG show both a larger β-strand fraction. For GRG, we observed a clear dominance of pPII over β-strand, reminiscent of observations for GEG and GKG. This finding indicates that terminal charges on otherwise hydrophobic residue side chains stabilize pPII over β-strand conformations. For all peptides investigated we found that a variety of compact and turn-like conformations constitute nearly 20 percent of their conformational distributions. Attempts to analyze our data with a simple two-state pPII-->/<--β model therefore do not yield any satisfactory reproduction of experimental results. A comparison of the obtained GxG ensembles with conformational distributions of GxG segments in truncated coil libraries (helices and sheets omitted) revealed a much larger fraction of type II β(i+2) and type III β like conformations for the latter. Thus, a comparison of conformational distributions of unfolded peptide segments in solution and in coil libraries reveal interesting information on how the interplay between intrinsic propensities of amino acid residues and non-local interactions in polypeptide chains determine the conformations of loop segments in proteins.
Collapse
|
32
|
Mirkin NG, Krimm S. Water interaction differences determine the relative energetic stability of the polyproline II conformation of the alanine dipeptide in aqueous environments. Biopolymers 2012; 97:789-94. [DOI: 10.1002/bip.22064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|