1
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
2
|
Velasco-Olmo A, Ormaetxea Gisasola J, Martinez Galvez JM, Vera Lillo J, Shnyrova AV. Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers. Sci Rep 2019; 9:7255. [PMID: 31076583 PMCID: PMC6510758 DOI: 10.1038/s41598-019-43561-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/26/2019] [Indexed: 01/24/2023] Open
Abstract
In vitro reconstitution and microscopic visualization of membrane processes is an indispensable source of information about a cellular function. Here we describe a conceptionally novel free-standing membrane template that facilitates such quantitative reconstitution of membrane remodelling at different scales. The Giant Suspended Bilayers (GSBs) spontaneously swell from lipid lamella reservoir deposited on microspheres. GSBs attached to the reservoir can be prepared from virtually any lipid composition following a fast procedure. Giant unilamellar vesicles can be further obtained by GSB detachment from the microspheres. The reservoir stabilizes GSB during deformations, mechanical micromanipulations, and fluorescence microscopy observations, while GSB-reservoir boundary enables the exchange of small solutes with GSB interior. These unique properties allow studying macro- and nano-scale membrane deformations, adding membrane-active compounds to both sides of GSB membrane and applying patch-clamp based approaches, thus making GSB a versatile tool for reconstitution and quantification of cellular membrane trafficking events.
Collapse
Affiliation(s)
- Ariana Velasco-Olmo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Julene Ormaetxea Gisasola
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Juan Manuel Martinez Galvez
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Javier Vera Lillo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Anna V Shnyrova
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
3
|
Ali Doosti B, Cans AS, Jeffries GDM, Lobovkina T. Membrane Remodeling of Giant Vesicles in Response to Localized Calcium Ion Gradients. J Vis Exp 2018. [PMID: 30059020 PMCID: PMC6126466 DOI: 10.3791/57789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In a wide variety of fundamental cell processes, such as membrane trafficking and apoptosis, cell membrane shape transitions occur concurrently with local variations in calcium ion concentration. The main molecular components involved in these processes have been identified; however, the specific interplay between calcium ion gradients and the lipids within the cell membrane is far less known, mainly due to the complex nature of biological cells and the difficultly of observation schemes. To bridge this gap, a synthetic approach is successfully implemented to reveal the localized effect of calcium ions on cell membrane mimics. Establishing a mimic to resemble the conditions within a cell is a severalfold problem. First, an adequate biomimetic model with appropriate dimensions and membrane composition is required to capture the physical properties of cells. Second, a micromanipulation setup is needed to deliver a small amount of calcium ions to a particular membrane location. Finally, an observation scheme is required to detect and record the response of the lipid membrane to the external stimulation. This article offers a detailed biomimetic approach for studying the calcium ion-membrane interaction, where a lipid vesicle system, consisting of a giant unilamellar vesicle (GUV) connected to a multilamellar vesicle (MLV), is exposed to a localized calcium gradient formed using a microinjection system. The dynamics of the ionic influence on the membrane were observed using fluorescence microscopy and recorded at video frame rates. As a result of the membrane stimulation, highly curved membrane tubular protrusions (MTPs) formed inside the GUV, oriented away from the membrane. The described approach induces the remodeling of the lipid membrane and MTP production in an entirely contactless and controlled manner. This approach introduces a means to address the details of calcium ion-membrane interactions, providing new avenues to study the mechanisms of cell membrane reshaping.
Collapse
Affiliation(s)
- Baharan Ali Doosti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology
| | - Gavin D M Jeffries
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology
| | - Tatsiana Lobovkina
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology;
| |
Collapse
|
4
|
Wu DQ, Zhu J, Han H, Zhang JZ, Wu FF, Qin XH, Yu JY. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study. Acta Biomater 2018; 65:305-316. [PMID: 28867649 DOI: 10.1016/j.actbio.2017.08.048] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 11/15/2022]
Abstract
A multi-functional hybrid hydrogel P(M-Arg/NIPAAm) with temperature response, anti-protein adsorption and antibacterial properties was prepared and applied as wound dressing. The hydrogel was carried out by free radical copolymerization of methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm) monomers using N,N'-methylene bisacrylamide as a crosslinker, and ammonium persulfate/N,N,N', N'-tetramethylethylenediamine as the redox initiator. To endow the antimicrobial property, chlorhexidine diacetate (CHX) was preloaded into the hydrogel and polyhexamethylene guanidine phosphate (PHMG) was grafted on the hydrogel surface, respectively. The antimicrobial property of two series of hydrogels was evaluated and compared. The successful synthesis of M-Arg, PHMG and hydrogels was proved by 13C NMR, 1H NMR and FTIR spectroscopy. The hydrogel morphology characterized by scanning electron microscopy confirmed that the homogeneous porous and interconnected structures of the hydrogels. The swelling, protein adsorption property, in vitro release of CHX, antimicrobial assessment, cell viability as well as in vivo wound healing in a mouse model were studied. The results showed the nontoxicity and antimicrobial P(M-Arg/NIPAAm) hydrogel accelerated the full-thickness wound healing process and had the potential application in wound dressing. STATEMENT OF SIGNIFICANCE Despite the zwitterionic characteristic and biocompatible property of arginine based hydrogels, the brittle behavior and non-transparency still remain as a significant problem for wound dressing. Furthermore promoting the antibacterial property of the zwitterionic hydrogel is also necessary to prevent the bacterial colonization and subsequent wound infection. Therefore, we created a hybrid hydrogel combined methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm). NIPAAm improves transparency and mechanical property as well as acts as a temperature-response drug release system. Additionally, chlorhexidine (CHX) was preloaded into the hydrogels and polyhexamethylene guanidine phosphate (PHMG) was grafted on the hydrogel surface, respectively, which make the hydrogel useful as a favorable antibacterial dressing. The hybrid hydrogel has a combination effect of biocompatibility, environmentally responsive transformation behavior, biodegradability, anti-protein adsorption and antimicrobial properties. This report proposes the preparation of P(M-Arg/NIPAAm) hydrogel that has a great potential for wound healing.
Collapse
Affiliation(s)
- De-Qun Wu
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Jie Zhu
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Hua Han
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Jun-Zhi Zhang
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Fei-Fei Wu
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Xiao-Hong Qin
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Jian-Yong Yu
- Modern Textile Institute, Donghua University, No. 1882 West Yanan Road, Changning, Shanghai 200051, China
| |
Collapse
|
5
|
Ali Doosti B, Pezeshkian W, Bruhn DS, Ipsen JH, Khandelia H, Jeffries GDM, Lobovkina T. Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11010-11017. [PMID: 28910109 DOI: 10.1021/acs.langmuir.7b01461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Experimental and theoretical studies on ion-lipid interactions predict that binding of calcium ions to cell membranes leads to macroscopic mechanical effects and membrane remodeling. Herein, we provide experimental evidence that a point source of Ca2+ acting upon a negatively charged membrane generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer, which effectively neutralizes the surface charge density of outer leaflet of the bilayer. The mismatch in the surface charge density of the two leaflets leads to nonzero spontaneous curvature. We probe this mismatch through the use of molecular dynamics simulations and validate that calcium ion binding to a lipid membrane is sufficient to generate inward spontaneous curvature, bending the membrane. Additionally, we demonstrate that the formed tubular protrusions can be translated along the vesicle surface in a controlled manner by repositioning the site of localized Ca2+ exposure. The findings demonstrate lipid membrane remodeling in response to local chemical gradients and offer potential insights into the cell membrane behavior under conditions of varying calcium ion concentrations.
Collapse
Affiliation(s)
- Baharan Ali Doosti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Weria Pezeshkian
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Dennis S Bruhn
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - John H Ipsen
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Himanshu Khandelia
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Gavin D M Jeffries
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Tatsiana Lobovkina
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
6
|
Lu N, Yang K, Li J, Weng Y, Yuan B, Ma Y. Controlled Drug Loading and Release of a Stimuli-Responsive Lipogel Consisting of Poly(N-isopropylacrylamide) Particles and Lipids. J Phys Chem B 2013; 117:9677-82. [DOI: 10.1021/jp402826n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naiyan Lu
- Center for Soft Condensed Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic 3216, Australia
| | - Yuyan Weng
- Center for Soft Condensed Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Bing Yuan
- Center for Soft Condensed Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yuqiang Ma
- Center for Soft Condensed Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
- National Laboratory of Solid
State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|