1
|
Baumberger CL, Valley VZ, Chambers MB. Direct photocatalytic C-H functionalization mediated by a molybdenum dioxo complex. Chem Commun (Camb) 2024; 60:6901-6904. [PMID: 38888147 DOI: 10.1039/d4cc01789g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Direct photocatalytic C-H activation mediated by MoO2Cl2(bpy-tBu), a unique photoactive metal OXO, is presented. The limiting step, reoxidation to the Mo dioxo, is evaluated and proposed to occur via a key Cl- loss event. Photocatalyst degradation occurs upon substitution of bpy-tBu with H2O generated during catalysis.
Collapse
Affiliation(s)
- Courtney L Baumberger
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA.
| | - Victoria Z Valley
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA.
| | - Matthew B Chambers
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA.
| |
Collapse
|
2
|
Ishizuka T, Kogawa T, Ogawa C, Kotani H, Shiota Y, Yoshizawa K, Kojima T. Enhancement of Reactivity of a Ru IV-Oxo Complex in Oxygen-Atom-Transfer Catalysis by Hydrogen-Bonding with Amide Moieties in the Second Coordination Sphere. JACS AU 2023; 3:2813-2825. [PMID: 37885582 PMCID: PMC10598587 DOI: 10.1021/jacsau.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023]
Abstract
We have synthesized and characterized a RuII-OH2 complex (2), which has a pentadentate ligand with two pivalamide groups as bulky hydrogen-bonding (HB) moieties in the second coordination sphere (SCS). Complex 2 exhibits a coordination equilibrium through the coordination of one of the pivalamide oxygens to the Ru center in water, affording a η6-coordinated complex, 3. A detailed thermodynamic analysis of the coordination equilibrium revealed that the formation of 3 from 2 is entropy-driven owing to the dissociation of the axial aqua ligand in 2. Complex 2 was oxidized by a CeIV salt to produce the corresponding RuIII(OH) complex (5), which was characterized crystallographically. In the crystal structure of 5, hydrogen bonds are formed among the NH groups of the pivalamide moieties and the oxygen atom of the hydroxo ligand. Further 1e--oxidation of 5 yields the corresponding RuIV(O) complex, 6, which has intramolecular HB of the oxo ligand with two amide N-H protons. Additionally, the RuIII(OH) complex, 5, exhibits disproportionation to the corresponding RuIV(O) complex, 6, and a mixture of the RuII complexes, 2 and 3, in an acidic aqueous solution. We investigated the oxidation of a phenol derivative using complex 6 as the active species and clarified the switch of the reaction mechanism from hydrogen-atom transfer at pH 2.5 to electron transfer, followed by proton transfer at pH 1.0. Additionally, the intramolecular HB in 6 exerts enhancing effects on oxygen-atom transfer reactions from 6 to alkenes such as cyclohexene and its water-soluble derivative to afford the corresponding epoxides, relative to the corresponding RuIV(O) complex (6') lacking the HB moieties in the SCS.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Taichi Kogawa
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Chisato Ogawa
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshihito Shiota
- Institute
for Materials Chemistry and Engineering, Kyushu University, Moto-oka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute
for Materials Chemistry and Engineering, Kyushu University, Moto-oka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Takahiko Kojima
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
3
|
Fosshat S, Siddhiaratchi SDM, Baumberger CL, Ortiz VR, Fronczek FR, Chambers MB. Light-Initiated C–H Activation via Net Hydrogen Atom Transfer to a Molybdenum(VI) Dioxo. J Am Chem Soc 2022; 144:20472-20483. [DOI: 10.1021/jacs.2c09235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saeed Fosshat
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | | | - Courtney L. Baumberger
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Victor R. Ortiz
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Matthew B. Chambers
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| |
Collapse
|
4
|
Patra K, Laskar RA, Nath A, Bera JK. A Protic Mn(I) Complex Based on a Naphthyridine- N-oxide Scaffold: Protonation/Deprotonation Studies and Catalytic Applications for Alkylation of Ketones. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kamaless Patra
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Roshayed Ali Laskar
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anubhav Nath
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Vo NT, Herrero C, Guillot R, Inceoglu T, Leibl W, Clémancey M, Dubourdeaux P, Blondin G, Aukauloo A, Sircoglou M. Intercepting a transient non-hemic pyridine N-oxide Fe(III) species involved in OAT reactions. Chem Commun (Camb) 2021; 57:12836-12839. [PMID: 34787138 DOI: 10.1039/d1cc04521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of bioinspired OAT catalysis, we developed a tetradentate dipyrrinpyridine ligand, a hybrid of hemic and non-hemic models. The catalytic activity of the iron(III) derivative was investigated in the presence of iodosylbenzene. Unexpectedly, MS, EPR, Mössbauer, UV-visible and FTIR spectroscopic signatures supported by DFT calculations provide convincing evidence for the involvement of a relevant FeIII-O-NPy active intermediate.
Collapse
Affiliation(s)
- Nhat Tam Vo
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Christian Herrero
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Tanya Inceoglu
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay, 1, UMR 9198, 9119, Gif-sur-Yvette, France
| | - Martin Clémancey
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, Grenoble F-38000, France
| | - Patrick Dubourdeaux
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, Grenoble F-38000, France
| | - Geneviève Blondin
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, Grenoble F-38000, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France. .,Institute for integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay, 1, UMR 9198, 9119, Gif-sur-Yvette, France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| |
Collapse
|
6
|
Bravin C, Badetti E, Licini G, Zonta C. Tris(2-pyridylmethyl)amines as emerging scaffold in supramolecular chemistry. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kojima T. Study on Proton-Coupled Electron Transfer in Transition Metal Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
8
|
Karbakhsh Ravari A, Pineda-Galvan Y, Huynh A, Ezhov R, Pushkar Y. Facile Light-Induced Transformation of [Ru II(bpy) 2(bpyNO)] 2+ to [Ru II(bpy) 3] 2. Inorg Chem 2020; 59:13880-13887. [PMID: 32924462 DOI: 10.1021/acs.inorgchem.0c01446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ru-based coordination compounds have important applications as photosensitizers and catalysts. [RuII(bpy)2(bpyNO)]2+ (bpy = 2,2'-bipyridine and bpyNO = 2,2'-bipyridine-N-oxide) was reported to be extremely light-sensitive, but its light-induced transformation pathways have not been analyzed. Here, we elucidated a mechanism of the light-induced transformation of [RuII(bpy)2(bpyNO)]2+ using UV-vis, EPR, resonance Raman, and NMR spectroscopic techniques. The spectroscopic analysis was augmented with the DFT calculations. We concluded that upon 530-650 nm light excitation, 3[RuIII(bpyNO-•)(bpy)2]2+ is formed similarly to the 3[RuIII(bpy-•)(bpy)2]2+ light-induced state of the well-known photosensitizer [RuII(bpy)3]2+. An electron localization on the bpyNO ligand was confirmed by obtaining a unique EPR signal of reduced [RuII(bpy)2(bpyNO-•)]+ (gxx = 2.02, gyy = 1.99, and gzz = 1.87 and 14N hfs Axx = 12 G, Ayy = 34 G, and Azz = 11 G). 3[RuIII(bpyNO-•)(bpy)2]2+ may evolve via breaking of the Ru-O-N fragment at two different positions resulting in [RuIV═O(bpy)2(bpyout)]2+ for breakage at the O-|-N bond and [RuII(H2O)(bpy)2(bpyNOout)]2+ for breakage at the Ru-|-O bond. These pathways were found to have comparable ΔG. A reduction of [RuIV═O(bpy)2(bpyout)]2+ may result in water elimination and formation of [RuII(bpy)3]2+. The expected intermediates, [RuIII(bpy)2(bpyNO)]3+ and [RuIII(bpy)3]3+, were detected by EPR. In addition, a new signal with gxx = 2.38, gyy = 2.10, and gzz = 1.85 was observed and tentatively assigned to a complex with the dissociated ligand, such as [RuIII(H2O)(bpy)2(bpyNOout)]3+. The spectroscopic signatures of [RuIV═O(bpy)2(bpyout)]2+ were not observed, although DFT analysis and [RuII(bpy)3]2+ formation suggest this intermediate. Thus, [RuII(bpy)2(bpyNO)]2+ has potential as a light-induced oxidizer.
Collapse
Affiliation(s)
- Alireza Karbakhsh Ravari
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Huynh
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Monika, Ansari A. Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron( v) species: A C–H vs. O–H bond activation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight into a comparative study of C–H vs. O–H bond activation of allylic compound by the high valent iron complex. Our theoretical findings can help to design catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| |
Collapse
|
10
|
Kojima T. Development of functionality of metal complexes based on proton-coupled electron transfer. Dalton Trans 2020; 49:7284-7293. [DOI: 10.1039/d0dt00898b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-coupled electron transfer (PCET) is ubiquitous and fundamental in many kinds of redox reactions. In this paper, are described PCET reactions in metal complexes to highlight their useful and unique properties and functionalities.
Collapse
Affiliation(s)
- Takahiko Kojima
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
11
|
Ravari AK, Zhu G, Ezhov R, Pineda-Galvan Y, Page A, Weinschenk W, Yan L, Pushkar Y. Unraveling the Mechanism of Catalytic Water Oxidation via de Novo Synthesis of Reactive Intermediate. J Am Chem Soc 2019; 142:884-893. [PMID: 31865704 DOI: 10.1021/jacs.9b10265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alireza Karbakhsh Ravari
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Guibo Zhu
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Roman Ezhov
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Yuliana Pineda-Galvan
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Allison Page
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Whitney Weinschenk
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Lifen Yan
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Dutta M, Bania KK, Pratihar S. Remote ‘Imidazole’ Based Ruthenium(II)
p
‐Cymene Precatalyst for Selective Oxidative Cleavage of C−C Multiple Bonds. ChemCatChem 2019. [DOI: 10.1002/cctc.201900242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manali Dutta
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| | - Kusum Kumar Bania
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| | - Sanjay Pratihar
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| |
Collapse
|
13
|
McPherson JN, Das B, Colbran SB. Tridentate pyridine–pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Petrosyan A, Hauptmann R, Pospech J. Heteroarene N
-Oxides as Oxygen Source in Organic Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andranik Petrosyan
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| | - Richy Hauptmann
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| | - Jola Pospech
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| |
Collapse
|
15
|
Shimoyama Y, Ishizuka T, Kotani H, Kojima T. Ruthenium(II) Complexes Having a Pincer-Type Ligand with Two N
-Heterocyclic Carbene Moieties. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshihiro Shimoyama
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 1-1-1 Tennoudai Tsukuba Ibaraki Japan
| | - Tomoya Ishizuka
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 1-1-1 Tennoudai Tsukuba Ibaraki Japan
| | - Hiroaki Kotani
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 1-1-1 Tennoudai Tsukuba Ibaraki Japan
| | - Takahiko Kojima
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 1-1-1 Tennoudai Tsukuba Ibaraki Japan
| |
Collapse
|
16
|
Toriumi N, Yanagi S, Muranaka A, Hashizume D, Uchiyama M. Effects of N-Oxidation on Heteroaromatic Macrocycles: Synthesis, Electronic Structures, Spectral Properties, and Reactivities of Tetraazaporphyrin meso-N-Oxides. Chemistry 2017; 23:8309-8314. [PMID: 28378358 DOI: 10.1002/chem.201701300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/06/2022]
Abstract
Heteroaromatic N-oxides such as pyridine and quinoline N-oxides are well studied in organic chemistry, and N-oxide formation has long been utilized for tuning the reactivities of heteroaromatics. However, the scope of aromatic N-oxidation is still restricted to relatively small azine or azole skeletons, and there has been little investigation of the photophysical/chemical effects of N-oxidation on larger heteroaromatic systems. Here, the synthesis and unique properties of new macrocyclic heteroaromatic N-oxides, tetraazaporphyrin (TAP) meso-N-oxides, are reported. N-Oxidation of TAP reduced the 18π-aromaticity of the TAP ring compared with that of the parent TAP owing to the cross-conjugated resonance structure. The optical properties of TAPs were significantly changed by N-oxidation: the N-oxides did not exhibit azaporphyrin-like but instead porphyrin-like optical properties, that is, weak Q absorption bands, strong Soret absorption bands, and weak fluorescence. These features can be explained by the near-degenerate frontier molecular orbitals resulting from N-oxide formation. Singlet oxygen quantum yields were greatly increased to almost quantitative levels by N-oxidation. The N-oxides showed near-IR-responsive photoredox properties and were suitable as both oxidants and sensitizers for oxidation reactions. Protonation of the N-oxides restored TAP-like intense Q bands and red fluorescence, offering a potential design strategy for fluorescence switches.
Collapse
Affiliation(s)
- Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Yanagi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Elements Chemistry Laboratory, RIKEN and Advanced Elements Chemistry Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Daisuke Hashizume
- Materials Characterization Support Unit, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Elements Chemistry Laboratory, RIKEN and Advanced Elements Chemistry Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
17
|
Gupta SK, Choudhury J. A Mixed N-Heterocyclic Carbene/2,2′-Bipyridine-Supported Robust Ruthenium(II) Oxidation Precatalyst for Benzylic C−H Oxidation. ChemCatChem 2017. [DOI: 10.1002/cctc.201700177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Suraj K. Gupta
- Organometallics & Smart Materials Laboratory; Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal 462 066 India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory; Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal 462 066 India
| |
Collapse
|
18
|
Sankaralingam M, Lee YM, Nam W, Fukuzumi S. Selective Oxygenation of Cyclohexene by Dioxygen via an Iron(V)-Oxo Complex-Autocatalyzed Reaction. Inorg Chem 2017; 56:5096-5104. [DOI: 10.1021/acs.inorgchem.7b00220] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yong-Min Lee
- Department of Chemistry
and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry
and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry
and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
19
|
Arora K, White JK, Sharma R, Mazumder S, Martin PD, Schlegel HB, Turro C, Kodanko JJ. Effects of Methyl Substitution in Ruthenium Tris(2-pyridylmethyl)amine Photocaging Groups for Nitriles. Inorg Chem 2016; 55:6968-79. [PMID: 27355786 PMCID: PMC4966558 DOI: 10.1021/acs.inorgchem.6b00650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four complexes of the general formula [Ru(L)(CH3CN)2](PF6)2, [L = TPA (5), MeTPA (6), Me2TPA (7), and Me3TPA (8)] [TPA = tris[(pyridin-2-yl)methyl]amine, where methyl groups were introduced consecutively onto the 6-position of py donors of TPA, were prepared and characterized by various spectroscopic techniques and mass spectrometry. While 5 and 8 were isolated as single stereoisomers, 6 and 7 were isolated as mixtures of stereoisomers in 2:1 and 1.5:1 ratios, respectively. Steric effects on ground state stability and thermal and photochemical reactivities were studied for all four complexes using (1)H NMR and electronic absorption spectroscopies and computational studies. These studies confirmed that the addition of steric bulk accelerates photochemical and thermal nitrile release.
Collapse
Affiliation(s)
- Karan Arora
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica K. White
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rajgopal Sharma
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Shivnath Mazumder
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Philip D. Martin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
20
|
Chen G, Chen L, Ma L, Kwong HK, Lau TC. Photocatalytic oxidation of alkenes and alcohols in water by a manganese(v) nitrido complex. Chem Commun (Camb) 2016; 52:9271-4. [PMID: 27358025 DOI: 10.1039/c6cc04173f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn(v) nitrido complex [Mn(N)(CN)4](2-) is an efficient catalyst for visible-light induced oxidation of alkenes and alcohols in water using [Ru(bpy)3](2+) as a photosensitizer and [Co(NH3)5Cl](2+) as a sacrificial oxidant. Alkenes are oxidized to epoxides and alcohols to carbonyl compounds.
Collapse
Affiliation(s)
- Gui Chen
- Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| | | | | | | | | |
Collapse
|
21
|
Nowosinski K, Warnke S, Pagel K, Komáromy D, Jiang W, Schalley CA. Photooxygenation and gas-phase reactivity of multiply threaded pseudorotaxanes. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:269-281. [PMID: 27041657 DOI: 10.1002/jms.3746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
The solution-phase photooxygenation of multiply threaded crown/ammonium pseudorotaxanes containing anthracene spacers is monitored by electrospray ionization Fourier-transform ion-cyclotron-resonance (ESI-FTICR) mass spectrometry. The oxygenated pseudorotaxanes are mass-selected and fragmented by infrared multiphoton dissociation (IRMPD) and/or collision-induced dissociation (CID) experiments and and their behavior compared to that of the non-oxygenated precursors. [4+2]Cycloreversion reactions lead to the loss of O2, when no other reaction channel with competitive energy demand is available. Thus, the release of molecular oxygen can serve as a reference reaction for the energy demand of other fragmentation reactions such as the dissociation of the crown/ammonium binding motifs. The photooxygenation induces curvature into the initially planar anthracene and thus significantly changes the geometry of the divalent, anthracene-spacered wheel. This is reflected in ion-mobility data. Coulomb repulsion in multiply charged pseudorotaxanes assists the oxygen loss as the re-planarization of the anthracene increases the distance between the two charges.
Collapse
Affiliation(s)
- Karol Nowosinski
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Stephan Warnke
- Fritz Haber Institute of the Max Planck Society, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Department of Molecular Physics, Faradayweg 4-6, 14195, Berlin, Germany
| | - Dávid Komáromy
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wei Jiang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, South University of Science and Technology of China (SUSTC), No.1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
22
|
Ishizuka T, Kotani H, Kojima T. Characteristics and reactivity of ruthenium–oxo complexes. Dalton Trans 2016; 45:16727-16750. [DOI: 10.1039/c6dt03024f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, we have surveyed the synthetic procedure, characteristics, and reactivity of high-valent ruthenium–oxo complexes.
Collapse
Affiliation(s)
| | - Hiroaki Kotani
- Department of Chemistry
- University of Tsukuba
- Tsukuba
- Japan
| | | |
Collapse
|
23
|
Wu X, Yang X, Lee YM, Nam W, Sun L. A nonheme manganese(IV)-oxo species generated in photocatalytic reaction using water as an oxygen source. Chem Commun (Camb) 2015; 51:4013-6. [PMID: 25658677 DOI: 10.1039/c4cc10411k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nonheme manganese(IV)-oxo complex, [Mn(IV)(O)(BQCN)](2+), was generated in the photochemical and chemical oxidation of [Mn(II)(BQCN)](2+) with water as an oxygen source, respectively. The photocatalytic oxidation of organic substrates, such as alcohol and sulfide, by [Mn(II)(BQCN)](2+) has been demonstrated in both neutral and acidic media.
Collapse
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian 116024, China.
| | | | | | | | | |
Collapse
|
24
|
Turlington CR, White PS, Brookhart M, Templeton JL. Half-sandwich Rh(Cp*) and Ir(Cp*) complexes with oxygen atom transfer reagents as ligands. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Weisser F, Plebst S, Hohloch S, van der Meer M, Manck S, Führer F, Radtke V, Leichnitz D, Sarkar B. Tuning Ligand Effects and Probing the Inner-Workings of Bond Activation Steps: Generation of Ruthenium Complexes with Tailor-Made Properties. Inorg Chem 2015; 54:4621-35. [DOI: 10.1021/ic502807d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fritz Weisser
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Sebastian Plebst
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, D-70569 Stuttgart, Germany
| | - Stephan Hohloch
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Margarethe van der Meer
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Sinja Manck
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Felix Führer
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Vanessa Radtke
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Daniel Leichnitz
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Biprajit Sarkar
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| |
Collapse
|
26
|
Enow CA, Marais C, Bezuidenhoudt BC. Non-peripherally alkyl substituted ruthenium phthalocyanines as catalysts in the epoxidation of alkenes. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s108842461450103x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-peripherally alkyl substituted ruthenium phthalocyanines were demonstrated to be highly active epoxidation catalysts. It is compatible with pyridine N-oxides, and especially 2,6-dichloropyridine N-oxide. The catalytic activity towards a variety of alkenes was comparable to that published for other catalytic systems, but superior in the cases of 1,2-dihydronaphthalene and trans-stilbene. Linear substituents on the non-peripheral sites of the phthalocyanine were able to reduce aggregation and increase the solubility of the catalyst without compromising its activity by steric congestion as all substituted catalysts were more reactive than the unsubstituted phthalocyanine, whereas the bulky isopentyl and cyclohexyl substituted catalysts were less active than those with linear substituents. Although the epoxidation mechanism and the exact active intermediate is still ambigious, it likely involves the coordination of the N-oxide to ruthenium and subsequent transfer of the oxygen to the metal to form a high-valent oxo-ruthenium species. It is proposed that the alkene approaches this metal oxo moiety from the top and that oxygen transfer to the alkene is concerted with concomitant stereoretention.
Collapse
Affiliation(s)
- Charles A. Enow
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - Charlene Marais
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | | |
Collapse
|
27
|
D'Souza F, Imahori H. Preface — Special Issue in Honor of Professor Shunichi Fukuzumi. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Feng JB, Wu XF. Transition metal-catalyzed oxidative transformations of methylarenes. Appl Organomet Chem 2014. [DOI: 10.1002/aoc.3244] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian-Bo Feng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou Zhejiang Province 310018 People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou Zhejiang Province 310018 People's Republic of China
- Leibniz-Institut für Katalyse eV an der Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
29
|
Tse CW, Chow TWS, Guo Z, Lee HK, Huang JS, Che CM. Nonheme Iron Mediated Oxidation of Light Alkanes with Oxone: Characterization of Reactive Oxoiron(IV) Ligand Cation Radical Intermediates by Spectroscopic Studies and DFT Calculations. Angew Chem Int Ed Engl 2013; 53:798-803. [DOI: 10.1002/anie.201305153] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/08/2013] [Indexed: 01/07/2023]
|
30
|
Tse CW, Chow TWS, Guo Z, Lee HK, Huang JS, Che CM. Nonheme Iron Mediated Oxidation of Light Alkanes with Oxone: Characterization of Reactive Oxoiron(IV) Ligand Cation Radical Intermediates by Spectroscopic Studies and DFT Calculations. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Sugimoto H, Ashikari K, Itoh S. C-H bond activation of the methyl group of the supporting ligand in an osmium(III) complex upon reaction with H2O2: formation of an organometallic osmium(IV) complex. Inorg Chem 2013; 52:543-5. [PMID: 23273223 DOI: 10.1021/ic302169k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation of the hydroxoosmium(III) complex resulted in C-H bond activation of the methyl group of the supporting ligand (N,N'-dimethyl-2,11-diaza[3.3](2,6)pyridinophane). The product was an osmium(IV) complex exhibiting a seven-coordinate structure with an additional Os-CH(2) bond.
Collapse
Affiliation(s)
- Hideki Sugimoto
- Department of Materials and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|