1
|
Meng Y, Lin X, Huang J, Zhang L. Recent Advances in Carborane-Based Crystalline Porous Materials. Molecules 2024; 29:3916. [PMID: 39202996 PMCID: PMC11357283 DOI: 10.3390/molecules29163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The field of carborane research has witnessed continuous development, leading to the construction and development of a diverse range of crystalline porous materials for various applications. Moreover, innovative synthetic approaches are expanding in this field. Since the first report of carborane-based crystalline porous materials (CCPMs) in 2007, the synthesis of carborane ligands, particularly through innovative methods, has consistently posed a significant challenge in discovering new structures of CCPMs. This paper provides a comprehensive summary of recent advances in various synthetic approaches for CCPMs, along with their applications in different domains. The primary challenges and future opportunities are expected to stimulate further multidisciplinary development in the field of CCPMs.
Collapse
Affiliation(s)
- Yuxuan Meng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Xi Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Jinyi Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
2
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
3
|
Ravi Sankar A, Arunachalam S, Gnanasekaran R. A computational study to determine the role of σ-hole in Br/OH substituted nido-carborane and its binding capabilities. J Mol Graph Model 2024; 127:108680. [PMID: 38039786 DOI: 10.1016/j.jmgm.2023.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
A detailed investigation of the σ-hole on the halogen atom present in the nido-heteroboranes is made by employing quantum mechanical methods. The bromide and the hydroxyl groups are incorporated in the exo-substituents of the nido-boranes. The potential of the bromide σ-hole was compared to that of electrostatic potential of hydroxyl group counterpart. The presence of a carbon atom vertex, in a different position of a system, influences the σ-hole and hence its binding abilities. Bromide substituted nido-carboranes have less potential and hence weaker binding ability compared to their closo-counterparts. Binding affinity with aliphatic is found to be more compared to that of aromatic system. The presence of solvent dampened the electrostatic interactions. Apart from the neutral system, the binding capabilities of charged nido-heteroboranes were also studied. The results of this study will be further useful for several applications viz., crystal engineering, drug designing (Pharmaceuticals), medicine, material science, energy storage devices, etc.
Collapse
|
4
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Xing K, Wu Y, Gao F, Dai Y, Guan C, Tong Y, Gao Y, Wang C, Zhang C. Design, synthesis and anti-hepatic fibrosis activity of novel diphenyl vitamin D receptor agonists. Eur J Med Chem 2023; 258:115596. [PMID: 37406383 DOI: 10.1016/j.ejmech.2023.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Hepatic fibrosis poses a significant threat to human health due to excessive extracellular matrix (ECM) deposition leading to liver function damage. Ligand-activated vitamin D receptor (VDR) has been identified as an effective target for hepatic fibrosis, reducing ECM by inhibiting hepatic stellate cell (HSC) activation. Here, a series of novel diphenyl VDR agonists have been rationally designed and synthesized. Among these, compounds 15b, 16i, and 28m showed better transcriptional activity compared to sw-22, which was previously reported to be a potent non-secosteroidal VDR modulator. Moreover, these compounds exhibited outstanding efficacy to inhibit collagen deposition in vitro. In models of CCl4-induced and bile duct ligation-induced hepatic fibrosis, compound 16i showed the most significant therapeutic effect by ultrasound imaging and histological examination. Moreover, 16i was able to repair liver tissue by reducing the expression levels of fibrosis genes and serum liver function indexes without causing hypercalcemia in mice. In conclusion, compound 16i is a potent VDR agonist with significant anti-hepatic fibrosis action both in vitro and in vivo.
Collapse
Affiliation(s)
- Kai Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yupeng Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chun Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yu Tong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yi Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Cong Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
6
|
Li M, Yu J, Xue Y, Wang K, Wang Q, Xie Z, Wang L, Yang Y, Wu J, Qiu X, Yu H. Preparation of Carborane-Tailored Covalent Organic Frameworks by a Postsynthetic Modification Strategy as a Barrier to Polysulfide in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2922-2932. [PMID: 36600549 DOI: 10.1021/acsami.2c18407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithium-sulfur batteries (LSBs) have attracted much attention due to their high energy density and theoretical specific capacity. However, the "shuttle effect" of polysulfides limits their application. Herein, we propose a postsynthetic modification (PSM) strategy to synthesize a fibrous carborane-tailored covalent organic framework (PMCB-COF). Benefiting from its amphiphilicity, strong adsorption ability, high specific surface area, and accessible Li+ transport channels, PMCB-COF could serve as a barrier to polysulfide to inhibit the shuttle effect. The cell assembled with PMCB-COF exhibits a high initial capacity of 926 mAh g-1 at 1 C. A Coulombic efficiency of 98% and a fading rate of only 0.039% per cycle are exhibited even after 1500 cycles. So far as we know, PMCB-COF is one of the best materials as a separator of LSBs. This work provides a safe and efficient avenue for tailoring COFs with carborane and might help promote the development of secure, low-cost, and durable rechargeable batteries.
Collapse
Affiliation(s)
- Mingming Li
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Jun Yu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Yali Xue
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Kai Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Qimeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhiying Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lei Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Yu Yang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Jianping Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiaoyan Qiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Haizhou Yu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| |
Collapse
|
7
|
Maestro MA, Seoane S. The Centennial Collection of VDR Ligands: Metabolites, Analogs, Hybrids and Non-Secosteroidal Ligands. Nutrients 2022; 14:nu14224927. [PMID: 36432615 PMCID: PMC9692999 DOI: 10.3390/nu14224927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of vitamin D a century ago, a great number of metabolites, analogs, hybrids and nonsteroidal VDR ligands have been developed. An enormous effort has been made to synthesize compounds which present beneficial properties while attaining lower calcium serum levels than calcitriol. This structural review covers VDR ligands published to date.
Collapse
Affiliation(s)
- Miguel A. Maestro
- Department of Chemistry-CICA, University of A Coruña, Campus da Zapateira, s/n, 15008 A Coruña, Spain
- Correspondence:
| | - Samuel Seoane
- Department of Physiology-CIMUS, University of Santiago, Campus Vida, 15005 Santiago, Spain
| |
Collapse
|
8
|
Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int J Mol Sci 2022; 23:ijms232012190. [PMID: 36293047 PMCID: PMC9603397 DOI: 10.3390/ijms232012190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022] Open
Abstract
Boron cluster-conjugated antisense oligonucleotides (B-ASOs) have already been developed as therapeutic agents with “two faces”, namely as potential antisense inhibitors of gene expression and as boron carriers for boron neutron capture therapy (BNCT). The previously observed high antisense activity of some B-ASOs targeting the epidermal growth factor receptor (EGFR) could not be rationally assigned to the positioning of the boron cluster unit: 1,2-dicarba-closo-dodecaborane (0), [(3,3′-Iron-1,2,1′,2′-dicarbollide) (1-), FESAN], and dodecaborate (2-) in the ASO chain and its structure or charge. For further understanding of this observation, we performed systematic studies on the efficiency of RNase H against a series of B-ASOs models. The results of kinetic analysis showed that pyrimidine-enriched B-ASO oligomers activated RNase H more efficiently than non-modified ASO. The presence of a single FESAN unit at a specific position of the B-ASO increased the kinetics of enzymatic hydrolysis of complementary RNA more than 30-fold compared with unmodified duplex ASO/RNA. Moreover, the rate of RNA hydrolysis enhanced with the increase in the negative charge of the boron cluster in the B-ASO chain. In conclusion, a “smart” strategy using ASOs conjugated with boron clusters is a milestone for the development of more efficient antisense therapeutic nucleic acids as inhibitors of gene expression.
Collapse
|
9
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
10
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
11
|
Battista VD, Hey-Hawkins E. Development of Prodrugs for Treatment of Parkinson's Disease: New Inorganic Scaffolds for Blood-Brain Barrier Permeation. J Pharm Sci 2022; 111:1262-1279. [PMID: 35182542 DOI: 10.1016/j.xphs.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
The treatment of Parkinson's disease (PD) has not been consistently modified for more than 60 years. L-DOPA, the blood-brain barrier permeable precursor prodrug of dopamine, is to date the only effective therapy on the market. However, it is well known that prolonged treatment with L-DOPA leads to several side effects, which may affect the patient's life expectancy (i.e., the wearing-off phenomenon, on-off fluctuations, and dyskinesia). For this reason, modifications, and supplements to L-DOPA treatment have been and are being studied, which, however, have not yet resulted in a valid alternative to the cornerstone drug. This review aims to summarize the main formulations currently in use for PD treatment, explaining advantages and disadvantages for each class. The attention will be focused on the promising prodrug concept, aimed at finding a suitable L-DOPA substitute with improved pharmacokinetic behavior. In this respect, new potential candidates which show interesting properties for the intended scope, the so-called dicarba-closo-dodecaboranes(12) (carboranes), will be discussed. Carboranes are inorganic molecular icosahedral boron-carbon clusters with 12 vertices and 20 deltahedral faces. They have been extensively studied for applications in medicine as potential pharmacophores, reagents in boron neutron capture therapy (BNCT) and radiotherapy. Here, we discuss them as inorganic scaffolds for dopamine delivery at the central nervous system (CNS) level.
Collapse
Key Words
- %F, Oral Bioavailability
- 5-HTP, L-5-Hydroxy-Tryptophan
- AADC, Aromatic L-Amino Acid Decarboxylase
- AGPs, Arabinogalactan Proteins
- AUC, Area Under the Plasma Concentration Curve
- Abbreviations
- BBB, Blood–Brain Barrier
- BNCT, Boron Neutron Capture Therapy
- CNS, Central Nervous System
- COMT, Catechol-O-Methyltransferase
- DBS, Deep Brain Stimulation
- DDC, Dopamine Decarboxylase
- DMSO, Dimethylsulfoxide
- FAD, Flavin Adenine Dinucleotide
- FDA, Food and Drug Administration
- GPCRs, G-Protein-Coupled Receptors
- HIV, Human Immunodeficiency Virus
- HSA, Human Serum Albumin
- ICT, Intramolecular Charge Transfer
- IPG, Implanted Pulse Generator
- IUPAC, International Union of Pure and Applied Chemistry
- IV, Intravenous Injection
- LDEE, L-DOPA Ethyl Ester
- LNAA, Large Neutral Amino Acid transport system
- MAO-A/B, Monoamine Oxidase-A/B
- MPO, Multiparameter Optimization
- Mw, Molecular Weight
- NMDAR, N-Methyl D-Aspartate Receptor
- P, Partition Coefficient
- PAMPA, Parallel Artificial Membrane Permeability Assay
- PD, Parkinson's Disease
- PLP, Pyridoxal Phosphate
- PNS, Peripheral Nervous System
- Parkinson's disease, Dopamine, Blood–brain barrier, Permeability, Bioavailability, L-DOPA, Prodrugs, Inorganic scaffold, Icosahedral carborane
- SAM, S-Adenosyl L-Methionine
- STN, Subthalamic Nucleus
- TBP, Tetrahydrobiopterin
- UPDRS, Unified Parkinson's Disease Rating Scale
- VTA, Ventral Tegmental Are
- hBMECs, human Brain Microvascular Endothelial Cells
Collapse
Affiliation(s)
- Veronica Di Battista
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
12
|
Fujii S. Design Strategy of Biologically Active Compounds Using Various Elements. YAKUGAKU ZASSHI 2022; 142:131-137. [DOI: 10.1248/yakushi.21-00173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
13
|
Recent trends and tactics in facile functionalization of neutral icosahedral carboranes (C2B10H12) and nido-carborane (7,8-C2B9H12−). ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Comprehensive exploration of chemical space using trisubstituted carboranes. Sci Rep 2021; 11:24101. [PMID: 34916538 PMCID: PMC8677773 DOI: 10.1038/s41598-021-03459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 42 trisubstituted carboranes categorised into five scaffolds were systematically designed and synthesized by exploiting the different reactivities of the twelve vertices of o-, m-, and p-carboranes to cover all directions in chemical space. Significant inhibitors of hypoxia inducible factor transcriptional activitay were mainly observed among scaffold V compounds (e.g., Vi–m, and Vo), whereas anti-rabies virus activity was observed among scaffold V (Va–h), scaffold II (IIb–g), and scaffold IV (IVb) compounds. The pharmacophore model predicted from compounds with scaffold V, which exhibited significant anti-rabies virus activity, agreed well with compounds IIb–g with scaffold II and compound IVb with scaffold IV. Normalized principal moment of inertia analysis indicated that carboranes with scaffolds I–V cover all regions in the chemical space. Furthermore, the first compounds shown to stimulate the proliferation of the rabies virus were found among scaffold V carboranes.
Collapse
|
15
|
Asawa Y, Nishida K, Kawai K, Domae K, Ban HS, Kitazaki A, Asami H, Kohno JY, Okada S, Tokuma H, Sakano D, Kume S, Tanaka M, Nakamura H. Carborane as an Alternative Efficient Hydrophobic Tag for Protein Degradation. Bioconjug Chem 2021; 32:2377-2385. [PMID: 34699716 DOI: 10.1021/acs.bioconjchem.1c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carboranes 1 and 2 were designed and synthesized for hydrophobic tag (HyT)-induced degradation of HaloTag fusion proteins. The levels of the hemagglutinin (HA)-HaloTag2-green fluorescent protein (EGFP) stably expressed in Flp-In 293 cells were significantly reduced by HyT13, HyT55, and carboranes 1 and 2, with expression levels of 49, 79, 43, and 65%, respectively, indicating that carborane is an alternative novel hydrophobic tag (HyT) for protein degradation under an intracellular environment. To clarify the mechanism of HyT-induced proteolysis, bovine serum albumin (BSA) was chosen as an extracellular protein and modified with maleimide-conjugated m-carborane (MIC). The measurement of the ζ-potentials and the lysine residue modification with fluorescein isothiocyanate (FITC) of BSA-MIC conjugates suggested that the conjugation of carborane induced the exposure of lysine residues on BSA, resulting in the degradation via ubiquitin E3 ligase-related proteasome pathways in the cell.
Collapse
Affiliation(s)
- Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kiyotaka Domae
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Akihiro Kitazaki
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Hiroya Asami
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
16
|
Kawagoe F, Mendoza A, Hayata Y, Asano L, Kotake K, Mototani S, Kawamura S, Kurosaki S, Akagi Y, Takemoto Y, Nagasawa K, Nakagawa H, Uesugi M, Kittaka A. Discovery of a Vitamin D Receptor-Silent Vitamin D Derivative That Impairs Sterol Regulatory Element-Binding Protein In Vivo. J Med Chem 2021; 64:5689-5709. [PMID: 33899473 DOI: 10.1021/acs.jmedchem.0c02179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin D3 metabolites inhibit the expression of lipogenic genes by impairing sterol regulatory element-binding protein (SREBP), a master transcription factor of lipogenesis, independent of their canonical activity through a vitamin D receptor (VDR). Herein, we designed and synthesized a series of vitamin D derivatives to search for a drug-like small molecule that suppresses the SREBP-induced lipogenesis without affecting the VDR-controlled calcium homeostasis in vivo. Evaluation of the derivatives in cultured cells and mice led to the discovery of VDR-silent SREBP inhibitors and to the development of KK-052 (50), the first vitamin D-based SREBP inhibitor that has been demonstrated to mitigate hepatic lipid accumulation without calcemic action in mice. KK-052 maintained the ability of 25-hydroxyvitamin D3 to induce the degradation of SREBP but lacked in the VDR-mediated activity. KK-052 serves as a valuable compound for interrogating SREBP/SCAP in vivo and may represent an unprecedented translational opportunity of synthetic vitamin D analogues.
Collapse
Affiliation(s)
- Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Aileen Mendoza
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Lisa Asano
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenjiro Kotake
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Sayuri Mototani
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoshi Kawamura
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeyuki Kurosaki
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yusuke Akagi
- Department of Biotechnology and Life Sciences, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasushi Takemoto
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Sciences, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Motonari Uesugi
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.,School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
17
|
Kagechika H, Fujii S, Sekine R, Kano A, Masuno H, Kawachi E, Hirano T. Synthesis and Structure-Activity Relationship Study of 1,12-Dicarba-closo-dodecaborane-based Triol Derivatives as Nonsecosteroidal Vitamin D Analogs. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Sasaki H, Masuno H, Kawasaki H, Yoshihara A, Numoto N, Ito N, Ishida H, Yamamoto K, Hirata N, Kanda Y, Kawachi E, Kagechika H, Tanatani A. Lithocholic Acid Derivatives as Potent Vitamin D Receptor Agonists. J Med Chem 2020; 64:516-526. [PMID: 33369416 DOI: 10.1021/acs.jmedchem.0c01420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lithocholic acid (2) was identified as a second endogenous ligand of vitamin D receptor (VDR), though its activity is very weak. In this study, we designed novel lithocholic acid derivatives based on the crystal structure of VDR-ligand-binding domain (LBD) bound to 2. Among the synthesized compounds, 6 bearing a 2-hydroxy-2-methylprop-1-yl group instead of the 3-hydroxy group at the 3α-position of 2 showed dramatically increased activity in HL-60 cell differentiation assay, being at least 10 000 times more potent than lithocholic acid (2) and 3 times more potent than 1α,25-dihydroxyvitamin D3 (1). Although the binding affinities of 6 and its epimer 7 were less than that of 1, their transactivation activities were greater than that of 1. X-ray structure analyses of VDR LBD bound to 6 or 7 showed that the binding positions of these compounds in the ligand-binding pocket are similar to that of 1.
Collapse
Affiliation(s)
- Harue Sasaki
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Hiroyuki Masuno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Haru Kawasaki
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Ayana Yoshihara
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Bunkyo, Tokyo 113-8510, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Bunkyo, Tokyo 113-8510, Japan
| | - Hiroaki Ishida
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Emiko Kawachi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| |
Collapse
|
19
|
Vitamin D and its analogs as anticancer and anti-inflammatory agents. Eur J Med Chem 2020; 207:112738. [DOI: 10.1016/j.ejmech.2020.112738] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
|
20
|
Soluble epoxide hydrolase inhibitors with carboranes as non-natural 3-D pharmacophores. Eur J Med Chem 2020; 185:111766. [DOI: 10.1016/j.ejmech.2019.111766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/24/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023]
|
21
|
Mori S, Tsuemoto N, Kasagawa T, Nakano E, Fujii S, Kagechika H. Development of Boron-Cluster-Based Progesterone Receptor Antagonists Bearing a Pentafluorosulfanyl (SF 5) Group. Chem Pharm Bull (Tokyo) 2019; 67:1278-1283. [DOI: 10.1248/cpb.c19-00522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Nozomi Tsuemoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Tomoya Kasagawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Eiichi Nakano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
22
|
Xu B, Ding MY, Weng Z, Li ZQ, Li F, Sun X, Chen QL, Wang YT, Wang Y, Zhou GC. Discovery of fused bicyclic derivatives of 1H-pyrrolo[1,2-c]imidazol-1-one as VDR signaling regulators. Bioorg Med Chem 2019; 27:3879-3888. [DOI: 10.1016/j.bmc.2019.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
|
23
|
Masuno H, Kazui Y, Tanatani A, Fujii S, Kawachi E, Ikura T, Ito N, Yamamoto K, Kagechika H. Development of novel lithocholic acid derivatives as vitamin D receptor agonists. Bioorg Med Chem 2019; 27:3674-3681. [DOI: 10.1016/j.bmc.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
24
|
Abstract
![]()
For many individuals,
in particular during winter, supplementation
with the secosteroid vitamin D3 is essential for the prevention
of bone disorders, muscle weakness, autoimmune diseases, and possibly
also different types of cancer. Vitamin D3 acts via its
metabolite 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]
as potent agonist of the transcription factor vitamin D receptor (VDR).
Thus, vitamin D directly affects chromatin structure and gene regulation
at thousands of genomic loci, i.e., the epigenome and transcriptome
of its target tissues. Modifications of 1,25(OH)2D3 at its
side-chain, A-ring, triene system, or C-ring, alone and in combination,
as well as nonsteroidal mimics provided numerous potent VDR agonists
and some antagonists. The nearly 150 crystal structures of VDR’s
ligand-binding domain with various vitamin D compounds allow a detailed
molecular understanding of their action. This review discusses the
most important vitamin D analogs presented during the past 10 years
and molecular insight derived from new structural information on the
VDR protein.
Collapse
Affiliation(s)
- Miguel A Maestro
- Departamento de Química-CICA , Universidade da Coruña , ES-15071 A Coruña , Spain
| | - Ferdinand Molnár
- School of Science and Technology, Department of Biology , Nazarbayev University , KZ-010000 Astana , Kazakhstan
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine , University of Eastern Finland , FI-70211 Kuopio , Finland
| |
Collapse
|
25
|
Frontera A, Bauzá A. closo-Carboranes as dual CH⋯π and BH⋯π donors: theoretical study and biological significance. Phys Chem Chem Phys 2019; 21:19944-19950. [DOI: 10.1039/c9cp03858b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this manuscript the ability ofcloso-carboranes to establish CH⋯π and BH⋯π interactions with several aromatic moieties exhibiting different electronic natures has been evaluated at the PBE0-D3/def2-TZVP level of theory.
Collapse
Affiliation(s)
- Antonio Frontera
- Department of Chemistry Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Antonio Bauzá
- Department of Chemistry University of Florida
- Gainesville
- USA
| |
Collapse
|
26
|
Kagechika H, Fujii S, Yanagida N, Mori S, Kawachi E. Design and Synthesis of Cyclohexenyl-p-carborane Derivatives as a New Class of Progesterone Receptor Antagonists. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Structural development of non-secosteroidal vitamin D receptor (VDR) ligands without any asymmetric carbon. Bioorg Med Chem 2018; 26:6146-6152. [PMID: 30446437 DOI: 10.1016/j.bmc.2018.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022]
Abstract
Non-secosteroidal VDR ligands without any assymmetric carbon were designed and synthesized based on the structure of the previously reported non-secosteroidal VDR agonist LG190178. The VDR-agonistic activity of all synthesized compounds was evaluated, and 7b emerged as a potent agonist activity with an EC50 value of 9.26 nM. Moreover, a docking simulation analysis was also performed to determine the binding mode of 7b with VDR-LBD.
Collapse
|
28
|
Wang C, Wang B, Xue L, Kang Z, Hou S, Du J, Zhang C. Design, Synthesis, and Antifibrosis Activity in Liver of Nonsecosteroidal Vitamin D Receptor Agonists with Phenyl-pyrrolyl Pentane Skeleton. J Med Chem 2018; 61:10573-10587. [DOI: 10.1021/acs.jmedchem.8b01165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
- Fujian Provincial Key Laboratory of Hepatic Drug Research, Fuzhou 350001, China
| | - Bin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zisheng Kang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Siyuan Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Junjie Du
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
29
|
Hao M, Hou S, Xue L, Yuan H, Zhu L, Wang C, Wang B, Tang C, Zhang C. Further Developments of the Phenyl-Pyrrolyl Pentane Series of Nonsteroidal Vitamin D Receptor Modulators as Anticancer Agents. J Med Chem 2018. [PMID: 29518319 DOI: 10.1021/acs.jmedchem.8b00106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vitamin D3 receptor (VDR), which belongs to the nuclear-receptor superfamily, is a potential molecular target for anticancer-drug discovery. In this study, a series of nonsteroidal vitamin D mimics with phenyl-pyrrolyl pentane skeletons with therapeutic potentials in cancer treatment were synthesized. Among them, 11b and 11g were identified as the most effective agents in reducing the viability of four cancer-cell lines, particularly those of breast-cancer cells, with IC50 values in the submicromolar-concentration range. In addition, 11b and 11g possessed VDR-binding affinities and displayed significant partial VDR-agonistic activities determined by dual-luciferase-reporter assays and human-leukemia-cell-line (HL-60)-differentiation assays. Furthermore, 11b and 11g inhibited tumor growth in an orthotopic breast-tumor model via inhibition of cell proliferation and induction of cell apoptosis. More importantly, 11b and 11g exhibited favorable pharmacokinetic behavior in vivo and did not increase serum calcium levels or cause any other apparent side effects. In summary, 11b and 11g act as novel VDR modulators and may be promising candidates for cancer chemotherapy.
Collapse
Affiliation(s)
- Meixi Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Siyuan Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Haoliang Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Lulu Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Bin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Chunming Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , China
| |
Collapse
|
30
|
Kang ZS, Wang C, Han XL, Du JJ, Li YY, Zhang C. Design, synthesis and biological evaluation of non-secosteriodal vitamin D receptor ligand bearing double side chain for the treatment of chronic pancreatitis. Eur J Med Chem 2018; 146:541-553. [DOI: 10.1016/j.ejmech.2018.01.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
|
31
|
Wang Z, Wang T, Zhang C, Humphrey MG. N‐Donor/Fluorenyl
o
‐Carborane Fluorophores with Strong Crystallization‐Induced Emission. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhaojin Wang
- School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P.R. China
| | - Tianyu Wang
- School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P.R. China
| | - Chi Zhang
- School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P.R. China
| | - Mark G. Humphrey
- School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P.R. China
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
32
|
Teske KA, Bogart JW, Arnold LA. Novel VDR antagonists based on the GW0742 scaffold. Bioorg Med Chem Lett 2017; 28:351-354. [PMID: 29287957 DOI: 10.1016/j.bmcl.2017.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
The vitamin D receptor is a nuclear hormone receptor that regulates cell proliferation, cell differentiation and calcium homeostasis. The receptor is endogenously activated by 1,25-dihydroxyvitamin D3, which induces transcription of VDR targets genes regulated by coactivator binding. VDR antagonists and partial agonists have been developed based on the secosteroid scaffold of vitamin D. Only a few non-secosteroid VDR antagonists are known. Herein, we report the rational design of non-secosteroid VDR antagonists using GW0742 as a scaffold. GW0742 is a PPARδ agonist previously identified by our group as a VDR antagonist. Several modifications including the replacement of the thiazole ring with an oxazole ring led to compound 7b, which inhibited VDR-mediated transcription (IC50 = 660 nM) without activating PPARδ-mediated transcription. However, inhibition of transcription mediated by other nuclear receptors was observed.
Collapse
Affiliation(s)
- Kelly A Teske
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discover, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Jonathan W Bogart
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discover, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discover, University of Wisconsin-Milwaukee, WI 53211, USA.
| |
Collapse
|
33
|
Mori S, Takagaki R, Fujii S, Urushibara K, Tanatani A, Kagechika H. Novel Non-steroidal Progesterone Receptor Ligands Based on m-Carborane Containing a Secondary Alcohol: Effect of Chirality on Ligand Activity. Chem Pharm Bull (Tokyo) 2017; 65:1051-1057. [PMID: 29093292 DOI: 10.1248/cpb.c17-00544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The progesterone receptor (PR) controls various physiological processes, including the female reproductive system, and nonsteroidal PR ligands are considered to be drug candidates for treatment of various diseases without significant adverse effects. Here, we designed and synthesized m-carborane-based secondary alcohols and investigated their PR-ligand activity. All the synthesized alcohols exhibited PR-antagonistic activity at subnanomolar concentration. Among them, alcohols having a small alkyl side chain and a 4-cyanophenyl group also exhibited PR-agonistic activity in a relatively high concentration range. Optical resolution of secondary alcohols having a methyl side chain was performed, and the PR-ligand activity and PR-binding affinity of the purified enantiomers were examined. The chirality of the secondary alcohol appears to have a more significant influence on PR-agonistic activity than on antagonistic activity.
Collapse
Affiliation(s)
- Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Ryohei Takagaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU).,Institute of Molecular and Cellular Biosciences, The University of Tokyo
| | - Ko Urushibara
- Department of Chemistry, Faculty of Science, Ochanomizu University
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
34
|
Tanaka T, Sawamoto Y, Aoki S. Concise and Versatile Synthesis of Sulfoquinovosyl Acyl Glycerol Derivatives for Biological Applications. Chem Pharm Bull (Tokyo) 2017; 65:566-572. [PMID: 28566649 DOI: 10.1248/cpb.c17-00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfoquinovosyl acylpropanediol (SQAP), a chemically modified analogue of sulfoquinovosyl acylglycerol (SQAG) that occurs in sea algae, has been reported to show a variety of biological activities, including accumulation in tumor cells and the inhibition of tumor cell growth. We report herein on a new concise and versatile synthesis of SQAP itself and derivatives bearing iodoaryl groups and boronclusters. This method should be useful for the design and synthesis of SQAG/SQAP derivatives for diagnosis and the treatment of cancer and related diseases.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Division of Medical-Science-Engineering Cooperation, Research Institute for Science and Technology, Tokyo University of Science.,Imaging Frontier Center, Resarch Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
35
|
Poppe M, Chen C, Ebert H, Poppe S, Prehm M, Kerzig C, Liu F, Tschierske C. Transition from nematic to gyroid-type cubic soft self-assembly by side-chain engineering of π-conjugated sticky rods. SOFT MATTER 2017; 13:4381-4392. [PMID: 28573294 DOI: 10.1039/c7sm00793k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A sequence of liquid crystalline phases, involving cybotactic nematics, a lamellar phase, bicontinuous cubics and triangular honeycombs, was observed for oligo(phenylene ethynylene) based X-shaped bolapolyphiles with two long lateral alkyl chains and sticky ends provided by glycerol groups. In the cubic phase with Ia3[combining macron]d lattice - which is tailored by alkyl chain engineering - the aromatic cores are organized on the gyroid minimal surface in 3D curved layers of almost parallel aligned π-conjugated rods. It is shown that this type of cubic phase is a general mode of soft self-assembly of X-shaped bolapolyphiles at the cross-over from the (long or short range) lamellar to the triangular honeycomb-like organization. Cubic phase formation is found only in a narrow range with respect to temperature and chain-length for the non-fluorinated compounds and in much wider ranges for related core-fluorinated molecules.
Collapse
Affiliation(s)
- Marco Poppe
- Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, D-06120 Halle/Saale, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang B, Hao M, Zhang C. Design, synthesis and biological evaluation of nonsecosteroidal vitamin D 3 receptor ligands as anti-tumor agents. Bioorg Med Chem Lett 2017; 27:1428-1436. [DOI: 10.1016/j.bmcl.2017.01.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
37
|
Ocampo-Néstor AL, Trujillo-Ferrara JG, Abad-García A, Reyes-López C, Geninatti-Crich S, Soriano-Ursúa MA. Boron's journey: advances in the study and application of pharmacokinetics. Expert Opin Ther Pat 2017; 27:203-215. [PMID: 27788608 DOI: 10.1080/13543776.2017.1252750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Boron-containing compounds (BCCs) are attractive chemical entities in drug development. Some of these compounds have been used in the treatment of human disease, and studies on their pharmacodynamics suggest that they employ multiple forms of activity. However, less is known about the pharmacokinetic profile of these molecules. Areas covered: The herein compiled reported data is presented in accordance with the classical 'ADME' system for identifying the scope of BCCs in the respective fields. Our analysis suggests that these compounds have several distinct ways to move within the human body, and that the specific structural features of each molecule account for its distinct pharmacokinetic profile. These insights should be useful for designing BCCs with a desired effect. Expert opinion: Increasing knowledge about the pharmacokinetics of BCCs is providing a broader understanding about the design of new release systems and potential drugs, as well as probable protein transporters that could be related to key roles in physiological processes. These transporters may be involved in sodium transport, hormone release and regulation of the cell cycle. The shared features among groups of BCCs are being identified in order to apply these insights to the design of advantageous compounds.
Collapse
Affiliation(s)
- Ana L Ocampo-Néstor
- a Departamentos de Fisiología y Bioquímica , Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n , México City , Del. Miguel Hidalgo , México
| | - José G Trujillo-Ferrara
- a Departamentos de Fisiología y Bioquímica , Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n , México City , Del. Miguel Hidalgo , México
| | - Antonio Abad-García
- a Departamentos de Fisiología y Bioquímica , Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n , México City , Del. Miguel Hidalgo , México
| | - Cynthia Reyes-López
- a Departamentos de Fisiología y Bioquímica , Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n , México City , Del. Miguel Hidalgo , México
| | - Simonetta Geninatti-Crich
- b Dipartimento di Biotecnologie Molecolari e Scienze per la Salute , Centro Imaging Molecolare. Università di Torino , Torino , Italy
| | - Marvin A Soriano-Ursúa
- a Departamentos de Fisiología y Bioquímica , Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n , México City , Del. Miguel Hidalgo , México
| |
Collapse
|
38
|
Fujii S. Development of Novel Hydrophobic Pharmacophores Based on Three-dimensional Molecular Architectures and Elements Chemistry. YAKUGAKU ZASSHI 2017; 137:31-41. [DOI: 10.1248/yakushi.16-00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinya Fujii
- Institute of Molecular and Cellular Biosciences, The University of Tokyo
| |
Collapse
|
39
|
Kaise A, Ohta K, Endo Y. Design, synthesis, and anti-proliferative activity of 1-(4-methoxyphenyl)-12-hydroxymethyl- p -carborane derivatives. Eur J Med Chem 2016; 122:257-263. [DOI: 10.1016/j.ejmech.2016.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/16/2022]
|
40
|
Maestro MA, Molnár F, Mouriño A, Carlberg C. Vitamin D receptor 2016: novel ligands and structural insights. Expert Opin Ther Pat 2016; 26:1291-1306. [PMID: 27454349 DOI: 10.1080/13543776.2016.1216547] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Vitamin D3 activates via its hormonal form 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the transcription factor vitamin D receptor (VDR). VDR is expressed in most human tissues and has more than 1,000 target genes. Thus, 1α,25(OH)2D3 and its synthetic analogs have a broad physiological impact. The crystal structures of the VDR ligand-binding domain (LBD), and its various ligands, allows further the understanding of the receptor's molecular actions. Areas covered: We discuss the most important novel VDR ligands and the further insight derived from new structural information on VDR. Expert opinion: There is an increasing appreciation of the impact of vitamin D and its receptor VDR not only in bone biology, but also for metabolic diseases, immunological disorders, and cancer. Detailed structural analysis of the interaction of additional novel ligands with VDR highlight helices 6 and 7 of the LBD as being most critical for stabilizing the receptor for an efficient interaction with co-activator proteins, i.e. for efficient agonistic action. This permits the design of even more effective VDR agonists. In addition, chemists took more liberty in replacing major parts of the 1α,25(OH)2D3 molecule, such as the A- and CD-rings or the side chain, with significantly different structures, such as carboranes, and still obtained functional VDR agonists.
Collapse
Affiliation(s)
- Miguel A Maestro
- a Departamento de Química Fundamental, Facultad de Ciencias , Universidade da Coruña , Coruña , Spain
| | - Ferdinand Molnár
- b School of Pharmacy, Institute of Biopharmacy , University of Eastern Finland , Kuopio , Finland
| | - Antonio Mouriño
- c Departamento de Química Orgánica, Facultad de Química , Universidad de Santiago , Santiago de Compostela , Spain
| | - Carsten Carlberg
- d School of Medicine, Institute of Biomedicine , University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
41
|
Abstract
INTRODUCTION After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. AREAS COVERED The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. EXPERT OPINION Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.
Collapse
Affiliation(s)
- Zbigniew J Leśnikowski
- a Institute of Medical Biology, Polish Academy of Sciences , Laboratory of Molecular Virology and Biological Chemistry , Lodz , Poland
| |
Collapse
|
42
|
Tanaka T, Nishiura Y, Araki R, Saido T, Abe R, Aoki S. 11B NMR Probes of Copper(II): Finding and Implications of the Cu2+-Promoted Decomposition ofortho-Carborane Derivatives. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Ahmad MI, Raghuvanshi DS, Singh S, John AA, Prakash R, Nainawat KS, Singh D, Tripathi S, Sharma A, Gupta A. Design and synthesis of 3-arylbenzopyran based non-steroidal vitamin-D3mimics as osteogenic agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00469e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
27benhanced osteoblast differentiation at 1 pM in mouse calvarial osteoblast cells without inherent toxicity.
Collapse
Affiliation(s)
- Mohd. Imran Ahmad
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Dushyant Singh Raghuvanshi
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Sarita Singh
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Aijaz A. John
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Ravi Prakash
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Kripa Shankar Nainawat
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Divya Singh
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Shubhandra Tripathi
- Biotechnology Division
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Ashok Sharma
- Biotechnology Division
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Atul Gupta
- Medicinal Chemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| |
Collapse
|
44
|
Fujii S. Expanding the chemical space of hydrophobic pharmacophores: the role of hydrophobic substructures in the development of novel transcription modulators. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00012f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions between biologically active compounds and their targets often involve hydrophobic interactions, and hydrophobicity also influences the pharmacokinetic profile.
Collapse
Affiliation(s)
- Shinya Fujii
- Institute of Molecular and Cellular Biosciences
- The University of Tokyo
- Tokyo 113-0032
- Japan
| |
Collapse
|
45
|
Belorusova AY, Rochel N. Structural Studies of Vitamin D Nuclear Receptor Ligand-Binding Properties. VITAMINS AND HORMONES 2015; 100:83-116. [PMID: 26827949 DOI: 10.1016/bs.vh.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vitamin D nuclear receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 hormone (1,25(OH)2D3, or calcitriol), classically regulate mineral homeostasis and metabolism but also much broader range of biological functions, such as cell growth, differentiation, antiproliferation, apoptosis, adaptive/innate immune responses. Being widely expressed in various tissues, VDR represents an important therapeutic target in the treatment of diverse disorders. Since ligand binding is a key step in VDR-mediated signaling, numerous 1,25(OH)2D3 analogs have been synthesized in order to selectively modulate the receptor activity. Most of the synthetic analogs have been developed by modification of a parental compound and some of them mimic 1,25(OH)2D3 scaffold without being structurally related to it. The ability of ligands that have different size and conformation to bind to VDR and to demonstrate biological effects is intriguing, and therefore, ligand-binding properties of the receptor have been extensively investigated using a variety of biochemical, biophysical, and computational methods. In this chapter, we describe different aspects of the structure-function relationship of VDR in complex with natural and synthetic ligands coming from structural analysis. With the emphasis on the binding modes of the most promising compounds, such as secosteroidal agonists and 1,25(OH)2D3 mimics, we also highlight the action of VDR antagonists and the evidence for the existence of an alternative ligand-binding site within the receptor. Additionally, we describe the crystal structures of VDR mutants associated with hereditary vitamin D-resistant rickets that display impaired ligand-binding function.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
46
|
Carborane-containing urea-based inhibitors of glutamate carboxypeptidase II: Synthesis and structural characterization. Bioorg Med Chem Lett 2015; 25:5232-6. [DOI: 10.1016/j.bmcl.2015.09.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/29/2015] [Accepted: 09/24/2015] [Indexed: 01/13/2023]
|
47
|
Otero R, Seoane S, Sigüeiro R, Belorusova AY, Maestro MA, Pérez-Fernández R, Rochel N, Mouriño A. Carborane-based design of a potent vitamin D receptor agonist. Chem Sci 2015; 7:1033-1037. [PMID: 28808527 PMCID: PMC5531031 DOI: 10.1039/c5sc03084f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 01/15/2023] Open
Abstract
The development of a promising clinical antitumor vitamin D analog possessing a side-chain o-carborane cluster that efficiently binds to VDR by unconventional dihydrogen bonding (BH···HN) is described.
The vitamin D nuclear receptor (VDR) is a potential target for cancer therapy. It is expressed in many tumors and its ligand shows anticancer actions. To combine these properties with the application of boron neutron capture therapy (BNCT), we design and synthesize a potent VDR agonist based on the skeleton of the hormone 1α,25-dihydroxyvitamin D3 (1,25D) and an o-carborane (dicarba-o-closo-1,2-dodecaborane) at the end of its side chain. The present ligand is the first secosteroidal analog with the carborane unit that efficiently binds to VDR and functions as an agonist with 1,25D-like potency in transcriptional assay on vitamin D target genes. Moreover it exhibits similar antiproliferative and pro-differentiating activities but is significantly less hypercalcemic than 1,25D. The crystal structure of its complex with VDR ligand binding domain reveals its binding mechanism involving boron-mediated dihydrogen bonds that mimic vitamin D hydroxyl interactions. In addition to the therapeutic interest, this study establishes the basis for the design of new unconventional vitamin D analogs containing carborane moieties for specific molecular recognition, and drug research and development.
Collapse
Affiliation(s)
- Rocio Otero
- Departamento de Química Orgánica , Laboratorio de Investigación Ignacio Ribas , Universidad de Santiago de Compostela , Avda. Ciencias s/n , 15782 Santiago de Compostela , Spain .
| | - Samuel Seoane
- Departamento de Fisiología-CIMUS , Universidad de Santiago , Avda. Barcelona s/n , 15706 Santiago de Compostela , Spain
| | - Rita Sigüeiro
- Departamento de Química Orgánica , Laboratorio de Investigación Ignacio Ribas , Universidad de Santiago de Compostela , Avda. Ciencias s/n , 15782 Santiago de Compostela , Spain . .,Department of Integrative Structural Biology , IGBMC - CNRS UMR7104 - Inserm U964 , 1, rue Laurent Fries , 67400 Illkirch , France .
| | - Anna Y Belorusova
- Department of Integrative Structural Biology , IGBMC - CNRS UMR7104 - Inserm U964 , 1, rue Laurent Fries , 67400 Illkirch , France .
| | - Miguel A Maestro
- Departmento de Química Fundamental , Universidad de A Coruña , Campus da Zapateira s/n , 15071 A Coruña , Spain
| | - Roman Pérez-Fernández
- Departamento de Fisiología-CIMUS , Universidad de Santiago , Avda. Barcelona s/n , 15706 Santiago de Compostela , Spain
| | - Natacha Rochel
- Department of Integrative Structural Biology , IGBMC - CNRS UMR7104 - Inserm U964 , 1, rue Laurent Fries , 67400 Illkirch , France .
| | - Antonio Mouriño
- Departamento de Química Orgánica , Laboratorio de Investigación Ignacio Ribas , Universidad de Santiago de Compostela , Avda. Ciencias s/n , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
48
|
Galliamova LA, Varaksin MV, Chupakhin ON, Slepukhin PA, Charushin VN. Heterocyclic and Open-Chain Carboranes via Transition-Metal-Free C–H Functionalization of Mono- and Diazine-N-oxides. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00736] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Mikhail V. Varaksin
- Ural Federal University, 19
Mira Street, 620002 Ekaterinburg, Russia
- Institute
of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| | - Oleg N. Chupakhin
- Ural Federal University, 19
Mira Street, 620002 Ekaterinburg, Russia
- Institute
of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| | - Pavel A. Slepukhin
- Ural Federal University, 19
Mira Street, 620002 Ekaterinburg, Russia
- Institute
of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| | - Valery N. Charushin
- Ural Federal University, 19
Mira Street, 620002 Ekaterinburg, Russia
- Institute
of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, 620990 Ekaterinburg, Russia
| |
Collapse
|
49
|
Lo R, Fanfrlík J, Lepšík M, Hobza P. The properties of substituted 3D-aromatic neutral carboranes: the potential for σ-hole bonding. Phys Chem Chem Phys 2015. [PMID: 26213995 DOI: 10.1039/c5cp03617h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The calculated properties of substituted carboranes such as dipole moment, polarisability, the magnitude of the σ-hole and the desolvation free energy are compared with these properties in comparable aromatic and cyclic aliphatic organic compounds. Dispersion and charge transfer energies are similar. However, the predicted strength of the halogen bonds with the same electron donor (based on the magnitude of the σ-hole) is larger for neutral C-vertex halogen-substituted carboranes than for their organic counterparts. Furthermore, the desolvation penalties of substituted carboranes are smaller than those of the corresponding organic compounds, which should further strengthen the halogen bonds of the former in the solvent. It is predicted that substituted carboranes have the potential to form stronger halogen bonds than comparable aromatic hydrocarbons, which will be even more pronounced in the medium. This theoretical study thus lays ground for the rational engineering of halogen bonding in inorganic crystals as well as in biomolecular complexes.
Collapse
Affiliation(s)
- Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Hyun Seung Ban
- Biomedical Translational Research Center; Korea Research Institute of Bioscience and Biotechnology; 125 Gwahak-ro, Yuseong-gu Daejeon 305-806 Republic of Korea
| | - Hiroyuki Nakamura
- Chemical Resources Laboratory; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|