1
|
Fusè M, Mazzeo G, Ghidinelli S, Evidente A, Abbate S, Longhi G. Experimental and theoretical aspects of magnetic circular dichroism and magnetic circularly polarized luminescence in the UV, visible and IR ranges: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124583. [PMID: 38850611 DOI: 10.1016/j.saa.2024.124583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
A historical sketch of the MCD (magnetic circular dichroism) spectroscopy is reported in its experimental and theoretical aspects. MCPL (magnetic circularly polarized luminescence) is also considered. The main studies are presented encompassing porphyrinoid systems, aggregates and materials, as well as simple organic molecules useful for the advancement of the interpretation. The MCD of chiral systems is discussed with special attention to new studies of natural products with potential pharmaceutical valence, including Amaryllidaceae alkaloids and related isocarbostyrils. Finally, the vibrational form of MCD, called MVCD, which is recorded in the IR part of the spectrum is also discussed. A final brief note on perspectives is given.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Simone Ghidinelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70185 Bari, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| |
Collapse
|
2
|
Paradisi A, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Borsari M, Sola M, Battistuzzi G. Effects of removal of the axial methionine heme ligand on the binding of S. cerevisiae iso-1 cytochrome c to cardiolipin. J Inorg Biochem 2024; 252:112455. [PMID: 38141433 DOI: 10.1016/j.jinorgbio.2023.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marzia Bellei
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Borsari
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy.
| |
Collapse
|
3
|
Tang J, Zhu J, Xie H, Song L, Xu G, Li W, Cai L, Han XX. Mitochondria-Specific Molecular Crosstalk between Ferroptosis and Apoptosis Revealed by In Situ Raman Spectroscopy. NANO LETTERS 2024; 24:2384-2391. [PMID: 38341873 DOI: 10.1021/acs.nanolett.3c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Ferroptosis and apoptosis are two types of regulated cell death that are closely associated with the pathophysiological processes of many diseases. The significance of ferroptosis-apoptosis crosstalk in cell fate determination has been reported, but the underlying molecular mechanisms are poorly understood. Herein mitochondria-mediated molecular crosstalk is explored. Based on a comprehensive spectroscopic investigation and mass spectrometry, cytochrome c-involved Fenton-like reactions and lipid peroxidation are revealed. More importantly, cytochrome c is found to induce ROS-independent and cardiolipin-specific lipid peroxidation depending on its redox state. In situ Raman spectroscopy unveiled that erastin can interrupt membrane permeability, specifically through cardiolipin, facilitating cytochrome c release from the mitochondria. Details of the erastin-cardiolipin interaction are determined using molecular dynamics simulations. This study provides novel insights into how molecular crosstalk occurs around mitochondrial membranes to trigger ferroptosis and apoptosis, with significant implications for the rational design of mitochondria-targeted cell death reducers in cancer therapy.
Collapse
Affiliation(s)
- Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Zhu J, Zhu J, Xie H, Tang J, Miao Y, Cai L, Hildebrandt P, Han XX. In Situ Raman Spectroscopy Reveals Cytochrome c Redox-Controlled Modulation of Mitochondrial Membrane Permeabilization That Triggers Apoptosis. NANO LETTERS 2024; 24:370-377. [PMID: 38154104 DOI: 10.1021/acs.nanolett.3c04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The selective interaction of cytochrome c (Cyt c) with cardiolipin (CL) is involved in mitochondrial membrane permeabilization, an essential step for the release of apoptosis activators. The structural basis and modulatory mechanism are, however, poorly understood. Here, we report that Cyt c can induce CL peroxidation independent of reactive oxygen species, which is controlled by its redox states. The structural basis of the Cyt c-CL binding was unveiled by comprehensive spectroscopic investigation and mass spectrometry. The Cyt c-induced permeabilization and its effect on membrane collapse, pore formation, and budding are observed by confocal microscopy. Moreover, cytochrome c oxidase dysfunction is found to be associated with the initiation of Cyt c redox-controlled membrane permeabilization. These results verify the significance of a redox-dependent modulation mechanism at the early stage of apoptosis, which can be exploited for the design of cytochrome c oxidase-targeted apoptotic inducers in cancer therapy.
Collapse
Affiliation(s)
- Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiangnan Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Miao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Lei H, Kelly AD, Bowler BE. Alkaline State of the Domain-Swapped Dimer of Human Cytochrome c: A Conformational Switch for Apoptotic Peroxidase Activity. J Am Chem Soc 2022; 144:21184-21195. [PMID: 36346995 PMCID: PMC9743720 DOI: 10.1021/jacs.2c08325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A 2.08 Å structure of an alkaline conformer of the domain-swapped dimer of K72A human cytochrome c (Cytc) crystallized at pH 9.9 is presented. In the structure, Lys79 is ligated to the heme. All other domain-swapped dimer structures of Cytc have water bound to this coordination site. Part of Ω-loop D (residues 70-85) forms a flexible linker between the subunits in other Cytc domain-swapped dimer structures but instead converts to a helix in the alkaline conformer of the dimer combining with the C-terminal helix to form two 26-residue helices that bracket both sides of the dimer. The alkaline transition of the K72A human dimer monitored at both 625 nm (high spin heme) and 695 nm (Met80 ligation) yields midpoint pH values of 6.6 and 7.6, respectively, showing that the Met80 → Lys79 and high spin to low spin transitions are distinct. The dimer peroxidase activity increases rapidly below pH 7, suggesting that population of the high spin form of the heme is what promotes peroxidase activity. Comparison of the structures of the alkaline dimer and the neutral pH dimer shows that the neutral pH conformer has a better electrostatic surface for binding to a cardiolipin-containing membrane and provides better access for small molecules to the heme iron. Given that the pH of mitochondrial cristae ranges from 6.9 to 7.2, the alkaline transition of the Cytc dimer could provide a conformational switch to tune the peroxidase activity of Cytc that oxygenates cardiolipin in the early stages of apoptosis.
Collapse
Affiliation(s)
| | - Allison D. Kelly
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, USA
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
6
|
Oviedo-Rouco S, Spedalieri C, Scocozza MF, Tomasina F, Tórtora V, Radi R, Murgida DH. Correlated electric field modulation of electron transfer parameters and the access to alternative conformations of multifunctional cytochrome c. Bioelectrochemistry 2022; 143:107956. [PMID: 34624727 DOI: 10.1016/j.bioelechem.2021.107956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Cytochrome c (Cytc) is a multifunctional protein that, in its native conformation, shuttles electrons in the mitochondrial respiratory chain. Conformational transitions that involve replacement of the heme distal ligand lead to the gain of alternative peroxidase activity, which is crucial for membrane permeabilization during apoptosis. Using a time-resolved SERR spectroelectrochemical approach, we found that the key physicochemical parameters that characterize the electron transfer (ET) canonic function and those that determine the transition to alternative conformations are strongly correlated and are modulated by local electric fields (LEF) of biologically meaningful magnitude. The electron shuttling function is optimized at moderate LEFs of around 1 V nm-1. A decrease of the LEF is detrimental for ET as it rises the reorganization energy. Moreover, LEF values below and above the optimal for ET favor alternative conformations with peroxidase activity and downshifted reduction potentials. The underlying proposed mechanism is the LEF modulation of the flexibility of crucial protein segments, which produces a differential effect on the kinetic ET and conformational parameters of Cytc. These findings might be related to variations in the mitochondrial membrane potential during apoptosis, as the basis for the switch between canonic and alternative functions of Cytc. Moreover, they highlight the possible role of variable LEFs in determining the function of other moonlighting proteins through modulation of the protein dynamics.
Collapse
Affiliation(s)
- Santiago Oviedo-Rouco
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Spedalieri
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí F Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Tomasina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Maqbool Q, Jung A, Won S, Cho J, Son JG, Yeom B. Chiral Magneto-Optical Properties of Supra-Assembled Fe 3O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54301-54307. [PMID: 34748312 DOI: 10.1021/acsami.1c16954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Research on the chiral magneto-optical properties of inorganic nanomaterials has enabled novel applications in advanced optical and electronic devices. However, the corresponding chiral magneto-optical responses have only been studied under strong magnetic fields of ≥1 T, which limits the wider application of these novel materials. In this paper, we report on the enhanced chiral magneto-optical activity of supra-assembled Fe3O4 magnetite nanoparticles in the visible range at weak magnetic fields of 1.5 mT. The spherical supra-assembled particles with a diameter of ∼90 nm prepared by solvothermal synthesis had single-crystal-like structures, which resulted from the oriented attachment of nanograins. They exhibited superparamagnetic behavior even with a relatively large supraparticle diameter that exceeded the size limit for superparamagnetism. This can be attributed to the small size of nanograins with a diameter of ∼12 nm that constitute the suprastructured particles. Magnetic circular dichroism (MCD) measurements at magnetic fields of 1.5 mT showed distinct chiral magneto-optical activity from charge transfer transitions of magnetite in the visible range. For the supraparticles with lower crystallinity, the MCD peaks in the 250-550 nm range assigned as the ligand-to-metal charge transfer (LMCT) and the inter-sublattice charge transfer (ISCT) show increased intensities in comparison to those with higher crystallinity samples. On the contrary, the higher crystallinity sample shows higher MCD intensities near 600-700 nm for the intervalence charge transfer (IVCT) transition. The differences in MCD responses can be attributed to the crystallinity determined by the reaction time, lattice distortion near grain boundaries of the constituent nanocrystals, and dipolar interactions in the supra-assembled structures.
Collapse
Affiliation(s)
- Qysar Maqbool
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Arum Jung
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sojeong Won
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Gon Son
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
8
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
NMR Reveals the Conformational Changes of Cytochrome C upon Interaction with Cardiolipin. Life (Basel) 2021; 11:life11101031. [PMID: 34685404 PMCID: PMC8540660 DOI: 10.3390/life11101031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
Conformational change of cytochrome c (cyt c) caused by interaction with cardiolipin (CL) is an important step during apoptosis, but the underlying mechanism is controversial. To comprehensively clarify the structural transformations of cyt c upon interaction with CL and avoid the unpredictable alias that might come from protein labeling or mutations, the conformation of purified yeast iso–1 cyt c with natural isotopic abundance in different contents of CL was measured by using NMR spectroscopy, in which the trimethylated group of the protein was used as a natural probe. The data demonstrate that cyt c has two partially unfolded conformations when interacted with CL: one with Fe–His33 coordination and the other with a penta–coordination heme. The Fe–His33 coordination conformation can be converted into a penta–coordination heme conformation in high content of CL. The structure of cyt c becomes partially unfolded with more exposed heme upon interaction with CL, suggesting that cyt c prefers a high peroxidase activity state in the mitochondria, which, in turn, makes CL easy to be oxidized, and causes the release of cyt c into the cytoplasm as a trigger in apoptosis.
Collapse
|
10
|
How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules 2021; 26:molecules26164950. [PMID: 34443538 PMCID: PMC8398203 DOI: 10.3390/molecules26164950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochrome c is a small globular protein whose main physiological role is to shuttle electrons within the mitochondrial electron transport chain. This protein has been widely investigated, especially as a paradigmatic system for understanding the fundamental aspects of biological electron transfer and protein folding. Nevertheless, cytochrome c can also be endowed with a non-native catalytic activity and be immobilized on an electrode surface for the development of third generation biosensors. Here, an overview is offered of the most significant examples of such a functional transformation, carried out by either point mutation(s) or controlled unfolding. The latter can be induced chemically or upon protein immobilization on hydrophobic self-assembled monolayers. We critically discuss the potential held by these systems as core constituents of amperometric biosensors, along with the issues that need to be addressed to optimize their applicability and response.
Collapse
|
11
|
Demicheli V, Tomasina F, Sastre S, Zeida A, Tórtora V, Lima A, Batthyány C, Radi R. Cardiolipin interactions with cytochrome c increase tyrosine nitration yields and site-specificity. Arch Biochem Biophys 2021; 703:108824. [PMID: 33675813 DOI: 10.1016/j.abb.2021.108824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
The interaction between cytochrome c and cardiolipin is a relevant process in the mitochondrial redox homeostasis, playing roles in the mechanism of electron transfer to cytochrome c oxidase and also modulating cytochrome c conformation, reactivity and function. Peroxynitrite is a widespread nitrating agent formed in mitochondria under oxidative stress conditions, and can result in the formation of tyrosine nitrated cytochrome c. Some of the nitro-cytochrome c species undergo conformational changes at physiological pH and increase its peroxidase activity. In this work we evaluated the influence of cardiolipin on peroxynitrite-mediated cytochrome c nitration yields and site-specificity. Our results show that cardiolipin enhances cytochrome c nitration by peroxynitrite and targets it to heme-adjacent Tyr67. Cytochrome c nitration also modifies the affinity of protein with cardiolipin. Using a combination of experimental techniques and computer modeling, it is concluded that structural modifications in the Tyr67 region are responsible for the observed changes in protein-derived radical and tyrosine nitration levels, distribution of nitrated proteoforms and affinity to cardiolipin. Increased nitration of cytochrome c in presence of cardiolipin within mitochondria and the gain of peroxidatic activity could then impact events such as the onset of apoptosis and other processes related to the disruption of mitochondrial redox homeostasis.
Collapse
Affiliation(s)
- Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Florencia Tomasina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Santiago Sastre
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Verónica Tórtora
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- Institut Pasteur de Montevideo, Uruguay; Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Carlos Batthyány
- Institut Pasteur de Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
12
|
Hirota S, Nagao S. New Aspects of Cytochromec: 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
13
|
Sun SC, Huang HW, Lo YT, Chuang MC, Hsu YHH. Unraveling cardiolipin-induced conformational change of cytochrome c through H/D exchange mass spectrometry and quartz crystal microbalance. Sci Rep 2021; 11:1090. [PMID: 33441668 PMCID: PMC7806790 DOI: 10.1038/s41598-020-79905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cardiolipin (CL), a crucial component in inner mitochondrial membranes, interacts with cytochrome c (cyt c) to form a peroxidase complex for the catalysis of CL oxidation. Such interaction is pivotal to the mitochondrial regulation of apoptosis and is affected by the redox state of cyt c. In the present study, the redox-dependent interaction of cyt c with CL was investigated through amide hydrogen/deuterium exchange coupled with mass spectrometry (HDXMS) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ferrous cyt c exhibited a more compact conformation compared with its ferric form, which was supported by the lower number of deuterons accumulated and the greater amplitude reduction on dissipation. Upon association with CL, ferrous cyt c resulted in a moderate increase in deuteration, whereas the ferric form caused a drastic increase of deuteration, which indicated that CL-bound ferric cyt c formed an extended conformation. These results were consistent with those of the frequency (f) − dissipation (D) experiments, which revealed that ferric cyt c yielded greater values of |ΔD/Δf| within the first minute. Further fragmentation analysis based on HDXMS indicated that the effect of CL binding was considerably different on ferric and ferrous cyt c in the C-helix and the Loop 9–24. In ferric cyt c, CL binding affected Met80 and destabilized His18 interaction with heme, which was not observed with ferrous cyt c. An interaction model was proposed to explain the aforementioned results.
Collapse
Affiliation(s)
- Sin-Cih Sun
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hung-Wei Huang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yi-Ting Lo
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Department of Environmental Science and Engineering, Taichung, Taiwan.
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Biological Science Center, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
14
|
Gusev ID, Firsov AM, Chertkova RV, Kotova EA, Dolgikh DA, Kirpichnikov MP, Antonenko YN. Study of Interaction of Fluorescent Cytochrome C with Liposomes, Mitochondria, and Mitoplasts by Fluorescence Correlation Spectroscopy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Han B, Gao X, Lv J, Tang Z. Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801491. [PMID: 30345582 DOI: 10.1002/adma.201801491] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/16/2018] [Indexed: 06/08/2023]
Abstract
The unique capability of magnetic circular dichroism (MCD) in revealing geometry and electronic information has provided new opportunities in exploring the relationship between structure and magneto-optical properties in nanomaterials with extraordinary optical absorption. Here, the representative studies referring to application of the MCD technique in semiconductor and noble metal nanomaterials are overviewed. MCD is powerful in elucidating the structural information of the excitonic transition in semiconductor nanocrystals, electronic transitions in noble metal nanoclusters, and plasmon resonance in noble metal nanostructures. By virtue of these advantages, the MCD technique shows its unrivalled ability in evaluating the magnetic modulation of excitonic and plasmonic optical activity of nanomaterials with varied chemical composition, geometry, assembly conformation, and coupling effect. Knowledge of the key factors in manipulating magneto-optical properties at the nanoscale acquired with the MCD technique will largely boost the application of semiconductor and noble nanomaterials in the fields of sensing, spintronic, nanophotonics, etc.
Collapse
Affiliation(s)
- Bing Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoqing Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Jiawei Lv
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhiyong Tang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry 2020; 136:107628. [PMID: 32795942 DOI: 10.1016/j.bioelechem.2020.107628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023]
Abstract
The Met80Ala and Met80Ala/Tyr67Ala variants of S. cerevisiae iso-1 cytochrome c (ycc) and their adducts with cardiolipin immobilized onto a gold electrode coated with a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol were studied through cyclic voltammetry and surface-enhanced resonance Raman spectroscopy (SERRS). The electroactive species - containing a six-coordinate His/His axially ligated heme and a five-coordinate His/- heme stable in the oxidized and reduced state, respectively - and the pseudoperoxidase activity match those found previously for the wt species and are only slightly affected by CL binding. Most importantly, the reduced His/- ligated form of these variants is able to catalytically reduce the nitrite ion, while electrode-immobilized wt ycc and other His/Met heme ligated variants under a variety of conditions are not. Besides the pseudoperoxidase and nitrite reductase functions, which are the most physiologically relevant abilities of these constructs, also axial heme ligation and the equilibria between conformers are strongly affected by the nature - hydrophobic vs. electrostatic - of the non-covalent interactions determining protein immobilization. Also affected are the catalytic activity changes induced by a given mutation as well as those due to partial unfolding due to CL binding. It follows that under the same solution conditions the structural and functional properties of immobilized ycc are surface-specific and therefore cannot be transferred from an immobilized system to another involving different interfacial protein-SAM interactions.
Collapse
|
17
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
18
|
Paradisi A, Bellei M, Paltrinieri L, Bortolotti CA, Di Rocco G, Ranieri A, Borsari M, Sola M, Battistuzzi G. Binding of S. cerevisiae iso-1 cytochrome c and its surface lysine-to-alanine variants to cardiolipin: charge effects and the role of the lipid to protein ratio. J Biol Inorg Chem 2020; 25:467-487. [DOI: 10.1007/s00775-020-01776-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/06/2020] [Indexed: 11/30/2022]
|
19
|
Paradisi A, Lancellotti L, Borsari M, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Sola M, Battistuzzi G. Met80 and Tyr67 affect the chemical unfolding of yeast cytochrome c: comparing the solution vs.immobilized state. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00115e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The motional regime affects the unfolding propensity and axial heme coordination of the Met80Ala and Met80Ala/Tyr67Ala variants of yeast iso-1 cytochromec.
Collapse
Affiliation(s)
| | - Lidia Lancellotti
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Borsari
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marzia Bellei
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | | - Giulia Di Rocco
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Antonio Ranieri
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Sola
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | |
Collapse
|
20
|
Extraction of magnetic circular dichroism effects from blended mixture of magnetic linear dichroism signals in the cobalt/Scotch tape system. Sci Rep 2019; 9:17192. [PMID: 31748587 PMCID: PMC6868135 DOI: 10.1038/s41598-019-53880-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/06/2019] [Indexed: 01/23/2023] Open
Abstract
Circular dichroism (CD) signals revealed in some materials may arise from different origins during measurements. Magnetic field dependent CD (MCD) emanating from the spin-polarized band provides direct insight into the spin-spin interband transitions in magnetic materials. On the contrary, natural CD effects which are artefactual signals resulting from the linear polarization (LP) components during the polarization modulation with a photo-elastic modulator in anisotropic polymer systems were usually observed. There is no simple method to reliably distinguish MCD effect due to spin polarized band structures from natural CD effect, which limits our understanding of the magnetic material/polymer hybrid structures. This paper aims to introduce a general strategy of averaging out the magnetic linear dichroism (MLD) contributions due to the anisotropic structure and disentangling MCD signal(s) from natural MCD signal(s). We demonstrate the effectiveness of separating MCD from natural MCD using rotational MCD measurement and presented the results of a sample with Co thin film on polymer Scotch tape (unplasticized polyvinyl chloride) glued on a quartz substrate. We demonstrate that the proposed method can be used as an effective tool in disentangling MCD and natural MCD effects, and it opens prospects to study the magnetic material /polymer hybrid systems.
Collapse
|
21
|
Deng Y, Weaver ML, Hoke KR, Pletneva EV. A Heme Propionate Staples the Structure of Cytochrome c for Methionine Ligation to the Heme Iron. Inorg Chem 2019; 58:14085-14106. [PMID: 31589413 DOI: 10.1021/acs.inorgchem.9b02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ligand-switch reactions at the heme iron are common in biological systems, but their mechanisms and the features of the polypeptide fold that support dual ligation are not well understood. In cytochrome c (cyt c), two low-stability loops (Ω-loop C and Ω-loop D) are connected by the heme propionate HP6. At alkaline pH, the native Met80 ligand from Ω-loop D switches to a Lys residue from the same loop. Deprotonation of an as yet unknown group triggers the alkaline transition. We have created the two cyt c variants T49V/K79G and T78V/K79G with altered connections of these two loops to HP6. Electronic absorption, NMR, and EPR studies demonstrate that at pH 7.4 ferric forms of these variants are Lys-ligated, whereas ferrous forms maintain the native Met80 ligation. Measurements of protein stability, cyclic voltammetry, pH-jump and gated electron-transfer kinetics have revealed that these Thr to Val substitutions greatly affect the alkaline transition in both ferric and ferrous proteins. The substitutions modify the stability of the Met-ligated species and reduction potentials of the heme iron. The kinetics of ligand-switch processes are also altered, and analyses of these effects implicate redox-dependent differences in metal-ligand interactions and the role of the protein dynamics, including cross-talk between the two Ω-loops. With the two destabilized variants, it is possible to map energy levels for the Met- and Lys-ligated species in both ferric and ferrous proteins and assess the role of the protein scaffold in redox-dependent preferences for these two ligands. The estimated shift in the heme iron reduction potential upon deprotonation of the "trigger" group is consistent with those associated with deprotonation of an HP, suggesting that HP6, on its own or as a part of a hydrogen-bonded cluster, is a likely "trigger" for the Met to Lys ligand switch.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Madeline L Weaver
- Department of Chemistry and Biochemistry , Berry College , Mount Berry , Georgia 30149 , United States
| | - Kevin R Hoke
- Department of Chemistry and Biochemistry , Berry College , Mount Berry , Georgia 30149 , United States
| | - Ekaterina V Pletneva
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
22
|
Jenner LP, Kurth JM, van Helmont S, Sokol KP, Reisner E, Dahl C, Bradley JM, Butt JN, Cheesman MR. Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes. J Biol Chem 2019; 294:18002-18014. [PMID: 31467084 PMCID: PMC6879331 DOI: 10.1074/jbc.ra119.010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum. In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em) of the corresponding redox transformations are similar, −185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em, −129 mV) to His/Met (Em, +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s).
Collapse
Affiliation(s)
- Leon P Jenner
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julia M Kurth
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Sebastian van Helmont
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Katarzyna P Sokol
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
23
|
Szymkowicz L, Lento C, Wilson DJ. Impact of Cardiolipin and Phosphatidylcholine Interactions on the Conformational Ensemble of Cytochrome c. Biochemistry 2019; 58:3617-3626. [DOI: 10.1021/acs.biochem.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lisa Szymkowicz
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
24
|
Lei H, Nold SM, Motta LJ, Bowler BE. Effect of V83G and I81A Substitutions to Human Cytochrome c on Acid Unfolding and Peroxidase Activity below a Neutral pH. Biochemistry 2019; 58:2921-2933. [DOI: 10.1021/acs.biochem.9b00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haotian Lei
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Shiloh M. Nold
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Luis Jung Motta
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
25
|
Yin V, Mian SH, Konermann L. Lysine carbonylation is a previously unrecognized contributor to peroxidase activation of cytochrome c by chloramine-T. Chem Sci 2019; 10:2349-2359. [PMID: 30881663 PMCID: PMC6385661 DOI: 10.1039/c8sc03624a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
The peroxidase activity of cytochrome c (cyt c) plays a key role during apoptosis. Peroxidase catalysis requires a vacant Fe coordination site, i.e., cyt c must undergo an activation process involving structural changes that rupture the native Met80-Fe contact. A common strategy for dissociating this bond is the conversion of Met80 to sulfoxide (MetO). It is widely believed that this MetO formation in itself is sufficient for cyt c activation. This notion originates from studies on chloramine-T-treated cyt c (CT-cyt c) which represents a standard model for the peroxidase activated state. CT-cyt c is considered to be a "clean" species that has undergone selective MetO formation, without any other modifications. Using optical, chromatographic, and mass spectrometry techniques, the current work demonstrates that CT-induced activation of cyt c is more complicated than previously thought. MetO formation alone results in only marginal peroxidase activity, because dissociation of the Met80-Fe bond triggers alternative ligation scenarios where Lys residues interfere with access to the heme. We found that CT causes not only MetO formation, but also carbonylation of several Lys residues. Carbonylation is associated with -1 Da mass shifts that have gone undetected in the CT-cyt c literature. Proteoforms possessing both MetO and Lys carbonylation exhibit almost fourfold higher peroxidase activity than those with MetO alone. Carbonylation abrogates the capability of Lys to coordinate the heme, thereby freeing up the distal site as required for an active peroxidase. Previous studies on CT-cyt c may have inadvertently examined carbonylated proteoforms, potentially misattributing effects of carbonylation to solely MetO formation.
Collapse
Affiliation(s)
- Victor Yin
- Department of Chemistry and Department of Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada .
| | - Safee H Mian
- Department of Chemistry and Department of Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada .
| | - Lars Konermann
- Department of Chemistry and Department of Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada .
| |
Collapse
|
26
|
Zhang H, Kou Y, Li J, Chen L, Mao Z, Han XX, Zhao B, Ozaki Y. Nickel Nanowires Combined with Surface-Enhanced Raman Spectroscopy: Application in Label-Free Detection of Cytochrome c-Mediated Apoptosis. Anal Chem 2018; 91:1213-1216. [DOI: 10.1021/acs.analchem.8b04204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haijing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiming Kou
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Junbo Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Zhu Mao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
27
|
Deng Y, Zhong F, Alden SL, Hoke KR, Pletneva EV. The K79G Mutation Reshapes the Heme Crevice and Alters Redox Properties of Cytochrome c. Biochemistry 2018; 57:5827-5840. [PMID: 30142276 DOI: 10.1021/acs.biochem.8b00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The two roles of cytochrome c (cyt c), in oxidative phosphorylation and apoptosis, critically depend on redox properties of its heme iron center. The K79G mutant has served as a parent protein for a series of mutants of yeast iso-1 cyt c. The mutation preserves the Met80 coordination to the heme iron, as found in WT* (K72A/C102S), and many spectroscopic properties of K79G and WT* are indistinguishable. The K79G mutation does not alter the global stability, fold, rate of Met80 dissociation, or thermodynamics of the alkaline transition (p Ka) of the protein. However, the reduction potential of the heme iron decreases; further, the p KH of the trigger group and the rate of the Met-to-Lys ligand exchange associated with the alkaline transition decrease, suggesting changes in the environment of the heme. The rates of electron self-exchange and bimolecular electron transfer (ET) with positively charged inorganic complexes increase, as does the intrinsic peroxidase activity. Analysis of the reaction rates suggests that there is increased accessibility of the heme edge in K79G and supports the importance of the Lys79 site for bimolecular ET reactions of cyt c, including those with some of its native redox partners. Structural modeling rationalizes the observed effects to arise from changes in the volume of the heme pocket and solvent accessibility of the heme group. Kinetic and structural analyses of WT* characterize the properties of the heme crevice of this commonly employed reference variant. This study highlights the important role of Lys79 for defining functional redox properties of cyt c.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Fangfang Zhong
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Stephanie L Alden
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Kevin R Hoke
- Department of Chemistry and Biochemistry , Berry College , Mount Berry , Georgia 30149 , United States
| | - Ekaterina V Pletneva
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
28
|
Abstract
Met80, one of the heme iron ligands in cytochrome c (cyt c), is readily oxidized to Met sulfoxide (Met-SO) by several biologically relevant oxidants. The modification has been suggested to affect both the electron-transfer (ET) and apoptotic functions of this metalloprotein. The coordination of the heme iron in Met-oxidized cyt c (Met-SO cyt c) is critical for both of these functions but has remained poorly defined. We present electronic absorption, NMR, and EPR spectroscopic investigations as well as kinetic studies and mutational analyses to identify the heme iron ligands in yeast iso-1 Met-SO cyt c. Similar to the alkaline form of native cyt c, Lys73 and Lys79 ligate to the ferric heme iron in the Met80-oxidized protein, but this coordination takes place at much lower pH. The ferrous heme iron is ligated by Met-SO, implying the redox-linked ligand switch in the modified protein. Binding studies with the model peptide microperoxidase-8 provide a rationale for alterations in ligation and for the role of the polypeptide packing in native and Met-SO cyt c. Imidazole binding experiments have revealed that Lys dissociation from the ferric heme in K73A/K79G/M80K (M80K#) and Met-SO is more than 3 orders of magnitude slower than the opening of the heme pocket that limits Met80 replacement in native cyt c. The Lys-to-Met-SO ligand substitution gates ET of ferric Met-SO cyt c with Co(terpy)22+. Owing to the slow Lys dissociation step, ET reaction is slow but possible, which is not the case for nonswitchable M80A and M80K#. Acidic conditions cause Lys replacement by a water ligand in Met-SO cyt c (p Ka = 6.3 ± 0.1), increasing the intrinsic peroxidase activity of the protein. This pH-driven ligand switch may be a mechanism to boost peroxidase function of cyt c specifically in apoptotic cells.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| | | |
Collapse
|
29
|
Oxidative modification of methionine80 in cytochrome c by reaction with peroxides. J Inorg Biochem 2018; 182:200-207. [DOI: 10.1016/j.jinorgbio.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
30
|
Abstract
Cytochrome c (Cyt c) was rapidly oxidized by molecular oxygen in the presence, but not absence of PEG. The redox potential of heme c was determined by the potentiometric titration to be +236 ± 3 mV in the absence of PEG, which was negatively shifted to +200 ± 4 mV in the presence of PEG. The underlying the rapid oxidation was explored by examining the structural changes in Cyt c in the presence of PEG using UV-visible absorption, circular dichroism, resonance Raman, and fluorescence spectroscopies. These spectroscopic analyses suggested that heme oxidation was induced by a modest tertiary structural change accompanied by a slight shift in the heme position (<1.0 Å) rather than by partial denaturation, as is observed in the presence of cardiolipin. The near-infrared spectra showed that PEG induced dehydration from Cyt c, which triggered heme displacement. The primary dehydration site was estimated to be around surface-exposed hydrophobic residues near the heme center: Ile81 and Val83. These findings and our previous studies, which showed that hydrated water molecules around Ile81 and Val83 are expelled when Cyt c forms a complex with CcO, proposed that dehydration of these residues is functionally significant to electron transfer from Cyt c to CcO.
Collapse
|
31
|
Lebègue E, Smida H, Flinois T, Vié V, Lagrost C, Barrière F. An optimal surface concentration of pure cardiolipin deposited onto glassy carbon electrode promoting the direct electron transfer of cytochrome-c. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Yin V, Shaw GS, Konermann L. Cytochrome c as a Peroxidase: Activation of the Precatalytic Native State by H2O2-Induced Covalent Modifications. J Am Chem Soc 2017; 139:15701-15709. [DOI: 10.1021/jacs.7b07106] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Victor Yin
- Department of Chemistry and Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Gary S. Shaw
- Department of Chemistry and Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry and Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
33
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
34
|
Han B, Gao X, Shi L, Zheng Y, Hou K, Lv J, Guo J, Zhang W, Tang Z. Geometry-Modulated Magnetoplasmonic Optical Activity of Au Nanorod-Based Nanostructures. NANO LETTERS 2017; 17:6083-6089. [PMID: 28953401 DOI: 10.1021/acs.nanolett.7b02583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Comprehension and modulation of optical activity at nanoscale have attracted tremendous interest in the past decades due to its potential application in many fields including chemical/biological sensing, artificial metamaterials, asymmetric catalysis, and so forth. As for the conventional molecular materials, magnetic field is among the most effective routes in inducing and manipulating their optical activity; whereas the magnetic optical activity at nanoscale calls for deeper understanding, especially for anisotropic noble metal nanoparticles. In this work, distinctly different magnetic circular dichroism (MCD) responses are demonstrated in gold nanorods (GNRs) with a derivative-shaped MCD signal corresponding to the transverse surface plasmon resonance (TSPR) band and a Gaussian-shaped signal at the position of the longitudinal surface plasmon resonance (LSPR) band. Furthermore, changing the aspect ratio of GNRs easily regulates such magnetoplasmonic CD response. More interestingly, GNR assemblies with different geometric configuration (end-to-end and side-by-side) show structure-sensitive magnetoplasmonic CD response. Armed with theoretical calculation, we clearly elucidate the intrinsic relationship of the resultant magnetoplasmonic CD response with the optical symmetry and geometry factor inside one-dimensional GNRs. This work not only greatly benefits our understanding toward the nature of SPR mode in anisotropic plasmonic nanostructures but also opens the way to achieve tunable magnetoplasmonic response, which will significantly advance the design and application of optical nanodevices.
Collapse
Affiliation(s)
- Bing Han
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, People's Republic of China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| | - Xiaoqing Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| | - Lin Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| | - Yonglong Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| | - Ke Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| | - Jiawei Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| | - Jun Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics , Beijing 100088, People's Republic of China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, People's Republic of China
| |
Collapse
|
35
|
Gu J, Shin DW, Pletneva EV. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c. Biochemistry 2017; 56:2950-2966. [PMID: 28474881 DOI: 10.1021/acs.biochem.6b01187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perturbations in protein structure define the mechanism of allosteric regulation and biological information transfer. In cytochrome c (cyt c), ligation of Met80 to the heme iron is critical for the protein's electron-transfer (ET) function in oxidative phosphorylation and for suppressing its peroxidase activity in apoptosis. The hard base Lys is a better match for the hard ferric iron than the soft base Met is, suggesting the key role of the protein scaffold in favoring Met ligation. To probe the role of the protein structure in the maintenance of Met ligation, mutations T49V and Y67R/M80A were designed to disrupt hydrogen bonding and packing of the heme coordination loop, respectively. Electronic absorption, nuclear magnetic resonance, and electron paramagnetic resonance spectra reveal that ferric forms of both variants are Lys-ligated at neutral pH. A minor change in the tertiary contacts in T49V, away from the heme coordination loop, appears to be sufficient to execute a change in ligation, suggesting a cross-talk between the different regions of the protein structure and a possibility of built-in conformational switches in cyt c. Analyses of thermodynamic stability, kinetics of Lys binding and dissociation, and the pH-dependent changes in ligation provide a detailed characterization of the Lys coordination in these variants and relate these properties to the extent of structural perturbations. The findings emphasize the importance of the hydrogen-bonding network in controlling ligation of the native Met80 to the heme iron.
Collapse
Affiliation(s)
- Jie Gu
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - Dong-Woo Shin
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - Ekaterina V Pletneva
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| |
Collapse
|
36
|
Milorey B, Malyshka D, Schweitzer-Stenner R. pH Dependence of Ferricytochrome c Conformational Transitions during Binding to Cardiolipin Membranes: Evidence for Histidine as the Distal Ligand at Neutral pH. J Phys Chem Lett 2017; 8:1993-1998. [PMID: 28418677 DOI: 10.1021/acs.jpclett.7b00597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The conformational changes of ferricytochrome c upon binding to cardiolipin-containing small unilamellar vesicles were studied at slightly acidic pH using fluorescence, visible circular dichroism, UV-visible absorption, and resonance Raman spectroscopy. The obtained spectroscopic response data suggest a mode of interaction, which is clearly distinct from the binding process observed at neutral pH. Evidence of a reversible and electrostatic binding mechanism under these conditions is provided through binding inhibition in the presence of 150 mM NaCl. Moreover, UV-visible absorption and resonance Raman spectra reveal that the conformational ensemble of membrane bound cytochrome c is dominated by a mixture of conformers with pentacoordinated and hexacoordinated high-spin heme irons, which contrast with the dominance of low-spin species at neutral pH. While our results confirm the L-site binding proposed by Kawai et al., they point to the protonation of a histidine ligand (H33) as conformational trigger.
Collapse
Affiliation(s)
- Bridget Milorey
- Department of Chemistry, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Dmitry Malyshka
- Department of Chemistry, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
37
|
Milazzo L, Tognaccini L, Howes BD, Sinibaldi F, Piro MC, Fittipaldi M, Baratto MC, Pogni R, Santucci R, Smulevich G. Unravelling the Non-Native Low-Spin State of the Cytochrome c–Cardiolipin Complex: Evidence of the Formation of a His-Ligated Species Only. Biochemistry 2017; 56:1887-1898. [DOI: 10.1021/acs.biochem.6b01281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lisa Milazzo
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Tognaccini
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Barry D. Howes
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Federica Sinibaldi
- Dipartimento
di Medicina Sperimentale e Chirurgia, Università di Roma “Tor Vergata”, Via
Montpellier 1, 00133 Rome, Italy
| | - Maria C. Piro
- Dipartimento
di Medicina Sperimentale e Chirurgia, Università di Roma “Tor Vergata”, Via
Montpellier 1, 00133 Rome, Italy
| | - Maria Fittipaldi
- Dipartimento
di Fisica ed Astronomia, Università di Firenze, Via Sansone
1, 50019 Sesto Fiorentino
(FI), Italy
| | - Maria C. Baratto
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro
2, 53100 Siena, Italy
| | - Rebecca Pogni
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro
2, 53100 Siena, Italy
| | - Roberto Santucci
- Dipartimento
di Scienze Cliniche e Medicina Traslazionale, Università di Roma “Tor Vergata”, Via
Montpellier 1, 00133 Rome, Italy
| | - Giulietta Smulevich
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
38
|
Serpas L, Milorey B, Pandiscia LA, Addison AW, Schweitzer-Stenner R. Autoxidation of Reduced Horse Heart Cytochrome c Catalyzed by Cardiolipin-Containing Membranes. J Phys Chem B 2016; 120:12219-12231. [PMID: 27934230 DOI: 10.1021/acs.jpcb.6b05620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Visible circular dichroism, absorption, and fluorescence spectroscopy were used to probe the binding of horse heart ferrocytochrome c to anionic cardiolipin (CL) head groups on the surface of 1,1',2,2'-tetraoleoyl cardiolipin (TOCL)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (20%:80%) liposomes in an aerobic environment. We found that ferrocytochrome c undergoes a conformational transition upon binding that leads to complete oxidation of the protein at intermediate and high CL concentrations. At low lipid concentrations, the protein maintains a structure that is only slightly different from its native one, whereas an ensemble of misligated predominantly hexacoordinated low-spin states become increasingly populated at high lipid concentrations. A minor fraction of conformations with either high- or quantum-mixed-spin states were detected at a CL to protein ratio of 200 (the largest one investigated). The population of the non-native state is less pronounced than that found for cytochrome c-CL interactions initiated with oxidized cytochrome c. Under anaerobic conditions, the protein maintains its reduced state but still undergoes some conformational change upon binding to CL head groups on the liposome surface. Our data suggest that CL-containing liposomes function as catalysts by reducing the activation barrier for a Fe2+ → O2 electron transfer. Adding NaCl to the existing cytochrome-liposome mixtures under aerobic conditions inhibits protein autoxidation of ferrocytochrome c and stabilizes the reduced state of the membrane-bound protein.
Collapse
Affiliation(s)
- Lee Serpas
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Bridget Milorey
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Leah A Pandiscia
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Anthony W Addison
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Zeng L, Wu L, Liu L, Jiang X. Analyzing Structural Properties of Heterogeneous Cardiolipin-Bound Cytochrome C and Their Regulation by Surface-Enhanced Infrared Absorption Spectroscopy. Anal Chem 2016; 88:11727-11733. [DOI: 10.1021/acs.analchem.6b03360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lie Wu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Li Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiue Jiang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
40
|
Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tórtora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016; 55:407-28. [DOI: 10.1021/acs.biochem.5b01385] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luciana Hannibal
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Center
for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Mathildenstrasse 1, Freiburg D-79106, Germany
| | - Florencia Tomasina
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Daiana A. Capdevila
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ronald Jemmerson
- Department
of Microbiology and Immunology, University of Minnesota, MMC 196,
420 Delaware Street, Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
41
|
Capdevila DA, Oviedo Rouco S, Tomasina F, Tortora V, Demicheli V, Radi R, Murgida DH. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin. Biochemistry 2015; 54:7491-504. [PMID: 26620444 DOI: 10.1021/acs.biochem.5b00922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Santiago Oviedo Rouco
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Florencia Tomasina
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay
| | - Verónica Tortora
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
42
|
Karsisiotis AI, Deacon OM, Rajagopal BS, Macdonald C, Blumenschein TMA, Moore GR, Worrall JAR. Backbone resonance assignments of ferric human cytochrome c and the pro-apoptotic G41S mutant in the ferric and ferrous states. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:415-419. [PMID: 26123826 DOI: 10.1007/s12104-015-9621-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Human cytochrome c is a multi-functional protein with key roles in both the mitochondrial electron transfer chain and in apoptosis. In the latter, a complex formed between the mitochondrial phospholipid cardiolipin and cytochrome c is crucial for instigating the release of pro-apoptotic factors, including cytochrome c, from the mitochondrion into the cytosol. The G41S mutant of human cytochrome c is the only known disease-related variant of cytochrome c and causes increased apoptotic activity in patients with autosomal dominant thrombocytopenia. NMR spectroscopy can be used to investigate the interaction of human cytochrome c with cardiolipin and the structural and dynamic factors, which may contribute to enhanced apoptotic activity for the G41S mutant. We present here essentially full backbone amide resonance assignments for ferric human cytochrome c (98 %) as well as assignments of both the ferric (92 %) and ferrous (95 %) forms of the G41S mutant. Backbone amide chemical shift differences between the wild type and G41S mutant in the ferric state reveals significant changes around the mutation site, with many other amides also affected. This suggests the possibility of increased dynamics and/or a change in the paramagnetic susceptibility tensor of the G41S mutant relative to the wild type protein.
Collapse
Affiliation(s)
| | - Oliver M Deacon
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Badri S Rajagopal
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Colin Macdonald
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Geoffrey R Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
43
|
Ranieri A, Di Rocco G, Millo D, Battistuzzi G, Bortolotti CA, Lancellotti L, Borsari M, Sola M. Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Wang Z, Ando Y, Nugraheni AD, Ren C, Nagao S, Hirota S. Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met-heme iron bond. MOLECULAR BIOSYSTEMS 2015; 10:3130-7. [PMID: 25224641 DOI: 10.1039/c4mb00285g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Met80 of cytochrome c (cyt c) has been shown to dissociate from its heme iron when cyt c interacts with cardiolipin (CL), which triggers the release of cyt c into the cytosol initiating apoptosis. We found that the mass of human cyt c increases by 16 Da in the Met80-Lys86 region by reaction with molecular oxygen in the presence of CL-containing liposomes and dithiothreitol (DTT). To investigate the effect of Met80 dissociation on the reaction of cyt c with molecular oxygen without affecting its secondary structures, a human cyt c mutant (Δ8384 cyt c) was constructed by removing two amino acids (Val83 and Gly84) from the loop containing Met80. According to MALDI-TOF-MS and tandem mass measurements, Met80 of Δ8384 cyt c was modified site-specifically to methionine sulfoxide when purified in the presence of molecular oxygen, whereas Met80 was not modified in the absence of molecular oxygen. A red-shift of the Soret band from 406 to 412 nm and absorption increase at ∼536 and ∼568 nm were observed for Δ8384 cyt c when it reacted with DTT and molecular oxygen, followed by a further red-shift of the Soret band to 416 nm and absorption increase at ∼620 and ∼650 nm. These results indicate that Met80 of cyt c is oxidized site-specifically by formation of the oxy and subsequent compound I-like species when Met80 dissociates from the heme iron, where the Met80 modification may affect its peroxidase activity related to apoptosis.
Collapse
Affiliation(s)
- Zhonghua Wang
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Amacher JF, Zhong F, Lisi GP, Zhu MQ, Alden SL, Hoke KR, Madden DR, Pletneva EV. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding and Functional Implications of a Conformational Switch. J Am Chem Soc 2015; 137:8435-49. [PMID: 26038984 DOI: 10.1021/jacs.5b01493] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been suggested that the alkaline form of cytochrome c (cyt c) regulates function of this protein as an electron carrier in oxidative phosphorylation and as a peroxidase that reacts with cardiolipin (CL) during apoptosis. In this form, Met80, the native ligand to the heme iron, is replaced by a Lys. While it has become clear that the structure of cyt c changes, the extent and sequence of conformational rearrangements associated with this ligand replacement remain a subject of debate. Herein we report a high-resolution crystal structure of a Lys73-ligated cyt c conformation that reveals intricate change in the heme environment upon this switch in the heme iron ligation. The structure is surprisingly compact, and the heme coordination loop refolds into a β-hairpin with a turn formed by the highly conserved residues Pro76 and Gly77. Repositioning of residue 78 modifies the intraprotein hydrogen-bonding network and, together with adjustments of residues 52 and 74, increases the volume of the heme pocket to allow for insertion of one of the CL acyl moieties next to Asn52. Derivatization of Cys78 with maleimide creates a solution mimic of the Lys-ligated cyt c that has enhanced peroxidase activity, adding support for a role of the Lys-ligated cyt c in the apoptotic mechanism. Experiments with the heme peptide microperoxidase-8 and engineered model proteins provide a thermodynamic rationale for the switch to Lys ligation upon perturbations in the protein scaffold.
Collapse
Affiliation(s)
- Jeanine F Amacher
- †Department of Biochemistry, Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Fangfang Zhong
- ‡Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - George P Lisi
- ‡Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Michael Q Zhu
- ‡Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Stephanie L Alden
- ‡Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Kevin R Hoke
- §Department of Chemistry, Berry College, Mount Berry, Georgia 30149, United States
| | - Dean R Madden
- †Department of Biochemistry, Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Ekaterina V Pletneva
- †Department of Biochemistry, Geisel School of Medicine, Hanover, New Hampshire 03755, United States.,‡Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
46
|
Birk AV, Chao WM, Liu S, Soong Y, Szeto HH. Disruption of cytochrome c heme coordination is responsible for mitochondrial injury during ischemia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1075-84. [PMID: 26071084 DOI: 10.1016/j.bbabio.2015.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/13/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND It was recently suggested that electron flow into cyt c, coupled with ROS generation, oxidizes cyt c Met(80) to Met(80) sulfoxide (Met-O) in isolated hearts after ischemia-reperfusion, and converts cyt c to a peroxidase. We hypothesize that ischemia disrupts Met(80)-Fe ligation of cyt c, forming pentacoordinated heme Fe(2+), which inhibits electron transport (ET) and promotes oxygenase activity. METHODS SS-20 (Phe-D-Arg-Phe-Lys-NH2) was used to demonstrate the role of Met(80)-Fe ligation in ischemia. Mitochondria were isolated from ischemic rat kidneys to determine sites of respiratory inhibition. Mitochondrial cyt c and cyt c Met-O were quantified by western blot, and cristae architecture was examined by electron microscopy. RESULTS Biochemical and structural studies showed that SS-20 selectively targets cardiolipin (CL) and protects Met(80)-Fe ligation in cyt c. Ischemic mitochondria showed 17-fold increase in Met-O cyt c, and dramatic cristaeolysis. Loss of cyt c was associated with proteolytic degradation of OPA1. Ischemia significantly inhibited ET initiated by direct reduction of cyt c and coupled respiration. All changes were prevented by SS-20. CONCLUSION Our results show that ischemia disrupts the Met(80)-Fe ligation of cyt c resulting in the formation of a globin-like pentacoordinated heme Fe(2+) that inhibits ET, and converts cyt c into an oxygenase to cause CL peroxidation and proteolytic degradation of OPA1, resulting in cyt c release. GENERAL SIGNIFICANCE Cyt c heme structure represents a novel target for minimizing ischemic injury. SS-20, which we show to selectively target CL and protect the Met(80)-Fe ligation, minimizes ischemic injury and promotes ATP recovery.
Collapse
Affiliation(s)
- Alexander V Birk
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Wesley M Chao
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Shaoyi Liu
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Yi Soong
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Hazel H Szeto
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA; Research Program in Mitochondrial Therapeutics, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
47
|
Ascenzi P, Coletta M, Wilson MT, Fiorucci L, Marino M, Polticelli F, Sinibaldi F, Santucci R. Cardiolipin-cytochrome c complex: Switching cytochrome c from an electron-transfer shuttle to a myoglobin- and a peroxidase-like heme-protein. IUBMB Life 2015; 67:98-109. [PMID: 25857294 DOI: 10.1002/iub.1350] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/11/2015] [Indexed: 12/18/2022]
Abstract
Cytochrome c (cytc) is a small heme-protein located in the space between the inner and the outer membrane of the mitochondrion that transfers electrons from cytc-reductase to cytc-oxidase. The hexa-coordinated heme-Fe atom of cytc displays a very low reactivity toward ligands and does not exhibit significant catalytic properties. However, upon cardiolipin (CL) binding, cytc achieves ligand binding and catalytic properties reminiscent of those of myoglobin and peroxidase. In particular, the peroxidase activity of the cardiolipin-cytochrome c complex (CL-cytc) is critical for the redistribution of CL from the inner to the outer mitochondrial membranes and is essential for the execution and completion of the apoptotic program. On the other hand, the capability of CL-cytc to bind NO and CO and the heme-Fe-based scavenging of reactive nitrogen and oxygen species may affect apoptosis. Here, the ligand binding and catalytic properties of CL-cytc are analyzed in parallel with those of CL-free cytc, myoglobin, and peroxidase to dissect the potential mechanisms of CL in modulating the pro- and anti-apoptotic actions of cytc.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem J 2015; 456:441-52. [PMID: 24099549 DOI: 10.1042/bj20130758] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding. By EPR spectroscopy we reveal that the magnitude of changes in the paramagnetic haem states, as well as the yield of protein-bound free radical, is dependent on the phospholipid used and is considerably greater in the G41S mutant. A high-resolution X-ray crystal structure of human cytochrome c was determined and, in combination with the radical EPR signal analysis, two tyrosine residues, Tyr(46) and Tyr(48), have been rationalized to be putative radical sites. Subsequent single and double tyrosine-to-phenylalanine mutations revealed that the EPR signal of the radical, found to be similar in all variants, including G41S and wild-type, originates not from a single tyrosine residue, but is instead a superimposition of multiple EPR signals from different radical sites. We propose a mechanism of multiple radical formations in the cytochrome c-phospholipid complexes under H2O2 treatment, consistent with the stabilization of the radical in the G41S mutant, which elicits a greater peroxidase activity from cytochrome c and thus has implications in mitochondrial apoptosis.
Collapse
|
49
|
Ranieri A, Millo D, Di Rocco G, Battistuzzi G, Bortolotti CA, Borsari M, Sola M. Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen. J Biol Inorg Chem 2015; 20:531-40. [PMID: 25627142 DOI: 10.1007/s00775-015-1238-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/27/2014] [Indexed: 11/26/2022]
Abstract
Mitochondrial cytochrome c (cytc) plays an important role in programmed cell death upon binding to cardiolipin (CL), a negatively charged phospholipid of the inner mitochondrial membrane (IMM). Although this binding has been thoroughly investigated in solution, little is known on the nature and reactivity of the adduct (cytc-CL) immobilized at IMM. In this work, we have studied electrochemically cytc-CL immobilized on a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol. This construct would reproduce the motional restriction and the nonpolar environment experienced by cytc-CL at IMM. Surface-enhanced resonance Raman (SERR) studies allowed the axial heme iron ligands to be identified, which were found to be oxidation state dependent and differ from those of cytc-CL in solution. In particular, immobilized cytc-CL experiences an equilibrium between a low-spin (LS) 6c His/His and a high-spin (HS) 5c His/- coordination states. The former prevails in the oxidized and the latter in the reduced form. Axial coordination of the ferric heme thus differs from the (LS) 6c His/Lys and (LS) 6c His/OH(-) states observed in solution. Moreover, a relevant finding is that the immobilized ferrous cytc-CL is able to catalytically reduce dioxygen, likely to superoxide ion. These findings indicate that restriction of motional freedom due to interaction with the membrane is an additional factor playing in the mechanism of cytc unfolding and cytc-mediated peroxidation functional to the apoptosis cascade.
Collapse
Affiliation(s)
- Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41125, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Capdevila DA, Marmisollé WA, Tomasina F, Demicheli V, Portela M, Radi R, Murgida DH. Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: potential implications for apoptosis. Chem Sci 2015; 6:705-713. [PMID: 30154994 PMCID: PMC6085654 DOI: 10.1039/c4sc02181a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022] Open
Abstract
Cytochrome c (Cyt-c) has been previously shown to participate in cardiolipin (CL) oxidation and, therefore, in mitochondrial membrane permeabilization during the early events of apoptosis. The gain in this function has been ascribed to specific CL/Cyt-c interactions. Here we report that the cationic protein Cyt-c is also able to interact electrostatically with the main lipid components of the mitochondrial membranes, the zwitterionic lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE), through the mediation of phosphate anions that bind specifically to amino groups in the surfaces of protein and model membranes. In these complexes, Cyt-c reacts efficiently with H2O2 at submillimolar levels, which oxidizes the sulfur atom of the axial ligand Met80. The modified protein is stable and presents significantly enhanced peroxidatic activity. Based on these results, we postulate that the rise of H2O2 concentrations to the submillimolar levels registered during initiation of the apoptotic program may represent one signaling event that triggers the gain in peroxidatic function of the Cyt-c molecules bound to the abundant PE and PC membrane components. As the activated protein is a chemically stable species, it can potentially bind and oxidize important targets, such as CL.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| | - Waldemar A Marmisollé
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| | - Florencia Tomasina
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Magdalena Portela
- Unidad de Bioquímica y Proteómica Analíticas , Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| |
Collapse
|