1
|
Masoumzadeh E, Latham MP. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Biochemistry 2024; 63:2449-2462. [PMID: 39305233 PMCID: PMC11448763 DOI: 10.1021/acs.biochem.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The RNA recognition motif (RRM) is a conserved and ubiquitous RNA-binding domain that plays essential roles in mRNA splicing, polyadenylation, transport, and stability. RRM domains exhibit remarkable diversity in binding partners, interacting with various sequences of single- and double-stranded RNA, despite their small size and compact fold. During pre-mRNA cleavage and polyadenylation, the RRM domain from CSTF2 recognizes U- or G/U-rich RNA sequences downstream from the cleavage and polyadenylation site to regulate the process. Given the importance of alternative cleavage and polyadenylation in increasing the diversity of mRNAs, the exact mechanism of binding of RNA to the RRM of CSTF2 remains unclear, particularly in the absence of a structure of this RRM bound to a native RNA substrate. Here, we performed a series of NMR titration and spin relaxation experiments, which were complemented by paramagnetic relaxation enhancement measurements and rigid-body docking, to characterize the interactions of the CSTF2 RRM with a U-rich ligand. Our results reveal a multistep binding process involving differences in ps-ns time scale dynamics and potential structural changes, particularly in the C-terminalα-helix. These results provide insights into how the CSTF2 RRM domain binds to U-rich RNA ligands and offer a greater understanding for the molecular basis of the regulation of pre-mRNA cleavage and polyadenylation.
Collapse
Affiliation(s)
- Elahe Masoumzadeh
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Michael P. Latham
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
- Department
of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Saberi M, Chikunova A, Ben Bdira F, Cramer-Blok A, Timmer M, Voskamp P, Ubbink M. Bimodal substrate binding in the active site of the glycosidase BcX. FEBS J 2024; 291:4222-4239. [PMID: 39185686 DOI: 10.1111/febs.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Bacillus circulans xylanase (BcX) from the glycoside hydrolase family 11 degrades xylan through a retaining, double-displacement mechanism. The enzyme is thought to hydrolyze glycosidic bonds in a processive manner and has a large, active site cleft, with six subsites allowing the binding of six xylose units. Such an active site architecture suggests that oligomeric xylose substrates can bind in multiple ways. In the crystal structure of the catalytically inactive variant BcX E78Q, the substrate xylotriose is observed in the active site, as well as bound to the known secondary binding site and a third site on the protein surface. Nuclear magnetic resonance (NMR) titrations with xylose oligomers of different lengths yield nonlinear chemical shift trajectories for active site nuclei resonances, indicative of multiple binding orientations for these substrates for which binding and dissociation are in fast exchange on the NMR timescale, exchanging on the micro- to millisecond timescale. Active site binding can be modeled with a 2 : 1 model with dissociation constants in the low and high millimolar range. Extensive mutagenesis of active site residues indicates that tight binding occurs in the glycon binding site and is stabilized by Trp9 and the thumb region. Mutations F125A and W71A lead to large structural rearrangements. Binding at the glycon site is sensed throughout the active site, whereas the weak binding mostly affects the aglycon site. The interactions with the two active site locations are largely independent of each other and of binding at the secondary binding site.
Collapse
Affiliation(s)
- Mahin Saberi
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Fredj Ben Bdira
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Patrick Voskamp
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| |
Collapse
|
3
|
Tateno K, Ando T, Tabata M, Sugasawa H, Hayashi T, Yu S, Pm S, Inomata K, Mikawa T, Ito Y, Ikeya T. Different molecular recognition by three domains of the full-length GRB2 to SOS1 proline-rich motifs and EGFR phosphorylated sites. Chem Sci 2024:d4sc02656j. [PMID: 39282643 PMCID: PMC11391413 DOI: 10.1039/d4sc02656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
The adaptor protein human GRB2 plays crucial roles in mediating signal transduction from cell membrane receptors to RAS and its downstream proteins by recruiting SOS1. Recent studies have revealed that GRB2 also serves as a scaffold for liquid-liquid phase separation (LLPS) with SOS1 and transmembrane receptors, which is thought to regulate the magnitude of cell signalling pathways. In this study, we employed solution NMR spectroscopy to investigate the interactions of the full-length GRB2 with proline-rich motifs (PRMs) derived from ten potential GRB2-binding sites in SOS1, as well as a peptide from a phosphorylation site of EGFR. Our findings indicate that the binding affinity of the two SH3 domains of GRB2 for PRMs differs by a factor of ten to twenty, with the N-terminal SH3 domain (NSH3) exhibiting a markedly higher affinity. The interactions of PRMs with the SH3 domains affected not only the regions surrounding the PRM binding sites on the SH3 domains but also the linker area connecting the three domains and parts of the SH2 domain. Analysis of the interaction between the phosphorylated EGFR binding site and the SH2 domain revealed chemical shift perturbations in regions distal from the known binding site of SH2. Moreover, we observed that the inter-domain interactions of the two SH3 domains with the SH2 domain of GRB2 are asymmetric. These findings suggest that the local binding of PRMs and phosphorylated EGFR to GRB2 impacts the overall structure of the GRB2 molecule, including domain orientation and dimerisation, which may contribute to LLPS formation.
Collapse
Affiliation(s)
- Keita Tateno
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Takami Ando
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Maako Tabata
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Haruka Sugasawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Toshifumi Hayashi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Sangya Yu
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Sayeesh Pm
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Kohsuke Inomata
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Tsutomu Mikawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
- RIKEN Center for Biosystems Dynamics Research, RIKEN 1-7-22 Suehiro-Cho, Tsurumi-Ku Yokohama 230-0045 Japan
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Teppei Ikeya
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
4
|
Li T, Motta S, He Y. Deciphering the Mystery in p300 Taz2-p53 TAD2 Recognition. J Chem Theory Comput 2024. [PMID: 39141804 DOI: 10.1021/acs.jctc.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Intrinsically disordered proteins (IDPs) engage in various fundamental biological activities, and their behavior is of particular importance for a better understanding of the verbose but well-organized signal transduction in cells. IDPs exhibit uniquely paradoxical features with low affinity but simultaneously high specificity in recognizing their binding targets. The transcription factor p53 plays a crucial role in cancer suppression, carrying out some of its biological functions using its disordered regions, such as N-terminal transactivation domain 2 (TAD2). Exploration of the binding and unbinding processes between proteins is challenging, and the inherently disordered properties of these regions further complicate the issue. Computer simulations are a powerful tool to complement the experiments to fill gaps to explore the binding/unbinding processes between proteins. Here, we investigated the binding mechanism between p300 Taz2 and p53 TAD2 through extensive molecular dynamics (MD) simulations using the physics-based UNited RESidue (UNRES) force field with additional Go̅-like potentials. Distance restraints extracted from the NMR-resolved structures were imposed on intermolecular residue pairs to accelerate binding simulations, in which Taz2 was immobilized in a native-like conformation and disordered TAD2 was fully free. Starting from six structures with TAD2 placed at different positions around Taz2, we observed a metastable intermediate state in which the middle helical segment of TAD2 is anchored in the binding pocket, highlighting the significance of the TAD2 helix in directing protein recognition. Physics-based binding simulations show that successful binding is achieved after a series of stages, including (1) protein collisions to initiate the formation of encounter complexes, (2) partial attachment of TAD2, and finally (3) full attachment of TAD2 to the correct binding pocket of Taz2. Furthermore, machine-learning-based PathDetect-SOM was used to identify two binding pathways, the encounter complexes, and the intermediate states.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
5
|
Sarkar D, Saha S, Krishnamoorthy J, Bhunia A. Application of singular value decomposition analysis: Insights into the complex mechanisms of amyloidogenesis. Biophys Chem 2024; 306:107157. [PMID: 38184980 DOI: 10.1016/j.bpc.2023.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Amyloidogenesis, with its multifaceted nature spanning from peptide self-assembly to membrane-mediated structural transitions, presents a significant challenge for the interdisciplinary scientific community. Here, we emphasize on how Singular Value Decomposition (SVD) can be employed to reveal hidden patterns and dominant modes of interaction that govern the complex process of amyloidogenesis. We first utilize SVD analysis on Circular Dichroism (CD) spectral datasets to identify the intermediate structural species emerging during peptide-membrane interactions and to determine binding constants more precisely than conventional methods. We investigate the monomer loss kinetics associated with peptide self-assembly using Nuclear Magnetic Resonance (NMR) dataset and determine the global kinetic parameters through SVD. Furthermore, we explore the seeded growth of amyloid fibrils by analyzing a time-dependent NMR dataset, shedding light on the kinetic intricacies of this process. Our analysis uncovers two distinct states in the aggregation of Aβ40 and pinpoints key residues responsible for this seeded growth. To strengthen our findings and enhance their robustness, we validate those using simulated data, thereby highlighting the physical interpretations derived from SVD. Overall, SVD analysis offers a model-free, global kinetic perspective, enabling the selection of optimal kinetic models. This study not only contributes valuable insights into the dynamics but also highlights the versatility of SVD in unravelling complex processes of amyloidogenesis.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India
| | | | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India.
| |
Collapse
|
6
|
Arai M, Suetaka S, Ooka K. Dynamics and interactions of intrinsically disordered proteins. Curr Opin Struct Biol 2024; 84:102734. [PMID: 38039868 DOI: 10.1016/j.sbi.2023.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
Intrinsically disordered proteins (IDPs) are widespread in eukaryotes and participate in a variety of important cellular processes. Numerous studies using state-of-the-art experimental and theoretical methods have advanced our understanding of IDPs and revealed that disordered regions engage in a large repertoire of intra- and intermolecular interactions through their conformational dynamics, thereby regulating many intracellular functions in concert with folded domains. The mechanisms by which IDPs interact with their partners are diverse, depending on their conformational propensities, and include induced fit, conformational selection, and their mixtures. In addition, IDPs are implicated in many diseases, and progress has been made in designing inhibitors of IDP-mediated interactions. Here we review these recent advances with a focus on the dynamics and interactions of IDPs.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Koji Ooka
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Erba EB, Pastore A. The Complementarity of Nuclear Magnetic Resonance and Native Mass Spectrometry in Probing Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:109-123. [PMID: 38507203 DOI: 10.1007/978-3-031-52193-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nuclear magnetic resonance (NMR) and native mass spectrometry (MS) are mature physicochemical techniques with long histories and important applications. NMR spectroscopy provides detailed information about the structure, dynamics, interactions, and chemical environment of biomolecules. MS is an effective approach for determining the mass of biomolecules with high accuracy, sensitivity, and speed. The two techniques offer unique advantages and provide solid tools for structural biology. In the present review, we discuss their individual merits in the context of their applications to structural studies in biology with specific focus on protein interactions and evaluate their limitations. We provide specific examples in which these techniques can complement each other, providing new information on the same scientific case. We discuss how the field may develop and what challenges are expected in the future. Overall, the combination of NMR and MS plays an increasingly important role in integrative structural biology, assisting scientists in deciphering the three-dimensional structure of composite macromolecular assemblies.
Collapse
|
8
|
Kind L, Driver M, Raasakka A, Onck PR, Njølstad PR, Arnesen T, Kursula P. Structural properties of the HNF-1A transactivation domain. Front Mol Biosci 2023; 10:1249939. [PMID: 37908230 PMCID: PMC10613711 DOI: 10.3389/fmolb.2023.1249939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic β-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic β-cells.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mark Driver
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Walinda E, Sugase K, Ishii N, Shirakawa M, Iwai K, Morimoto D. Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity. J Biol Chem 2023; 299:105165. [PMID: 37595872 PMCID: PMC10511788 DOI: 10.1016/j.jbc.2023.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Attachment of polyubiquitin (poly-Ub) chains to proteins is a major posttranslational modification in eukaryotes. Linear ubiquitin chain assembly complex, consisting of HOIP (HOIL-1-interacting protein), HOIL-1L (heme-oxidized IRP2 Ub ligase 1), and SHARPIN (Shank-associated RH domain-interacting protein), specifically synthesizes "head-to-tail" poly-Ub chains, which are linked via the N-terminal methionine α-amino and C-terminal carboxylate of adjacent Ub units and are thus commonly called "linear" poly-Ub chains. Linear ubiquitin chain assembly complex-assembled linear poly-Ub chains play key roles in immune signaling and suppression of cell death and have been associated with immune diseases and cancer; HOIL-1L is one of the proteins known to selectively bind linear poly-Ub via its Npl4 zinc finger (NZF) domain. Although the structure of the bound form of the HOIL-1L NZF domain with linear di-Ub is known, several aspects of the recognition specificity remain unexplained. Here, we show using NMR and orthogonal biophysical methods, how the NZF domain evolves from a free to the specific linear di-Ub-bound state while rejecting other potential Ub species after weak initial binding. The solution structure of the free NZF domain revealed changes in conformational stability upon linear Ub binding, and interactions between the NZF core and tail revealed conserved electrostatic contacts, which were sensitive to charge modulation at a reported phosphorylation site: threonine-207. Phosphomimetic mutations reduced linear Ub affinity by weakening the integrity of the linear di-Ub-bound conformation. The described molecular determinants of linear di-Ub binding provide insight into the dynamic aspects of the Ub code and the NZF domain's role in full-length HOIL-1L.
Collapse
Affiliation(s)
- Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Ishii
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Miyamoto Y, Nakatsuji M, Yoshida T, Ohkubo T, Inui T. Structural and interaction analysis of human lipocalin-type prostaglandin D synthase with the poorly water-soluble drug NBQX. FEBS J 2023; 290:3983-3996. [PMID: 37021622 DOI: 10.1111/febs.16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a secretory lipid-transporter protein that was shown to bind a wide variety of hydrophobic ligands in vitro. Exploiting this function, we previously examined the feasibility of using L-PGDS as a novel delivery vehicle for poorly water-soluble drugs. However, the mechanism by which human L-PGDS binds to poorly water-soluble drugs is unclear. In this study, we determined the solution structure of human L-PGDS and investigated the mechanism of L-PGDS binding to 6-nitro-7-sulfamoyl-benzo[f]quinoxalin-2,3-dione (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor antagonist. NMR experiments showed that human L-PGDS has an eight-stranded antiparallel β-barrel structure that forms a central cavity, a short 310 -helix and two α-helices. Titration with NBQX was monitored using 1 H-15 N HSQC spectroscopy. At higher NBQX concentrations, some cross-peaks of the protein exhibited fast-exchanging shifts with a curvature, indicating at least two binding sites. These residues were located in the upper portion of the cavity. Singular value decomposition analysis revealed that human L-PGDS has two NBQX binding sites. Large chemical shift changes were observed in the H2-helix and A-, B-, C-, D-, H- and I-strands and H2-helix upon NBQX binding. Calorimetric experiments revealed that human L-PGDS binds two NBQX molecules with dissociation constants of 46.7 μm for primary binding and 185.0 μm for secondary binding. Molecular docking simulations indicated that these NBQX binding sites are located within the β-barrel. These results provide new insights into the interaction between poorly water-soluble drugs and human L-PGDS as a drug carrier.
Collapse
Affiliation(s)
- Yuya Miyamoto
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Masatoshi Nakatsuji
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tadayasu Ohkubo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
11
|
Trastoy B, Du JJ, Cifuente JO, Rudolph L, García-Alija M, Klontz EH, Deredge D, Sultana N, Huynh CG, Flowers MW, Li C, Sastre DE, Wang LX, Corzana F, Mallagaray A, Sundberg EJ, Guerin ME. Mechanism of antibody-specific deglycosylation and immune evasion by Streptococcal IgG-specific endoglycosidases. Nat Commun 2023; 14:1705. [PMID: 36973249 PMCID: PMC10042849 DOI: 10.1038/s41467-023-37215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Bacterial pathogens have evolved intricate mechanisms to evade the human immune system, including the production of immunomodulatory enzymes. Streptococcus pyogenes serotypes secrete two multi-modular endo-β-N-acetylglucosaminidases, EndoS and EndoS2, that specifically deglycosylate the conserved N-glycan at Asn297 on IgG Fc, disabling antibody-mediated effector functions. Amongst thousands of known carbohydrate-active enzymes, EndoS and EndoS2 represent just a handful of enzymes that are specific to the protein portion of the glycoprotein substrate, not just the glycan component. Here, we present the cryoEM structure of EndoS in complex with the IgG1 Fc fragment. In combination with small-angle X-ray scattering, alanine scanning mutagenesis, hydrolytic activity measurements, enzyme kinetics, nuclear magnetic resonance and molecular dynamics analyses, we establish the mechanisms of recognition and specific deglycosylation of IgG antibodies by EndoS and EndoS2. Our results provide a rational basis from which to engineer novel enzymes with antibody and glycan selectivity for clinical and biotechnological applications.
Collapse
Affiliation(s)
- Beatriz Trastoy
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Javier O Cifuente
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Lorena Rudolph
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Erik H Klontz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chau G Huynh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Maria W Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Francisco Corzana
- Departamento Química and Centro de Investigación en Síntesis Quı́mica, Universidad de La Rioja, 26006, Rioja, Spain
| | - Alvaro Mallagaray
- University of Lübeck, Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| |
Collapse
|
12
|
Skeens E, Lisi GP. Analysis of coordinated NMR chemical shifts to map allosteric regulatory networks in proteins. Methods 2023; 209:40-47. [PMID: 36535575 PMCID: PMC10173519 DOI: 10.1016/j.ymeth.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The exquisite sensitivity of the NMR chemical shift to local environment makes it an ideal probe to assess atomic level perturbations in proteins of all sizes and structural compositions. Recent advances in solution and solid-state NMR spectroscopy of biomolecules have leveraged the chemical shift to report on short- and long-range couplings between individual amino acids to establish "networks" of residues that form the basis of allosteric pathways that transmit chemical signals through the protein matrix to induce functional responses. The simple premise that thermodynamically and functionally coupled regions of a protein (i.e. active and allosteric sites) should be reciprocally sensitive to structural or dynamic perturbations has enabled NMR spectroscopy, the premier method for molecular resolution of protein structural fluctuations, to occupy a place at the forefront of investigations into protein allostery. Here, we detail several key methods of NMR chemical shift analysis to extract mechanistic information about long-range chemical signaling in a protein, focusing on practical methodological aspects and the circumstances under which a given approach would be relevant. We also detail some of the experimental considerations that should be made when applying these methods to specific protein systems.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, United States
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, United States.
| |
Collapse
|
13
|
NMR Titration Studies in Z-DNA Dynamics. Methods Mol Biol 2023; 2651:69-83. [PMID: 36892760 DOI: 10.1007/978-1-0716-3084-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Chemical shift perturbation (CSP) is a simple NMR technique for studying the DNA binding of proteins. Titration of the unlabeled DNA into the 15N-labeled protein is monitored by acquiring a two-dimensional (2D) heteronuclear single-quantum correlation (HSQC) spectrum at each step of the titration. CSP can also provide information on the DNA-binding dynamics of proteins, as well as protein-induced conformational changes in DNA. Here, we describe the titration of DNA for the 15N-labeled Z-DNA-binding protein, monitored via 2D HSQC spectra. NMR titration data can be analyzed with the active B-Z transition model to provide the protein-induced B-Z transition dynamics of DNA.
Collapse
|
14
|
Li T, Motta S, Stevens AO, Song S, Hendrix E, Pandini A, He Y. Recognizing the Binding Pattern and Dissociation Pathways of the p300 Taz2-p53 TAD2 Complex. JACS AU 2022; 2:1935-1945. [PMID: 36032526 PMCID: PMC9400049 DOI: 10.1021/jacsau.2c00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/21/2023]
Abstract
The dynamic association and dissociation between proteins are the basis of cellular signal transduction. This process becomes much more complicated if one or both interaction partners are intrinsically disordered because intrinsically disordered proteins can undergo disorder-to-order transitions upon binding to their partners. p53, a transcription factor with disordered regions, plays significant roles in many cellular signaling pathways. It is critical to understand the binding/unbinding mechanism involving these disordered regions of p53 at the residue level to reveal how p53 performs its biological functions. Here, we studied the dissociation process of the intrinsically disordered N-terminal transactivation domain 2 (TAD2) of p53 and the transcriptional adaptor zinc-binding 2 (Taz2) domain of transcriptional coactivator p300 using a combination of classical molecular dynamics, steered molecular dynamics, self-organizing maps, and time-resolved force distribution analysis (TRFDA). We observed two different dissociation pathways with different probabilities. One dissociation pathway starts from the TAD2 N-terminus and propagates to the α-helix and finally the C-terminus. The other dissociation pathway is in the opposite order. Subsequent TRFDA results reveal that key residues in TAD2 play critical roles. Besides the residues in agreement with previous experimental results, we also highlighted some other residues that play important roles in the disassociation process. In the dissociation process, non-native interactions were formed to partially compensate for the energy loss due to the breaking of surrounding native interactions. Moreover, our statistical analysis results of other experimentally determined complex structures involving either Taz2 or TAD2 suggest that the binding of the Taz2-TAD2 complex is mainly governed by the binding site of Taz2, which includes three main binding regions. Therefore, the complexes involving Taz2 may follow similar binding/unbinding behaviors, which could be studied together to generate common principles.
Collapse
Affiliation(s)
- Tongtong Li
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stefano Motta
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Milan 20126, Italy
| | - Amy O. Stevens
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Shenghan Song
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Emily Hendrix
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alessandro Pandini
- Department
of Computer Science, Brunel University London, Uxbridge UB8 3PH, U.K.
- The
Thomas Young Centre for Theory and Simulation of Materials, London SW7 2AZ, U.K.
| | - Yi He
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
15
|
Zhang C, Pei Y, Zhang Z, Xu L, Liu X, Jiang L, Pielak GJ, Zhou X, Liu M, Li C. C-terminal truncation modulates α-Synuclein's cytotoxicity and aggregation by promoting the interactions with membrane and chaperone. Commun Biol 2022; 5:798. [PMID: 35945337 PMCID: PMC9363494 DOI: 10.1038/s42003-022-03768-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022] Open
Abstract
α-Synuclein (α-syn) is the main protein component of Lewy bodies, the major pathological hallmarks of Parkinson's disease (PD). C-terminally truncated α-syn is found in the brain of PD patients, reduces cell viability and tends to form fibrils. Nevertheless, little is known about the mechanisms underlying the role of C-terminal truncation on the cytotoxicity and aggregation of α-syn. Here, we use nuclear magnetic resonance spectroscopy to show that the truncation alters α-syn conformation, resulting in an attractive interaction of the N-terminus with membranes and molecular chaperone, protein disulfide isomerase (PDI). The truncated protein is more toxic to mitochondria than full-length protein and diminishes the effect of PDI on α-syn fibrillation. Our findings reveal a modulatory role for the C-terminus in the cytotoxicity and aggregation of α-syn by interfering with the N-terminus binding to membranes and chaperone, and provide a molecular basis for the pathological role of C-terminal truncation in PD pathogenesis.
Collapse
Affiliation(s)
- Cai Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Yunshan Pei
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| | - Lingling Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Gary J Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Graduate University of Chinese Academy of Science, 100049, Beijing, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| |
Collapse
|
16
|
Mandal R, Pham P, Hilty C. Screening of Protein-Ligand Binding Using a SABRE Hyperpolarized Reporter. Anal Chem 2022; 94:11375-11381. [PMID: 35921650 DOI: 10.1021/acs.analchem.2c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarization through signal amplification by reversible exchange (SABRE) provides a facile means to enhance nuclear magnetic resonance (NMR) signals of small molecules containing an N-heterocycle or other binding site for a polarization transfer catalyst. A purpose-designed reporter ligand, which is capable of binding both to a target protein and to the catalyst, makes the sensitivity enhancement by this technique compatible with the measurement of a range of biomolecular interactions. The 1H polarization of the reporter ligand 4-amidinopyridine, which is targeting trypsin, is used to screen ligands that are not themselves hyperpolarizable by SABRE. The respective protein-ligand dissociation constants (KD) are determined by an observed change in the R2 relaxation rate of the reporter. A calculation of expected signal changes indicates that the accessible ligand KD values extend over several orders of magnitude, while the concentrations of target proteins and ligands can be reduced considering the sensitivity gains from hyperpolarization. In general, the design of a single, weakly binding ligand for a target protein enables the use of SABRE hyperpolarization for ligand screening or other biophysical studies involving macromolecular interactions.
Collapse
Affiliation(s)
- Ratnamala Mandal
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Pierce Pham
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Hobbs B, Drant J, Williamson MP. The measurement of binding affinities by NMR chemical shift perturbation. JOURNAL OF BIOMOLECULAR NMR 2022; 76:153-163. [PMID: 35921001 PMCID: PMC9427925 DOI: 10.1007/s10858-022-00402-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
We have carried out chemical shift perturbation titrations on three contrasting proteins. The resulting chemical shifts have been analysed to determine the best way to fit the data, and it is concluded that a simultaneous fitting of all raw shift data to a single dissociation constant is both the most accurate and the most precise method. It is shown that the optimal weighting of 15N chemical shifts to 1H chemical shifts is protein dependent, but is around the consensus value of 0.14. We show that chemical shift changes of individual residues can be fit to give residue-specific affinities. Residues with affinities significantly stronger than average are found in close contact with the ligand and are suggested to form a rigid contact surface, but only when the binding involves little conformational change. This observation may be of value in analysing binding and conformational change.
Collapse
Affiliation(s)
- Billy Hobbs
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jack Drant
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
18
|
Mühlberg L, Alarcin T, Maass T, Creutznacher R, Küchler R, Mallagaray A. Ligand-induced structural transitions combined with paramagnetic ions facilitate unambiguous NMR assignments of methyl groups in large proteins. JOURNAL OF BIOMOLECULAR NMR 2022; 76:59-74. [PMID: 35397749 PMCID: PMC9247001 DOI: 10.1007/s10858-022-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
NMR spectroscopy allows the study of biomolecules in close-to-native conditions. Structural information can be inferred from the NMR spectra when an assignment is available. Protein assignment is usually a time-consuming task, being specially challenging in the case of large, supramolecular systems. Here, we present an extension of existing state-of-the-art strategies for methyl group assignment that partially overcomes signal overlapping and other difficulties associated to isolated methyl groups. Our approach exploits the ability of proteins to populate two or more conformational states, allowing for unique NOE restraints in each protein conformer. The method is compatible with automated assignment algorithms, granting assignments beyond the limits of a single protein state. The approach also benefits from long-range structural restraints obtained from metal-induced pseudocontact shifts (PCS) and paramagnetic relaxation enhancements (PREs). We illustrate the method with the complete assignment of the 199 methyl groups of a MILproSVproSAT methyl-labeled sample of the UDP-glucose pyrophosphorylase enzyme from Leishmania major (LmUGP). Protozoan parasites of the genus Leishmania causes Leishmaniasis, a neglected disease affecting over 12 million people worldwide. LmUGP is responsible for the de novo biosynthesis of uridine diphosphate-glucose, a precursor in the biosynthesis of the dense surface glycocalyx involved in parasite survival and infectivity. NMR experiments with LmUGP and related enzymes have the potential to unravel new insights in the host resistance mechanisms used by Leishmania major. Our efforts will help in the development of selective and efficient drugs against Leishmania.
Collapse
Affiliation(s)
- Lars Mühlberg
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Tuncay Alarcin
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Thorben Maass
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Robert Creutznacher
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Richard Küchler
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alvaro Mallagaray
- Institute for Chemistry and Metabolomics, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
19
|
Kumar S, Reddy Sannapureddi RK, Todankar CS, Ramanathan R, Biswas A, Sathyamoorthy B, Pradeepkumar PI. Bisindolylmaleimide Ligands Stabilize c-MYC G-Quadruplex DNA Structure and Downregulate Gene Expression. Biochemistry 2022; 61:1064-1076. [PMID: 35584037 DOI: 10.1021/acs.biochem.2c00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-Quadruplex (G4) structures play a pivotal role in diverse biological functions, including essential processes, such as telomere maintenance and gene regulation. G4 structures formed in functional regions of genomes are actively pursued toward therapeutics and are targeted by small-molecule ligands that alter their structure and/or stability. Herein, we report the synthesis of bisindolylmaleimide-based (BIM) ligands, which preferentially stabilize parallel G4 structures of c-MYC and c-KIT oncogenes over the telomeric h-RAS1 G4 and duplex DNAs. The preferential stabilization of parallel G4s with BIM ligands is further validated by the DNA polymerase stop assay, where stop products were only observed for templates containing the c-MYC G4 sequence. Nuclear magnetic resonance (NMR) titration studies indicate that the lead ligand BIM-Pr1 forms a 2:1 complex with c-MYC G4 DNA with a KD of 38 ± 5 μM. The BIM ligand stacks at the 5' and 3' quartets, with molecular modeling and dynamics studies supporting the proposed binding mode. The ligand is cytotoxic to HeLa cells and downregulates c-MYC gene expression. Collectively, the results present bisindolylmaleimide scaffolds as novel and powerful G4 targeting agents.
Collapse
Affiliation(s)
- Satendra Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Chaitra S Todankar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - R Ramanathan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Annyesha Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Berry DBG, Clegg I, Codina A, Lyall CL, Lowe JP, Hintermair U. Convenient and accurate insight into solution-phase equilibria from FlowNMR titrations. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00123c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution phase titrations are made easy by multi-nuclear FlowNMR spectroscopy with automated, continuous titre addition to give accurate insights into Brønsted acid/base, hydrogen bonding, Lewis acid/base and metal/ligand binding equilibria under native conditions.
Collapse
Affiliation(s)
- Daniel B. G. Berry
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ian Clegg
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Anna Codina
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Catherine L. Lyall
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - John P. Lowe
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY Bath, UK
| |
Collapse
|
21
|
Risør MW, Jansma AL, Medici N, Thomas B, Dyson HJ, Wright PE. Characterization of the High-Affinity Fuzzy Complex between the Disordered Domain of the E7 Oncoprotein from High-Risk HPV and the TAZ2 Domain of CBP. Biochemistry 2021; 60:3887-3898. [PMID: 34905914 PMCID: PMC8865373 DOI: 10.1021/acs.biochem.1c00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intrinsically disordered N-terminal region of the E7 protein from high-risk human papillomavirus (HPV) strains is responsible for oncogenic transformation of host cells through its interaction with a number of cellular factors, including the TAZ2 domain of the transcriptional coactivator CREB-binding protein. Using a variety of spectroscopic and biochemical tools, we find that despite its nanomolar affinity, the HPV16 E7 complex with TAZ2 is disordered and highly dynamic. The disordered domain of HPV16 E7 protein does not adopt a single conformation on the surface of TAZ2 but engages promiscuously with its target through multiple interactions involving two conserved motifs, termed CR1 and CR2, that occupy an extensive binding surface on TAZ2. The fuzzy nature of the complex is a reflection of the promiscuous binding repertoire of viral proteins, which must efficiently dysregulate host cell processes by binding to a variety of host factors in the cellular environment.
Collapse
Affiliation(s)
- Michael W. Risør
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Joint first author
| | - Ariane L. Jansma
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A.,Joint first author
| | - Natasha Medici
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A
| | - Brittany Thomas
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Author for correspondence: H. Jane Dyson, Phone: 1-858-784-2223, , Peter E. Wright, Phone: 1-858-784-9721,
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Author for correspondence: H. Jane Dyson, Phone: 1-858-784-2223, , Peter E. Wright, Phone: 1-858-784-9721,
| |
Collapse
|
22
|
Qi C, Wang Y, Hilty C. Application of Relaxation Dispersion of Hyperpolarized 13 C Spins to Protein-Ligand Binding. Angew Chem Int Ed Engl 2021; 60:24018-24021. [PMID: 34468077 DOI: 10.1002/anie.202109430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Nuclear spin relaxation dispersion parameters are proposed as indicators of the binding mode of a ligand to a protein. Hyperpolarization by dissolution dynamic nuclear polarization (D-DNP) provided a 13 C signal enhancement between 3000-6000 for the ligand 4-(trifluoromethyl) benzene-1-carboximidamide binding to trypsin. The measurement of 13 C R2 relaxation dispersion was enabled without isotope enrichment, using a series of single-scan Carr-Purcell-Meiboom-Gill experiments with variable refocusing delays. The magnitude in dispersion for the spins of the ligand is correlated to the position with respect to the salt bridge between protein and the amidine group of the ligand, indicating the ligand binding orientation. Hyperpolarized relaxation dispersion is an alternative to chemical shift or NOE measurements for determining ligand binding modes.
Collapse
Affiliation(s)
- Chang Qi
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX, USA
| | - Yunyi Wang
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX, USA
| |
Collapse
|
23
|
Qi C, Wang Y, Hilty C. Application of Relaxation Dispersion of Hyperpolarized
13
C Spins to Protein–Ligand Binding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chang Qi
- Chemistry Department Texas A&M University 3255 TAMU College Station TX USA
| | - Yunyi Wang
- Chemistry Department Texas A&M University 3255 TAMU College Station TX USA
| | - Christian Hilty
- Chemistry Department Texas A&M University 3255 TAMU College Station TX USA
| |
Collapse
|
24
|
Ban D, Rice CT, McCoy MA. Quantification of natural abundance NMR data differentiates the solution behavior of monoclonal antibodies and their fragments. MAbs 2021; 13:1978132. [PMID: 34612804 PMCID: PMC8496538 DOI: 10.1080/19420862.2021.1978132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Biotherapeutics are an important class of molecules for the treatment of a wide range of diseases. They include low molecular weight peptides, highly engineered protein scaffolds and monoclonal antibodies. During their discovery and development, assessments of the biophysical attributes is critical to understanding the solution behavior of therapeutic proteins and for de-risking liabilities. Thus, methods that can quantify, characterize, and provide a basis to inform risks and drive the selection of more optimal antibody and alternative scaffolds are needed. Nuclear Magnetic Resonance (NMR) spectroscopy is a technique that provides a means to probe antibody and antibody-like molecules in solution, at atomic resolution, under any formulated conditions. Here, all samples were profiled at natural abundance requiring no isotope enrichment. We present a numerical approach that quantitates two-dimensional methyl spectra. The approach was tested with a reference dataset that contained different types of antibody and antibody-like molecules. This dataset was processed through a procedure we call a Random Sampling of NMR Peaks for Covariance Analysis. This analysis revealed that the first two components were well correlated with the hydrodynamic radius of the molecules included in the reference set. Higher-order principal components were also linked to dynamic features between different tethered antibody-like molecules and contributed to decisions around candidate selection. The reference set provides a basis to characterize molecules with unknown solution behavior and is sensitive to the behavior of a molecule formulated under different conditions. The approach is independent of protein design, scaffold, formulation and provides a facile method to quantify solution behavior.
Collapse
Affiliation(s)
- David Ban
- Department of Computational and Structural Chemistry, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Cory T Rice
- Department of Computational and Structural Chemistry, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Mark A McCoy
- Department of Computational and Structural Chemistry, Merck & Co., Inc, Kenilworth, NJ, USA
| |
Collapse
|
25
|
Margiola S, Gerecht K, Müller MM. Semisynthetic 'designer' p53 sheds light on a phosphorylation-acetylation relay. Chem Sci 2021; 12:8563-8570. [PMID: 34221338 PMCID: PMC8221199 DOI: 10.1039/d1sc00396h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor protein p53 is a master regulator of cell fate. The activity of p53 is controlled by a plethora of posttranslational modifications (PTMs). However, despite extensive research, the mechanisms of this regulation are still poorly understood due to a paucity of biochemical studies with p53 carrying defined PTMs. Here, we report a protein semi-synthesis approach to access site-specifically modified p53. We synthesized a set of chemically homogeneous full-length p53 carrying one (Ser20ph and Ser15ph) or two (Ser15,20ph) naturally occurring, damage-associated phosphoryl marks. Refolding and biochemical characterization of semisynthetic p53 variants confirmed their structural and functional integrity. Furthermore, we show that phosphorylation within the N-terminal domain directly enhances p300-dependent acetylation approximately twofold, consistent with the role of these marks in p53 activation. Given that the p53 N-terminus is a hotspot for PTMs, we believe that our approach will contribute greatly to a mechanistic understanding of how p53 is controlled by PTMs.
Collapse
Affiliation(s)
- Sofia Margiola
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Karola Gerecht
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Manuel M Müller
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
26
|
Shimizu T, Hayashi Y, Arai M, McGlynn SE, Masuda T, Masuda S. Repressor Activity of SqrR, a Master Regulator of Persulfide-Responsive Genes, Is Regulated by Heme Coordination. PLANT & CELL PHYSIOLOGY 2021; 62:100-110. [PMID: 33169162 DOI: 10.1093/pcp/pcaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuki Hayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Munehito Arai
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
27
|
Harkness RW, Toyama Y, Kay LE. Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: Theoretical and computational considerations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 318:106802. [PMID: 32818875 DOI: 10.1016/j.jmr.2020.106802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Solution NMR spectroscopy is widely used to investigate the thermodynamics and kinetics of the binding of ligands to their biological receptors, as it provides detailed, atomistic information, potentially leading to microscopic affinities for each binding event, and, to the development of allosteric pathways describing how the binding at one site affects distal sites in the molecule. Importantly, weak interactions that are often invisible to other biophysical methods can also be probed. Methodological advancements in NMR have enabled the investigation of high molecular weight, homo-oligomeric complexes that bind multiple ligand molecules, with increasing numbers of studies of the structural dynamics and binding properties of these systems. It therefore becomes of interest to consider how binding and kinetics parameters can be extracted from experiments on these more complicated molecules. Here we present the theoretical framework for analyzing binding reactions of homo-oligomeric complexes by NMR, taking into account all of the chemical species in solution and their corresponding NMR observables. A number of simulations are presented to illustrate the utility of the derived expressions.
Collapse
Affiliation(s)
- Robert W Harkness
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Yuki Toyama
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
28
|
Ning S, Liu J, Liu N, Yan D. The accuracy of force fields on the simulation of intrinsically disordered proteins: A benchmark test on the human p53 tumor suppressor. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s021963362050011x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are a class of proteins without stable three-dimensional structures under physiological conditions. IDPs exhibit high dynamic nature and could be described by structural ensembles. As one of the most widely used tools, molecular dynamics (MD) simulation could provide the atomic descriptions of the structural ensemble of IDPs. However, the accuracy of the MD simulation largely depends on the accuracy of the force field. In this paper, we compared the structural ensembles of the activation domain 1 (AD1) in p53 tumor suppressor obtained from the widely used force fields, AMBER99SB-ILDN, CHARMM27, CHARMM36m with different water models. The results show that CHARMM36m generates more extended conformations than other force fields, while CHARMM27 prefers to sample the [Formula: see text]-helical structure. Moreover, the chemical shifts obtained by CHARMM36m are the closest to the experimental measurements. These results indicate that the CHARMM36m force field performs best in characterizing the structure properties of p53 AD1. Water models are also critical to describe the structural ensemble of IDPs. TIP4P water model can obtain more extended conformations and produce more local helical conformations than the TIP3P model in our simulation. In addition, we also compare the chemical shifts predicted by different chemical shift predicting programs with experimental measurements, the results show that SHIFTX2 obtains the best performance in the chemical shifts prediction.
Collapse
Affiliation(s)
- Shangbo Ning
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Jun Liu
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Na Liu
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Dazhong Yan
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|
29
|
Nishizawa M, Walinda E, Morimoto D, Sugase K. Pinpoint analysis of a protein in slow exchange using F 1F 2-selective ZZ-exchange spectroscopy: assignment and kinetic analysis. JOURNAL OF BIOMOLECULAR NMR 2020; 74:205-211. [PMID: 32236785 DOI: 10.1007/s10858-020-00309-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
ZZ-exchange spectroscopy is widely used to study slow exchange processes in biomolecules, especially determination of exchange rates and assignment of minor peaks. However, if the exchange cross peaks overlap or the populations are skewed, kinetic analysis is hindered. In order to analyze slow exchange protein dynamics under such conditions, here we have developed a new method by combining ZZ-exchange and F1F2-selective NMR spectroscopy. We demonstrate the utility of this method by examining the monomer-dimer transition of the ubiquitin-associated domain of p62, successfully assigning the minor (monomeric) peaks and obtaining the exchange rates, which cannot be achieved by ZZ-exchange alone.
Collapse
Affiliation(s)
- Mayu Nishizawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku Yoshida Konoe-cho, Kyoto, 606-8501, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
30
|
Coyle J, Walser R. Applied Biophysical Methods in Fragment-Based Drug Discovery. SLAS DISCOVERY 2020; 25:471-490. [PMID: 32345095 DOI: 10.1177/2472555220916168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fragment-based drug discovery (FBDD) has come of age in the last decade with the FDA approval of four fragment-derived drugs. Biophysical methods are at the heart of hit discovery and validation in FBDD campaigns. The three most commonly used methods, thermal shift, surface plasmon resonance, and nuclear magnetic resonance, can be daunting for the novice user. We aim here to provide the nonexpert user of these methods with a summary of problems and challenges that might be faced, but also highlight the potential gains that each method can contribute to an FBDD project. While our view on FBDD is slightly biased toward enabling structure-guided drug discovery, most of the points we address in this review are also valid for non-structure-focused FBDD.
Collapse
Affiliation(s)
- Joe Coyle
- Astex Pharmaceuticals, Cambridge, UK
| | | |
Collapse
|
31
|
Abstract
RNA recognition frequently results in conformational changes that optimize intermolecular binding. As a consequence, the overall binding affinity of RNA to its binding partners depends not only on the intermolecular interactions formed in the bound state but also on the energy cost associated with changing the RNA conformational distribution. Measuring these "conformational penalties" is, however, challenging because bound RNA conformations tend to have equilibrium populations in the absence of the binding partner that fall outside detection by conventional biophysical methods. In this study we employ as a model system HIV-1 TAR RNA and its interaction with the ligand argininamide (ARG), a mimic of TAR's cognate protein binding partner, the transactivator Tat. We use NMR chemical shift perturbations and relaxation dispersion in combination with Bayesian inference to develop a detailed thermodynamic model of coupled conformational change and ligand binding. Starting from a comprehensive 12-state model of the equilibrium, we estimate the energies of six distinct detectable thermodynamic states that are not accessible by currently available methods. Our approach identifies a minimum of four RNA intermediates that differ in terms of the TAR conformation and ARG occupancy. The dominant bound TAR conformation features two bound ARG ligands and has an equilibrium population in the absence of ARG that is below detection limit. Consequently, even though ARG binds to TAR with an apparent overall weak affinity (Kdapp ≈ 0.2 mM), it binds the prefolded conformation with a Kd in the nM range. Our results show that conformational penalties can be major determinants of RNA-ligand binding affinity as well as a source of binding cooperativity, with important implications for a predictive understanding of how RNA is recognized and for RNA-targeted drug discovery.
Collapse
Affiliation(s)
- Nicole I. Orlovsky
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Terrence G. Oas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
32
|
Abstract
Interactions of intrinsically disordered proteins are central to their cellular functions, and solution-state NMR spectroscopy provides a powerful tool for characterizing both structural and mechanistic aspects of such interactions. Here we focus on the analysis of IDP interactions using NMR titration measurements. Changes in resonance lineshapes in two-dimensional NMR spectra upon titration with a ligand contain rich information on structural changes in the protein and the thermodynamics and kinetics of the interaction, as well as on the microscopic association mechanism. Here we present protocols for the optimal design of titration experiments, data acquisition, and data analysis by two-dimensional lineshape fitting using the TITAN software package.
Collapse
|
33
|
Khattri RB, Morris DL, Bilinovich SM, Manandhar E, Napper KR, Sweet JW, Modarelli DA, Leeper TC. Identifying Ortholog Selective Fragment Molecules for Bacterial Glutaredoxins by NMR and Affinity Enhancement by Modification with an Acrylamide Warhead. Molecules 2019; 25:E147. [PMID: 31905878 PMCID: PMC6983068 DOI: 10.3390/molecules25010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Illustrated here is the development of a new class of antibiotic lead molecules targeted at Pseudomonas aeruginosa glutaredoxin (PaGRX). This lead was produced to (a) circumvent efflux-mediated resistance mechanisms via covalent inhibition while (b) taking advantage of species selectivity to target a fundamental metabolic pathway. This work involved four components: a novel workflow for generating protein specific fragment hits via independent nuclear magnetic resonance (NMR) measurements, NMR-based modeling of the target protein structure, NMR guided docking of hits, and synthetic modification of the fragment hit with a vinyl cysteine trap moiety, i.e., acrylamide warhead, to generate the chimeric lead. Reactivity of the top warhead-fragment lead suggests that the ortholog selectivity observed for a fragment hit can translate into a substantial kinetic advantage in the mature warhead lead, which bodes well for future work to identify potent, species specific drug molecules targeted against proteins heretofore deemed undruggable.
Collapse
Affiliation(s)
- Ram B. Khattri
- Department of Physiology and Functional genomics, University of Florida, Gainesville, FL 32610, USA;
| | - Daniel L. Morris
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Stephanie M. Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Kahlilah R. Napper
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Jacob W. Sweet
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - David A. Modarelli
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Thomas C. Leeper
- Department of Chemistry and Biochemistry, Kennesaw State University, GA 30144, USA
| |
Collapse
|
34
|
Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry 2019; 58:5160-5172. [PMID: 31794659 DOI: 10.1021/acs.biochem.9b00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The inactive state of mitogen-activated protein kinases (MAPKs) adopts an open conformation while the active state exists in a compact form stabilized by phosphorylation. In the active state, eukaryotic kinases undergo breathing motions related to substrate binding and product release that have not previously been detected in the inactive state. However, docking interactions of partner proteins with inactive MAPK kinases exhibit allostery in binding of activating kinases. Interactions at a site distant from the activation loop are coupled to the configuration of the activation loop, suggesting that the inactive state may also undergo concerted dynamics. X-ray crystallographic studies of nonphosphorylated, inactive p38γ reveal differences in domain orientations and active site structure in the two molecules in the asymmetric unit. One molecule resembles an inactive kinase with an open active site. The second molecule has a rotation of the N-lobe that leads to partial compaction of the active site, resulting in a conformation that is intermediate between the inactive open state and the fully closed state of the activated kinase. Although the compact state of apo p38γ displays several of the features of the activated enzyme, it remains catalytically inert. In solution, the kinase fluctuates on a millisecond time scale between the open ground state and a weakly populated excited state that is similar in structure to the compact state observed in the crystal. The nuclear magnetic resonance and crystal structure data imply that interconversion between the open and compact states involves a molecular switch associated with the DFG loop.
Collapse
|
35
|
Dyson HJ, Wright PE. Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:651-659. [PMID: 31617035 PMCID: PMC7043288 DOI: 10.1007/s10858-019-00280-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 05/13/2023]
Abstract
The 2019 ISMAR Prize recognized NMR studies of disordered proteins. Here we provide a highly personal perspective on the discovery of intrinsically disordered proteins and the development and application of NMR methods to characterize their conformational ensembles, dynamics, and interactions.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
36
|
Sen S, Udgaonkar JB. Binding-induced folding under unfolding conditions: Switching between induced fit and conformational selection mechanisms. J Biol Chem 2019; 294:16942-16952. [PMID: 31582563 PMCID: PMC6851327 DOI: 10.1074/jbc.ra119.009742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The chemistry of protein-ligand binding is the basis of virtually every biological process. Ligand binding can be essential for a protein to function in the cell by stabilizing or altering the conformation of a protein, particularly for partially or completely unstructured proteins. However, the mechanisms by which ligand binding impacts disordered proteins or influences the role of disorder in protein folding is not clear. To gain insight into this question, the mechanism of folding induced by the binding of a Pro-rich peptide ligand to the SH3 domain of phosphatidylinositol 3-kinase unfolded in the presence of urea has been studied using kinetic methods. Under strongly denaturing conditions, folding was found to follow a conformational selection (CS) mechanism. However, under mildly denaturing conditions, a ligand concentration-dependent switch in the mechanism was observed. The folding mechanism switched from being predominantly a CS mechanism at low ligand concentrations to being predominantly an induced fit (IF) mechanism at high ligand concentrations. The switch in the mechanism manifests itself as an increase in the reaction flux along the IF pathway at high ligand concentrations. The results indicate that, in the case of intrinsically disordered proteins too, the folding mechanism is determined by the concentration of the ligand that induces structure formation.
Collapse
Affiliation(s)
- Sreemantee Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| |
Collapse
|
37
|
Tugaeva KV, Kalacheva DI, Cooley RB, Strelkov SV, Sluchanko NN. Concatenation of 14-3-3 with partner phosphoproteins as a tool to study their interaction. Sci Rep 2019; 9:15007. [PMID: 31628352 PMCID: PMC6802120 DOI: 10.1038/s41598-019-50941-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023] Open
Abstract
Regulatory 14-3-3 proteins interact with a plethora of phosphorylated partner proteins, however 14-3-3 complexes feature intrinsically disordered regions and often a transient type of interactions making structural studies difficult. Here we engineer and examine a chimera of human 14-3-3 tethered to a nearly complete partner HSPB6 which is phosphorylated by protein kinase A (PKA). HSPB6 includes a long disordered N-terminal domain (NTD), a phosphorylation motif around Ser16, and a core α-crystallin domain (ACD) responsible for dimerisation. The chosen design enables an unstrained binding of pSer16 in each 1433 subunit and secures the correct 2:2 stoichiometry. Differential scanning calorimetry, limited proteolysis and small-angle X-ray scattering (SAXS) support the proper folding of both the 14-3-3 and ACD dimers within the chimera, and indicate that the chimera retains the overall architecture of the native complex of 14-3-3 and phosphorylated HSPB6 that has recently been resolved using crystallography. At the same time, the SAXS data highlight the weakness of the secondary interface between the ACD dimer and the C-terminal lobe of 14-3-3 observed in the crystal structure. Applied to other 14-3-3 complexes, the chimeric approach may help probe the stability and specificity of secondary interfaces for targeting them with small molecules in the future.
Collapse
Affiliation(s)
- Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.,Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Daria I Kalacheva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.,Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia. .,Department of Biophysics, School of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.
| |
Collapse
|
38
|
Positive Cooperativity in Substrate Binding by Human Thymidylate Synthase. Biophys J 2019; 117:1074-1084. [PMID: 31500803 DOI: 10.1016/j.bpj.2019.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/04/2023] Open
Abstract
Thymidylate synthase (TS) catalyzes the production of the nucleotide dTMP from deoxyuridine monophosphate (dUMP), making the enzyme necessary for DNA replication and consequently a target for cancer therapeutics. TSs are homodimers with active sites separated by ∼30 Å. Reports of half-the-sites activity in TSs from multiple species demonstrate the presence of allosteric communication between the active sites of this enzyme. A simple explanation for the negative allosteric regulation occurring in half-the-sites activity would be that the two substrates bind with negative cooperativity. However, previous work on Escherichia coli TS revealed that dUMP substrate binds without cooperativity. To gain further insight into TS allosteric function, binding cooperativity in human TS is examined here. Isothermal titration calorimetry and two-dimensional lineshape analysis of NMR titration spectra are used to characterize the thermodynamics of dUMP binding, with a focus on quantification of cooperativity between the two substrate binding events. We find that human TS binds dUMP with ∼9-fold entropically driven positive cooperativity (ρITC = 9 ± 1, ρNMR = 7 ± 1), in contrast to the apparent strong negative cooperativity reported previously. Our work further demonstrates the necessity of globally fitting isotherms collected under various conditions, as well as accurate determination of binding competent protein concentration, for calorimetric characterization of homotropic cooperative binding. Notably, an initial curvature of the isotherm is found to be indicative of positively cooperative binding. Two-dimensional lineshape analysis NMR is also found to be an informative tool for quantifying binding cooperativity, particularly in cases in which bound intermediates yield unique resonances.
Collapse
|
39
|
Liao S, Zhao M, Luo J, Luo K, Wu J, Liu R, Wang S, Jia P, Bai Y, Zheng X. The interaction mechanism between alkaloids and pepsin based on lum-AuNPs in the chemiluminescence analysis. RSC Adv 2019; 9:25569-25575. [PMID: 35530091 PMCID: PMC9070008 DOI: 10.1039/c9ra02978h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022] Open
Abstract
Herein, novel luminol functional gold nanoparticles (lum-AuNPs) were quickly prepared in an alkaline luminol solution with HAuCl4, which had the unique characteristics of uniform size and excellent luminescence properties. A self-made flow injection-chemiluminescence (FI-CL) system was established to study the interaction between pepsin (Pep) and five alkaloids (anisodamine, berberine, reserpine, jatrorrhizine and matrine) using lum-AuNPs as the CL probe. Based on the abovementioned home-made CL system, the possible interaction mechanisms of Pep with five alkaloids have been comprehensively discussed by molecular docking simulation, chemical thermodynamics and kinetic studies. The results indicated that there were obvious CL enhancement and inhibition effects on the lum-AuNPs CL system for the Pep and the complex of Pep/alkaloids, respectively. The possible mechanism for the interaction of Pep-five alkaloids was mainly mediated by the hydrophobic force. The binding constant K and binding site n for the Pep-alkaloid interaction are consistent with the list of Ber > Res > Ani, Jat > Mat, which is relative to the potential of groups of alkaloids interacting with the active site of Pep.
Collapse
Affiliation(s)
- Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University Xi'an 710069 China
| | - Meimei Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce Xi'an 712046 China
| | - Jing Luo
- Shaanxi Traditional Chinese Medicine Hospital Xi'an 710004 China
| | - Kai Luo
- Department of Chemistry, Fudan University Shanghai 200438 China
| | - Jingni Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University Xi'an 710069 China
| | - Ruimin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University Xi'an 710069 China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University Xi'an 710069 China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University Xi'an 710069 China
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University Xi'an 710069 China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University Xi'an 710069 China
| |
Collapse
|
40
|
de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys 2019; 670:15-31. [PMID: 31152698 PMCID: PMC8455077 DOI: 10.1016/j.abb.2019.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The inflammasome is a multi-protein platform that assembles upon the presence of cues derived from infection or tissue damage, and triggers the inflammatory response. Inflammasome components include sensor proteins that detect danger signals, procaspase 1 and the adapter ASC (apoptosis-associated speck-like protein containing a CARD) tethering these molecules together. Upon inflammasome assembly, procaspase 1 self-activates and renders functional cytokines to arbitrate in the defense mechanism. This assembly is mediated by self-association and protein interactions via Death Domains. The inflammasome plays a critical role in innate immunity and its dysregulation is the culprit of many autoimmune disorders. An in-depth understanding of the factors involved in inflammasome assembly could help fight these conditions. This review describes our current knowledge on the biophysical aspects of inflammasome formation from the perspective of ASC. The specific characteristics of the three-dimensional solution structure and interdomain dynamics of ASC are explained in relation to its function in inflammasome assembly. Additionally, the review elaborates on the identification of ASC interacting surfaces at the amino acid level using NMR techniques. Finally, the macrostructures formed by full-length ASC and its two Death Domains studied with Transmission Electron Microscopy are compared in the context of a directional model for inflammasome assembly.
Collapse
Affiliation(s)
- Eva de Alba
- Department of Bioengineering. School of Engineering. University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
41
|
Huang L, Li X, Li Y, Yin X, Li Y, Wu B, Mo H, Liao CJ, Mengiste T, Guo W, Dai M, Zhang C. Endosidin2-14 Targets the Exocyst Complex in Plants and Fungal Pathogens to Inhibit Exocytosis. PLANT PHYSIOLOGY 2019; 180:1756-1770. [PMID: 31072814 PMCID: PMC6752926 DOI: 10.1104/pp.18.01457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 05/29/2023]
Abstract
The evolutionarily conserved octameric exocyst complex tethers secretory vesicles to the site of membrane fusion during exocytosis. The plant exocyst complex functions in cell wall biosynthesis, polarized growth, stress responses, and hormone signaling. In fungal pathogens, the exocyst complex is required for growth, development, and pathogenesis. Endosidin2 (ES2) is known to inhibit exocytosis in plant and mammalian cells by targeting the EXO70 subunit of the exocyst complex. Here we show that an analog of ES2, ES2-14, targets plant and two fungal EXO70s. A lower dosage of ES2-14 than of ES2 is required to inhibit plant growth, plant exocytic trafficking, and fungal growth. ES2-14 treatments inhibit appressorium formation and reduce lesion sizes caused by Magnaporthe oryzae Inhibition of EXO70 by ES2-14 in Botrytis cinerea also reduces its virulence in Arabidopsis (Arabidopsis thaliana). Interestingly, ES2-14 did not affect EXO70 localization or transferrin recycling in mammalian cells. Overall, our results indicate that a minor change in ES2 affects its specificity in targeting EXO70s in different organisms and they demonstrate the potential of using ES2-14 to study the mechanisms of plant and fungal exocytosis and the roles of exocytosis in fungus-plant interactions.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Xianglin Yin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yong Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Huaping Mo
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
42
|
Chen X, Ebelle DL, Wright BJ, Sridharan V, Hooper E, Walters KJ. Structure of hRpn10 Bound to UBQLN2 UBL Illustrates Basis for Complementarity between Shuttle Factors and Substrates at the Proteasome. J Mol Biol 2019; 431:939-955. [PMID: 30664872 PMCID: PMC6389388 DOI: 10.1016/j.jmb.2019.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
The 26S proteasome is a highly complex 2.5-MDa molecular machine responsible for regulated protein degradation. Proteasome substrates are typically marked by ubiquitination for recognition at receptor sites contributed by Rpn1/S2/PSMD2, Rpn10/S5a, and Rpn13/Adrm1. Each receptor site can bind substrates directly by engaging conjugated ubiquitin chains or indirectly by binding to shuttle factors Rad23/HR23, Dsk2/PLIC/UBQLN, or Ddi1, which contain a ubiquitin-like domain (UBL) that adopts the ubiquitin fold. Previous structural studies have defined how each of the proteasome receptor sites binds to ubiquitin chains as well as some of the interactions that occur with the shuttle factors. Here, we define how hRpn10 binds to the UBQLN2 UBL domain, solving the structure of this complex by NMR, and determine affinities for each UIM region by a titration experiment. UBQLN2 UBL exhibits 25-fold stronger affinity for the N-terminal UIM-1 over UIM-2 of hRpn10. Moreover, we discover that UBQLN2 UBL is fine-tuned for the hRpn10 UIM-1 site over the UIM-2 site by taking advantage of the additional contacts made available through the longer UIM-1 helix. We also test hRpn10 versatility for the various ubiquitin chains to find less specificity for any particular linkage type compared to hRpn1 and hRpn13, as expected from the flexible linker region that connects the two UIMs; nonetheless, hRpn10 does exhibit some preference for K48 and K11 linkages. Altogether, these results provide new insights into the highly complex and complementary roles of the proteasome receptor sites and shuttle factors.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brandon J Wright
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evan Hooper
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Linganore High School, Frederick, MD 21701, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
Applications of In-Cell NMR in Structural Biology and Drug Discovery. Int J Mol Sci 2019; 20:ijms20010139. [PMID: 30609728 PMCID: PMC6337603 DOI: 10.3390/ijms20010139] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/23/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein⁻protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.
Collapse
|
44
|
Diaz-Parga P, de Alba E. Protein interactions of the inflammasome adapter ASC by solution NMR. Methods Enzymol 2019; 625:223-252. [PMID: 31455529 PMCID: PMC8455076 DOI: 10.1016/bs.mie.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ASC (apoptosis-associated speck-like protein containing a CARD) is a modular protein that functions as an adapter of the inflammasome, a multi-protein complex that triggers the inflammatory response in the presence of infection or cell damage. ASC bridges the inflammasome components (PYD-containing sensors and procaspase 1) via homotypic interactions mediated by its two death domains, PYD and CARD. The self-assembly and oligomerization of multiple copies of these three proteins result in the activation of procaspase 1, in turn rendering different cytokines functional. An in-depth understanding of ASC binding capabilities is crucial to decipher the molecular mechanisms of its role in inflammasome formation. In this chapter, we discuss the use of solution NMR to identify specific interacting surfaces of the inflammasome adapter ASC, and describe detailed protocols to perform NMR titrations with Death Domains to obtain apparent dissociation constants of the resulting complexes. The incorporation of NMR restraints in molecular docking to obtain models of these protein assemblies is presented.
Collapse
Affiliation(s)
- Pedro Diaz-Parga
- Department of Bioengineering, School of Engineering, University of California, Merced, CA, United States,Quantitative Systems Biology Graduate Program, University of California, Merced, CA, United States
| | - Eva de Alba
- Department of Bioengineering, School of Engineering, University of California, Merced, CA, United States,Corresponding author:
| |
Collapse
|
45
|
Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S A 2018; 115:E11302-E11310. [PMID: 30420502 DOI: 10.1073/pnas.1814051115] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atomic resolution characterization of the full-length p53 tetramer has been hampered by its size and the presence of extensive intrinsically disordered regions at both the N and C termini. As a consequence, the structural characteristics and dynamics of the disordered regions are poorly understood within the context of the intact p53 tetramer. Here we apply trans-intein splicing to generate segmentally 15N-labeled full-length p53 constructs in which only the resonances of the N-terminal transactivation domain (NTAD) are visible in NMR spectra, allowing us to observe this region of p53 with unprecedented detail within the tetramer. The N-terminal region is dynamically disordered in the full-length p53 tetramer, fluctuating between states in which it is free and fully exposed to solvent and states in which it makes transient contacts with the DNA-binding domain (DBD). Chemical-shift changes and paramagnetic spin-labeling experiments reveal that the amphipathic AD1 and AD2 motifs of the NTAD interact with the DNA-binding surface of the DBD through primarily electrostatic interactions. Importantly, this interaction inhibits binding of nonspecific DNA to the DBD while having no effect on binding to a specific p53 recognition element. We conclude that the NTAD:DBD interaction functions to enhance selectivity toward target genes by inhibiting binding to nonspecific sites in genomic DNA. This work provides some of the highest-resolution data on the disordered N terminus of the nearly 180-kDa full-length p53 tetramer and demonstrates a regulatory mechanism by which the N terminus of p53 transiently interacts with the DBD to enhance target site discrimination.
Collapse
|
46
|
Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nat Commun 2018; 9:4707. [PMID: 30413699 PMCID: PMC6226484 DOI: 10.1038/s41467-018-06866-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) usually fold during binding to target proteins. In contrast to interactions between folded proteins, this additional folding step makes the binding process more complex. Understanding the mechanism of coupled binding and folding of IDPs requires analysis of binding pathways that involve formation of the transient complex (TC). However, experimental characterization of TC is challenging because it only appears for a very brief period during binding. Here, we use single-molecule fluorescence spectroscopy to investigate the mechanism of diffusion-limited association of an IDP. A large enhancement of the association rate is observed due to the stabilization of TC by non-native electrostatic interactions. Moreover, photon-by-photon analysis reveals that the lifetime of TC for IDP binding is at least two orders of magnitude longer than that for binding of two folded proteins. This result suggests the long lifetime of TC is generally required for folding of IDPs during binding processes. Intrinsically disordered proteins (IDPs) usually fold during binding to target proteins which involves the formation of a transient complex (TC). Here authors use single-molecule FRET to show that the lifetime of TC for IDP binding is very long due to the stabilization by non-native electrostatic interactions, which makes fast association possible.
Collapse
|
47
|
Structural Basis for the Interaction between p53 Transactivation Domain and the Mediator Subunit MED25. Molecules 2018; 23:molecules23102726. [PMID: 30360415 PMCID: PMC6222444 DOI: 10.3390/molecules23102726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 01/21/2023] Open
Abstract
Eukaryotic transcription initiation is mediated by interactions between transcriptional activators and the mediator coactivator complex. Molecular interaction of p53 transcription factor with mediator complex subunit 25 (MED25) is essential for its target gene transcription. In this study, we characterized the molecular interaction between p53 transactivation domain (p53TAD) and activator interaction domain (ACID) of MED25 using nuclear magnetic resonance (NMR) spectroscopy. The NMR chemical shift perturbation and isothermal titration calorimetry (ITC) data showed that p53TAD interacted with MED25 ACID mainly through the p53TAD2 sequence motif. Taken together with the mutagenesis data, the refined structural model of MED25 ACID/p53TAD2 peptide complex showed that an amphipathic α-helix of p53TAD2 peptide bound an elongated hydrophobic groove of MED25 ACID. Furthermore, our results revealed the highly conserved mechanism of MED25 interaction with intrinsically unfolded acidic TADs from the transcriptional activators p53, ERM (Ets-related molecule), and herpes simplex virus protein 16 (VP16).
Collapse
|
48
|
Merriman DK, Yuan J, Shi H, Majumdar A, Herschlag D, Al-Hashimi HM. Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics. RNA (NEW YORK, N.Y.) 2018; 24:1363-1376. [PMID: 30012568 PMCID: PMC6140463 DOI: 10.1261/rna.066258.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Helical elements separated by bulges frequently undergo transitions between unstacked and coaxially stacked conformations during the folding and function of noncoding RNAs. Here, we examine the dynamic properties of poly-pyrimidine bulges of varying length (n = 1-4, 7) across a range of Mg2+ concentrations using HIV-1 TAR RNA as a model system and solution NMR spectroscopy. In the absence of Mg2+, helices linked by bulges with n ≥ 3 residues adopt predominantly unstacked conformations (stacked population <15%), whereas one-bulge and two-bulge motifs adopt predominantly stacked conformations (stacked population >74%). In the presence of 3 mM Mg2+, the helices predominantly coaxially stack (stacked population >84%), regardless of bulge length, and the midpoint for the Mg2+-dependent stacking transition is within threefold regardless of bulge length. In the absence of Mg2+, the difference between free energy of interhelical coaxial stacking across the bulge variants is estimated to be ∼2.9 kcal/mol, based on an NMR chemical shift mapping with stacking being more energetically disfavored for the longer bulges. This difference decreases to ∼0.4 kcal/mol in the presence of Mg2+ NMR RDCs and resonance intensity data show increased dynamics in the stacked state with increasing bulge length in the presence of Mg2+ We propose that Mg2+ helps to neutralize the growing electrostatic repulsion in the stacked state with increasing bulge length thereby increasing the number of coaxial conformations that are sampled. Energetically compensated interhelical stacking dynamics may help to maximize the conformational adaptability of RNA and allow a wide range of conformations to be optimally stabilized by proteins and ligands.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jiayi Yuan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Ananya Majumdar
- Biomolecular NMR Facility, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
49
|
Vincek AS, Patel J, Jaganathan A, Green A, Pierre-Louis V, Arora V, Rehmann J, Mezei M, Zhou MM, Ohlmeyer M, Mujtaba S. Inhibitor of CBP Histone Acetyltransferase Downregulates p53 Activation and Facilitates Methylation at Lysine 27 on Histone H3. Molecules 2018; 23:molecules23081930. [PMID: 30072621 PMCID: PMC6222455 DOI: 10.3390/molecules23081930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the side-effects from anticancer therapies. Thus, small molecules with potential to downregulate the activation of p53 could minimize pathology emerging from anticancer therapies. Acetylation of p53 by the histone acetyltransferase (HAT) domain is the hallmark of coactivator CREB-binding protein (CBP) epigenetic function. During genotoxic stress, CBP HAT-mediated acetylation is essential for the activation of p53 to transcriptionally govern target genes, which control cellular responses. Here, we present a small molecule, NiCur, which blocks CBP HAT activity and downregulates p53 activation upon genotoxic stress. Computational modeling reveals that NiCur docks into the active site of CBP HAT. On CDKN1A promoter, the recruitment of p53 as well as RNA Polymerase II and levels of acetylation on histone H3 were diminished by NiCur. Specifically, NiCur reduces the levels of acetylation at lysine 27 on histone H3, which concomitantly increases the levels of trimethylation at lysine 27. Finally, NiCur attenuates p53-directed apoptosis by inhibiting the Caspase 3 activity and cleavage of Poly (ADP-ribose) polymerase (PARP) in normal gastrointestinal epithelial cells. Collectively, NiCur demonstrates the potential to reprogram the chromatin landscape and modulate biological outcomes of CBP-mediated acetylation under normal and disease conditions.
Collapse
Affiliation(s)
- Adam S Vincek
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jigneshkumar Patel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Anbalagan Jaganathan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- One Bungtown Rd, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA.
| | - Antonia Green
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Valerie Pierre-Louis
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Vimal Arora
- Department of Biology, City University of New York, Medgar Evers College, Brooklyn, NY 11225, USA.
| | - Jill Rehmann
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Michael Ohlmeyer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Shiraz Mujtaba
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Biology, City University of New York, Medgar Evers College, Brooklyn, NY 11225, USA.
| |
Collapse
|
50
|
Wegener H, Mallagaray Á, Schöne T, Peters T, Lockhauserbäumer J, Yan H, Uetrecht C, Hansman GS, Taube S. Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates. Glycobiology 2018; 27:1027-1037. [PMID: 28973640 DOI: 10.1093/glycob/cwx078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer difference nuclear magnetic resonance spectroscopy, native mass spectrometry (MS) and surface plasmon resonance spectroscopy were used to characterize binding epitopes, affinities, stoichiometry and dynamics, focusing on 3'-sialyllactose, the GM3 ganglioside saccharide and B antigen. Binding was observed for 3'-sialyllactose and various HBGAs following a multistep binding process. Intrinsic affinities (Kd) of fucose, 3'-sialyllactose and B antigen were determined for the individual binding steps. Stronger affinities were observed for B antigen over 3'-sialyllactose and fucose, which bound in the mM range. Binding stoichiometry was analyzed by native MS showing the presence of four B antigens or two 3'-sialyllactose in the complex. Epitope mapping of 3'-sialyllactose revealed direct interaction of α2,3-linked sialic acid with the P domain. The ability of HuNoV to engage multiple carbohydrates emphasizes the multivalent nature of norovirus glycan-specificity. Our findings reveal direct binding of a GII.4 HuNoV P dimer to α2,3-linked sialic acid and support a broader role of ganglioside binding in norovirus infection.
Collapse
Affiliation(s)
- Henrik Wegener
- University of Lübeck, Institute of Virology and Cell Biology,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Álvaro Mallagaray
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Schöne
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Thomas Peters
- University of Lübeck, Institute of Chemistry,Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Julia Lockhauserbäumer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology,Martinistrasse 52, 20251 Hamburg, Germany
| | - Hao Yan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology,Martinistrasse 52, 20251 Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Grant S Hansman
- German Cancer Research Center (DKFZ), CHS Foundation at the University of Heidelberg, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Stefan Taube
- University of Lübeck, Institute of Virology and Cell Biology,Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|