1
|
Nagatomo S, Nagai M, Kitagawa T. Structural origin of cooperativity in human hemoglobin: a view from different roles of α and β subunits in the α2β2 tetramer. Biophys Rev 2022; 14:483-498. [PMID: 35528033 PMCID: PMC9043147 DOI: 10.1007/s12551-022-00945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
This mini-review, mainly based on our resonance Raman studies on the structural origin of cooperative O2 binding in human adult hemoglobin (HbA), aims to answering why HbA is a tetramer consisting of two α and two β subunits. Here, we focus on the Fe-His bond, the sole coordination bond connecting heme to a globin. The Fe-His stretching frequencies reflect the O2 affinity and also the magnitude of strain imposed through globin by inter-subunit interactions, which is the origin of cooperativity. Cooperativity was first explained by Monod, Wyman, and Changeux, referred to as the MWC theory, but later explained by the two tertiary states (TTS) theory. Here, we related the higher-order structures of globin observed mainly by vibrational spectroscopy to the MWC theory. It became clear from the recent spectroscopic studies, X-ray crystallographic analysis, and mutagenesis experiments that the Fe-His bonds exhibit different roles between the α and β subunits. The absence of the Fe-His bond in the α subunit in some mutant and artificial Hbs inhibits T to R quaternary structural change upon O2 binding. However, its absence from the β subunit in mutant and artificial Hbs simply enhances the O2 affinity of the α subunit. Accordingly, the inter-subunit interactions between α and β subunits are nonsymmetric but substantial for HbA to perform cooperative O2 binding.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003 Japan
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0942 Japan
| | - Teizo Kitagawa
- Graduate School of Life Science, Picobiology Institute, University of Hyogo, Kouto, Kamigori, Ako-gun Hyogo, 678-1297 Japan
| |
Collapse
|
2
|
Faggiano S, Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S, Mozzarelli A. From hemoglobin allostery to hemoglobin-based oxygen carriers. Mol Aspects Med 2021; 84:101050. [PMID: 34776270 DOI: 10.1016/j.mam.2021.101050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
Hemoglobin (Hb) plays its vital role through structural and functional properties evolutionarily optimized to work within red blood cells, i.e., the tetrameric assembly, well-defined oxygen affinity, positive cooperativity, and heterotropic allosteric regulation by protons, chloride and 2,3-diphosphoglycerate. Outside red blood cells, the Hb tetramer dissociates into dimers, which exhibit high oxygen affinity and neither cooperativity nor allosteric regulation. They are prone to extravasate, thus scavenging endothelial NO and causing hypertension, and cause nephrotoxicity. In addition, they are more prone to autoxidation, generating radicals. The need to overcome the adverse effects associated with cell-free Hb has always been a major hurdle in the development of substitutes of allogeneic blood transfusions for all clinical situations where blood is unavailable or cannot be used due to, for example, religious objections. This class of therapeutics, indicated as hemoglobin-based oxygen carriers (HBOCs), is formed by genetically and/or chemically modified Hbs. Many efforts were devoted to the exploitation of the wealth of biochemical and biophysical information available on Hb structure, function, and dynamics to design safe HBOCs, overcoming the negative effects of free plasma Hb. Unfortunately, so far, no HBOC has been approved by FDA and EMA, except for compassionate use. However, the unmet clinical needs that triggered intensive investigations more than fifty years ago are still awaiting an answer. Recently, HBOCs "repositioning" has led to their successful application in organ perfusion fluids.
Collapse
Affiliation(s)
- Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| |
Collapse
|
3
|
Morita Y, Saito A, Yamaguchi J, Komatsu T. Haemoglobin(βK120C)-albumin trimer as an artificial O 2 carrier with sufficient haemoglobin allostery. RSC Chem Biol 2020; 1:128-136. [PMID: 34458753 PMCID: PMC8341959 DOI: 10.1039/d0cb00056f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022] Open
Abstract
The allosteric O2 release of haemoglobin (Hb) allows for efficient O2 delivery from the lungs to the tissues. However, allostery is weakened in Hb-based O2 carriers because the chemical modifications of the Lys- and Cys-β93 residues prevent the quaternary transition of Hb. In this paper, we describe the synthesis and O2 binding properties of a recombinant Hb [rHb(βK120C)]–albumin heterotrimer that maintains sufficient Hb allostery. The rHb(βK120C) core, with two additional cysteine residues at the symmetrical positions on its protein surface, was expressed using yeast cells. The mutations did not influence either the O2 binding characteristics or the quaternary transition of Hb. Maleimide-activated human serum albumins (HSAs) were coupled with rHb(βK120C) at the two Cys-β120 positions, yielding the rHb(βK120C)–HSA2 trimer, in which the Cys-β93 residues were unreacted. Molecular dynamics simulation demonstrated that the HSA moiety does not interact with the amino acid residues around the haem pockets and the α1β2 surfaces of the rHb(βK120C) core, the alteration of which retards Hb allostery. Circular dichroism spectroscopy demonstrated that the quaternary transition between the relaxed (R) state and the tense (T) state of the Hb core occurred upon both the association and dissociation of O2. In phosphate-buffered saline solution (pH 7.4) at 37 °C, the rHb(βK120C)–HSA2 trimer exhibited a sigmoidal O2 equilibrium curve with the O2 affinity and cooperativity identical to those of native Hb (p50 = 12 Torr, n = 2.4). Moreover, we observed an equal Bohr effect and 2,3-diphosphoglycerate response in the rHb(βK120C)–HSA2 trimer compared with naked Hb. Recombinant haemoglobin [rHb(βK120C)] was coupled with two human serum albumins (HSAs), yielding a rHb(βK120C)–HSA2 heterotrimer, which shows a sigmoidal O2 equilibrium curve and sufficient Hb allostery identical to those of native Hb.![]()
Collapse
Affiliation(s)
- Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Asuka Saito
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Jun Yamaguchi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
4
|
Shibayama N. Allosteric transitions in hemoglobin revisited. Biochim Biophys Acta Gen Subj 2020; 1864:129335. [DOI: 10.1016/j.bbagen.2019.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
|
5
|
More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function. Catalysts 2019. [DOI: 10.3390/catal9121024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis makes chemical and biochemical reactions kinetically accessible. From a technological point of view, organic, inorganic, and biochemical catalysis is relevant for several applications, from industrial synthesis to biomedical, material, and food sciences. A heterogeneous catalyst, i.e., a catalyst confined in a different phase with respect to the reagents’ phase, requires either its physical confinement in an immobilization matrix or its physical adsorption on a surface. In this review, we will focus on the immobilization of biological catalysts, i.e., enzymes, by comparing hard and soft immobilization matrices and their effect on the modulation of the catalysts’ function. Indeed, unlike smaller molecules, the catalytic activity of protein catalysts depends on their structure, conformation, local environment, and dynamics, properties that can be strongly affected by the immobilization matrices, which, therefore, not only provide physical confinement, but also modulate catalysis.
Collapse
|
6
|
Chang S, Mizuno M, Ishikawa H, Mizutani Y. Tertiary dynamics of human adult hemoglobin fixed in R and T quaternary structures. Phys Chem Chem Phys 2018; 20:3363-3372. [PMID: 29260810 DOI: 10.1039/c7cp06287g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein dynamics of human adult hemoglobin and its mutants restricted in R and T quaternary states following ligand photolysis were studied by time-resolved resonance Raman spectroscopy. In the time-resolved spectra, we observed spectral changes of in-plane stretching modes of heme and the iron-histidine stretching mode of the Fe-His bond for all the hemoglobin samples. The βD99N mutant, which adopts the R state in both the ligand-bound and the deoxy forms, showed similar temporal behaviors in time-resolved resonance Raman spectra as wild-type recombinant hemoglobin until 10 μs, consistent with the fact that the mutant undergoes only the tertiary structural changes in the R state. The βN102T mutant, which adopts the T state in both the ligand-bound and the deoxy forms, showed much slower tertiary structural changes, suggesting that the EF helical motion is decelerated by the change of the intersubunit interactions. The present data indicate that the allosteric kinetic response between the interhelical hydrogen bonds of the EF helices and the intersubunit hydrogen bonds is bidirectional. The implications of these results for understanding the allosteric pathway of Hb are discussed in detail.
Collapse
Affiliation(s)
- Shanyan Chang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | |
Collapse
|
7
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
8
|
Nagatomo S, Okumura M, Saito K, Ogura T, Kitagawa T, Nagai M. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect. Biochemistry 2017; 56:1261-1273. [PMID: 28199095 DOI: 10.1021/acs.biochem.6b01118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O2 affinity changes were investigated via 1H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O2 to the α subunits is forbidden in the mutant Hbs, the O2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O2 affinity. It was found in this study that the quaternary structure of α(Fe3+)β(Fe2+-CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α1-β2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Miki Okumura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University , Koganei, Tokyo 184-0003, Japan.,School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University , Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
9
|
Lal J, Maccarini M, Fouquet P, Ho NT, Ho C, Makowski L. Modulation of hemoglobin dynamics by an allosteric effector. Protein Sci 2017; 26:505-514. [PMID: 27977887 PMCID: PMC5326564 DOI: 10.1002/pro.3099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure‐function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy‐Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide‐angle X‐ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large‐scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.
Collapse
Affiliation(s)
- Jyotsana Lal
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Marco Maccarini
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Peter Fouquet
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Nancy T Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Chien Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Lee Makowski
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
10
|
Zhang L, Li S, Dong M, Jiang Y, Li R, Zhang S, Lv X, Chen L, Wang H. Reconstituting redox active centers of heme-containing proteins with biomineralized gold toward peroxidase mimics with strong intrinsic catalysis and electrocatalysis for H2O2 detection. Biosens Bioelectron 2017; 87:1036-1043. [DOI: 10.1016/j.bios.2016.09.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 01/07/2023]
|
11
|
Ramírez CL, Petruk A, Bringas M, Estrin DA, Roitberg AE, Marti MA, Capece L. Coarse-Grained Simulations of Heme Proteins: Validation and Study of Large Conformational Transitions. J Chem Theory Comput 2016; 12:3390-7. [DOI: 10.1021/acs.jctc.6b00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia L. Ramírez
- Dto.
de Química Inorgánica, Analítica y Química
Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICET, Buenos Aires, C1428EGA, Argentina
- Dto.
de Química Biologica Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/IQUIBICEN-CONICET, Buenos Aires, C1428EGA, Argentina
| | - Ariel Petruk
- Dto.
de Química Inorgánica, Analítica y Química
Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICET, Buenos Aires, C1428EGA, Argentina
| | - Mauro Bringas
- Dto.
de Química Inorgánica, Analítica y Química
Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICET, Buenos Aires, C1428EGA, Argentina
| | - Dario A. Estrin
- Dto.
de Química Inorgánica, Analítica y Química
Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICET, Buenos Aires, C1428EGA, Argentina
| | - Adrian E. Roitberg
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Marcelo A. Marti
- Dto.
de Química Biologica Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/IQUIBICEN-CONICET, Buenos Aires, C1428EGA, Argentina
| | - Luciana Capece
- Dto.
de Química Inorgánica, Analítica y Química
Física, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires/INQUIMAE-CONICET, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
12
|
Nagatomo S, Nagai Y, Aki Y, Sakurai H, Imai K, Mizusawa N, Ogura T, Kitagawa T, Nagai M. An Origin of Cooperative Oxygen Binding of Human Adult Hemoglobin: Different Roles of the α and β Subunits in the α2β2 Tetramer. PLoS One 2015; 10:e0135080. [PMID: 26244770 PMCID: PMC4526547 DOI: 10.1371/journal.pone.0135080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/17/2015] [Indexed: 02/02/2023] Open
Abstract
Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by 'cooperativity'. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (SN); (TK); (MN)
| | - Yukifumi Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Yayoi Aki
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Hiroshi Sakurai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Kiyohiro Imai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Naoki Mizusawa
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Takashi Ogura
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Teizo Kitagawa
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
- * E-mail: (SN); (TK); (MN)
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
- * E-mail: (SN); (TK); (MN)
| |
Collapse
|
13
|
Experiments on Hemoglobin in Single Crystals and Silica Gels Distinguish among Allosteric Models. Biophys J 2015; 109:1264-72. [PMID: 26038112 DOI: 10.1016/j.bpj.2015.04.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/24/2015] [Indexed: 01/14/2023] Open
Abstract
Trapping quaternary structures of hemoglobin in single crystals or by encapsulation in silica gels has provided a demanding set of data to test statistical mechanical models of allostery. In this work, we compare the results of those experiments with predictions of the four major allosteric models for hemoglobin: the quaternary two-state model of Monod, Wyman, and Changeux; the tertiary two-state model of Henry et al., which is the simplest extension of the Monod-Wyman-Changeux model to include pre-equilibria of tertiary as well as quaternary conformations; the structure-based model of Szabo and Karplus; and the modification of the latter model by Lee and Karplus. We show that only the tertiary two-state model can provide a near quantitative explanation of the single-crystal and gel experimental results.
Collapse
|
14
|
Ronda L, Bruno S, Bettati S, Storici P, Mozzarelli A. From protein structure to function via single crystal optical spectroscopy. Front Mol Biosci 2015; 2:12. [PMID: 25988179 PMCID: PMC4428442 DOI: 10.3389/fmolb.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Neurosciences, University of Parma Parma, Italy
| | - Stefano Bruno
- Department of Pharmacy, University of Parma Parma, Italy
| | - Stefano Bettati
- Department of Neurosciences, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy ; Institute of Biophysics, Consiglio Nazionale delle Ricerche Pisa, Italy
| |
Collapse
|
15
|
Affiliation(s)
- Yue Yuan
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Ming F. Tam
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Virgil Simplaceanu
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Chien Ho
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| |
Collapse
|
16
|
Experimental basis for a new allosteric model for multisubunit proteins. Proc Natl Acad Sci U S A 2014; 111:12758-63. [PMID: 25139985 DOI: 10.1073/pnas.1413566111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monod, Wyman, and Changeux (MWC) explained allostery in multisubunit proteins with a widely applied theoretical model in which binding of small molecules, so-called allosteric effectors, affects reactivity by altering the equilibrium between more reactive (R) and less reactive (T) quaternary structures. In their model, each quaternary structure has a single reactivity. Here, we use silica gels to trap protein conformations and a new kind of laser photolysis experiment to show that hemoglobin, the paradigm of allostery, exhibits two ligand binding phases with the same fast and slow rates in both R and T quaternary structures. Allosteric effectors change the fraction of each phase but not the rates. These surprising results are readily explained by the simplest possible extension of the MWC model to include a preequilibrium between two tertiary conformations that have the same functional properties within each quaternary structure. They also have important implications for the long-standing question of a structural explanation for the difference in hemoglobin oxygen affinity of the two quaternary structures.
Collapse
|
17
|
Jones EM, Monza E, Balakrishnan G, Blouin GC, Mak PJ, Zhu Q, Kincaid JR, Guallar V, Spiro TG. Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study. J Am Chem Soc 2014; 136:10325-39. [PMID: 24991732 PMCID: PMC4353013 DOI: 10.1021/ja503328a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 12/05/2022]
Abstract
The use of hybrid hemoglobin (Hb), with mesoheme substituted for protoheme, allows separate monitoring of the α or β hemes along the allosteric pathway. Using resonance Raman (rR) spectroscopy in silica gel, which greatly slows protein motions, we have observed that the Fe-histidine stretching frequency, νFeHis, which is a monitor of heme reactivity, evolves between frequencies characteristic of the R and T states, for both α or β chains, prior to the quaternary R-T and T-R shifts. Computation of νFeHis, using QM/MM and the conformational search program PELE, produced remarkable agreement with experiment. Analysis of the PELE structures showed that the νFeHis shifts resulted from heme distortion and, in the α chain, Fe-His bond tilting. These results support the tertiary two-state model of ligand binding (Henry et al., Biophys. Chem. 2002, 98, 149). Experimentally, the νFeHis evolution is faster for β than for α chains, and pump-probe rR spectroscopy in solution reveals an inflection in the νFeHis time course at 3 μs for β but not for α hemes, an interval previously shown to be the first step in the R-T transition. In the α chain νFeHis dropped sharply at 20 μs, the final step in the R-T transition. The time courses are fully consistent with recent computational mapping of the R-T transition via conjugate peak refinement by Karplus and co-workers (Fischer et al., Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 5608). The effector molecule IHP was found to lower νFeHis selectively for α chains within the R state, and a binding site in the α1α2 cleft is suggested.
Collapse
Affiliation(s)
- Eric M. Jones
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Emanuele Monza
- Joint
BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, c/Jordi Girona 29, 08034 Barcelona, Spain
| | - Gurusamy Balakrishnan
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - George C. Blouin
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Piotr J. Mak
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Qianhong Zhu
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - James R. Kincaid
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Victor Guallar
- Joint
BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, c/Jordi Girona 29, 08034 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Thomas G. Spiro
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
18
|
Ayato Y, Sakurai K, Fukunaga S, Suganuma T, Yamagiwa K, Shiroishi H, Kuwano J. A simple biofuel cell cathode with human red blood cells as electrocatalysts for oxygen reduction reaction. Biosens Bioelectron 2014; 55:14-8. [DOI: 10.1016/j.bios.2013.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/20/2013] [Accepted: 11/24/2013] [Indexed: 11/25/2022]
|
19
|
Drescher D, Büchner T, McNaughton D, Kneipp J. SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components. Phys Chem Chem Phys 2013; 15:5364-73. [PMID: 23426381 DOI: 10.1039/c3cp43883j] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The interaction of nanoparticles with hemoglobin (Hb), a major constituent of red blood cells, is important in nanotoxicity research. We report SERS spectra of Hb using gold and silver nanoparticles at very small nanoparticle : Hb molecule ratios, that is, under conditions relevant for SERS-based nanotoxicity experiments with red blood cells at high sensitivity. We show that the structural information obtained from the experiment is highly dependent on the type of SERS substrate and the conditions under which the interaction of nanoparticles with Hb molecules takes place. In experiments with isolated red blood cells, we demonstrate that the dependence of the spectra on the type of nanoparticle used as the SERS substrate extends to whole red blood cells and red blood cell components. Regarding the applicability of SERS to red blood cells in vivo, evidence is provided that the molecular information contained in the spectra is highly dependent on the material and size of the nanoparticles. The results indicate specific interactions of gold and silver nanoparticles with Hb and the red blood cell membrane, and reflect the hemolytic activity of silver nanoparticles. The results of this study help improve our understanding of the interactions of silver and gold nanoparticles with red blood cells.
Collapse
Affiliation(s)
- Daniela Drescher
- Humboldt-Universität zu Berlin, Department of Chemistry, Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Weinkam P, Sali A. Mapping polymerization and allostery of hemoglobin S using point mutations. J Phys Chem B 2013; 117:13058-68. [PMID: 23957820 DOI: 10.1021/jp4025156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013, 425, 647-661), now applicable to systems with multiple coupled binding sites, such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin's oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure, but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation.
Collapse
Affiliation(s)
- Patrick Weinkam
- Department of Bioengineering and Therapeutic Sciences, ‡Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco , San Francisco, California 94158, United States
| | | |
Collapse
|
21
|
|
22
|
How does hemoglobin generate such diverse functionality of physiological relevance? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1873-84. [PMID: 23643742 DOI: 10.1016/j.bbapap.2013.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/24/2022]
Abstract
The absolute values of the O2-affinities (P50, Klow, and Khigh) of hemoglobin (Hb) are regulated neither by changes in the static T-/R-quaternary and associated tertiary structures nor the ligation states. They are pre-determined and regulated by the extrinsic environmental factors such as pH, buffers, and heterotropic effectors. The effect and role of O2 on Hb are reversibly to drive the structural allosteric equilibrium between the T(deoxy)- and R(oxy)-Hb toward R(oxy)-Hb (the structural allostery). R(oxy)-Hb has a higher O2-affinity (Khigh) relative to that (Klow) of the T(deoxy)-Hb (Khigh>Klow) under any fixed environmental conditions. The apparent O2-affinity of Hb is high, as the globin matrix interferes with the dissociation process of O2, forcing the dissociated O2 geminately to re-bind to the heme Fe. This artificially increases [oxy-Hb] and concomitantly decreases [deoxy-Hb], leading to the apparent increases of the O2-affinity of Hb. The effector-linked high-frequency thermal fluctuations of the globin matrix act as a gating mechanism to modulate such physical, energetic, and kinetic barriers to enhance the dissociation process of O2, resulted in increases in [deoxy-Hb] and concomitant decrease in [oxy-Hb], leading to apparent reductions of the O2-affinity of Hb (the entropic allostery). The heme in Hb is simply a low-affinity O2-trap, the coordination structure of which is not altered by static T-/R-quaternary and associated tertiary structural changes of Hb. Thus, heterotrophic effectors are the signal molecule, which acts as a functional link between these two allosteries and generates the diverse functionality of Hb of physiological relevance. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
23
|
Ronda L, Bettati S, Henry ER, Kashav T, Sanders JM, Royer WE, Mozzarelli A. Tertiary and quaternary allostery in tetrameric hemoglobin from Scapharca inaequivalvis. Biochemistry 2013; 52:2108-17. [PMID: 23458680 DOI: 10.1021/bi301620x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The clam Scapharca inaequivalvis possesses two cooperative oxygen binding hemoglobins in its red cells: a homodimeric HbI and a heterotetrameric A2B2 HbII. Each AB dimeric half of HbII is assembled in a manner very similar to that of the well-studied HbI. This study presents crystal structures of HbII along with oxygen binding data both in the crystalline state and in wet nanoporous silica gels. Despite very similar ligand-linked structural transitions observed in HbI and HbII crystals, HbII in the crystal or encapsulated in silica gels apparently exhibits minimal cooperativity in oxygen binding, in contrast with the full cooperativity exhibited by HbI crystals. However, oxygen binding curves in the crystal indicate the presence of a significant functional inequivalence of A and B chains. When this inequivalence is taken into account, both crystal and R state gel functional data are consistent with the conservation of a tertiary contribution to cooperative oxygen binding, quantitatively similar to that measured for HbI, and are in keeping with the structural information. Furthermore, our results indicate that to fully express cooperative ligand binding, HbII requires quaternary transitions hampered by crystal lattice and gel encapsulation, revealing greater complexity in cooperative function than the direct communication across a dimeric interface observed in HbI.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Pharmacy, University of Parma , Parco Area delle Scienze, 23/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Drescher D, Kneipp J. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 2012; 41:5780-99. [DOI: 10.1039/c2cs35127g] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|