1
|
Zhang X, Yan T, Hou H, Yin J, Wan H, Sun X, Zhang Q, Sun F, Wei Y, Dong M, Fan W, Wang J, Sun Y, Zhou X, Wu K, Yang Y, Li Y, Cao Z. Regioselective hydroformylation of propene catalysed by rhodium-zeolite. Nature 2024; 629:597-602. [PMID: 38658762 DOI: 10.1038/s41586-024-07342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.
Collapse
Affiliation(s)
- Xiangjie Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Yan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaming Hou
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
| | - Junqing Yin
- Institute of Advanced Study, Chengdu University, Chengdu, China
| | - Hongliu Wan
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China.
| | - Xiaodong Sun
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
| | - Qing Zhang
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yao Wei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Jianguo Wang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Xiong Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kai Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China.
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China.
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China.
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Gates BC, Katz A, Liu J. Nested Metal Catalysts: Metal Atoms and Clusters Stabilized by Confinement with Accessibility on Supports. PRECISION CHEMISTRY 2023; 1:3-13. [PMID: 37025973 PMCID: PMC10069032 DOI: 10.1021/prechem.2c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters. When the metals are noble, they are typically unstable-susceptible to sintering-especially under reducing conditions. Embedding the metals in supports such as organic polymers, metal oxides, and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants. An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports. The nests include zeolite pore mouths, zeolite surface cups (half-cages), raft-like islands of oxophilic metals bonded to metal oxide supports, clusters of non-noble metals (e.g., hosting noble metals as single-atom alloys), and nanoscale metal oxide islands that selectively bond to the catalytic metals, isolating them from the support. These examples illustrate a trend toward precision in the synthesis of solid catalysts, and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.
Collapse
Affiliation(s)
- Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
4
|
Iemhoff A, Vennewald M, Palkovits R. Single-Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212015. [PMID: 36108176 PMCID: PMC10108136 DOI: 10.1002/anie.202212015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.
Collapse
Affiliation(s)
- Andree Iemhoff
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maurice Vennewald
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Single atom catalysts in Van der Waals gaps. Nat Commun 2022; 13:6863. [DOI: 10.1038/s41467-022-34572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractSingle-atom catalysts provide efficiently utilized active sites to improve catalytic activities while improving the stability and enhancing the activities to the level of their bulk metallic counterparts are grand challenges. Herein, we demonstrate a family of single-atom catalysts with different interaction types by confining metal single atoms into the van der Waals gap of two-dimensional SnS2. The relatively weak bonding between the noble metal single atoms and the host endows the single atoms with more intrinsic catalytic activity compared to the ones with strong chemical bonding, while the protection offered by the layered material leads to ultrahigh stability compared to the physically adsorbed single-atom catalysts on the surface. Specifically, the trace Pt-intercalated SnS2 catalyst has superior long-term durability and comparable performance to that of commercial 10 wt% Pt/C catalyst in hydrogen evolution reaction. This work opens an avenue to explore high-performance intercalated single-atom electrocatalysts within various two-dimensional materials.
Collapse
|
6
|
Felvey N, Guo J, Rana R, Xu L, Bare SR, Gates BC, Katz A, Kulkarni AR, Runnebaum RC, Kronawitter CX. Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum gem-Dicarbonyls. J Am Chem Soc 2022; 144:13874-13887. [PMID: 35854402 DOI: 10.1021/jacs.2c05386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).
Collapse
Affiliation(s)
- Noah Felvey
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jiawei Guo
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Le Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ron C Runnebaum
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
7
|
Affiliation(s)
- Divakar R. Aireddy
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Babucci M, Conley ET, Hoffman AS, Bare SR, Gates BC. Iridium pair sites anchored to Zr6O8 nodes of the metal–organic framework UiO-66 catalyze ethylene hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Iemhoff A, Vennewald M, Artz J, Mebrahtu C, Meledin A, Weirich TE, Hartmann H, Besmehn A, Aramini M, Venturini F, Mosselmans F, Held G, Arrigo R, Palkovits R. On the stability of isolated iridium sites in N‐rich frameworks against agglomeration under reducing conditions. ChemCatChem 2022. [DOI: 10.1002/cctc.202200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andree Iemhoff
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Maurice Vennewald
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Jens Artz
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Chalachew Mebrahtu
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Alexander Meledin
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen GFE GERMANY
| | - Thomas E. Weirich
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen GFE GERMANY
| | - Heinrich Hartmann
- Forschungszentrum Jülich GmbH: Forschungszentrum Julich GmbH ZEA-3 GERMANY
| | - Astrid Besmehn
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH ZEA-3 GERMANY
| | - Matteo Aramini
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Federica Venturini
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Fred Mosselmans
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Georg Held
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Rosa Arrigo
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Regina Palkovits
- RWTH Aachen University Institut für Technische und Makromolekulare Chemie Worringerweg 1 52074 Aachen GERMANY
| |
Collapse
|
10
|
Wang S, Yang L, Zhu T, Jiang N, Li F, Wang H, Zhang C, Song H. Highly efficient hydrogenation of phenol to cyclohexanol over Ni-based catalysts derived from Ni-MOF-74. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00302j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Highly efficient Ni@C-400 catalyst for selective hydrogenation of phenol to cyclohexanol was developed from Ni-MOF-74.
Collapse
Affiliation(s)
- Shuai Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjing, China
| | - Lidong Yang
- China Petroleum Technology and Development Corporation, Beijing 100028, China
| | - Tianhan Zhu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjing, China
| | - Nan Jiang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjing, China
| | - Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjing, China
| | - Huan Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjing, China
| | - Chunlei Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjing, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjing, China
| |
Collapse
|
11
|
Chen Y, Sun H, Gates BC. Prototype Atomically Dispersed Supported Metal Catalysts: Iridium and Platinum. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004665. [PMID: 33185034 DOI: 10.1002/smll.202004665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 06/11/2023]
Abstract
When metal nanoparticles on supports are made smaller and smaller-to the limit of atomic dispersion-they become cationic and take on new catalytic properties that are only recently being discovered. The synthesis of these materials is reviewed, including their structure characterization-especially by atomic-resolution electron microscopy and X-ray absorption and infrared spectroscopies-and relationships between structure and catalyst performance, for reactions including hydrogenations, oxidations, and the water gas shift. Structure determination is challenging because of the intrinsic nonuniformity of the support surfaces-and therefore the structures on them-but fundamental understanding has advanced rapidly, benefiting from nearly uniform catalysts consisting of metals on well-defined-crystalline-supports and their characterization by spectroscopy and microscopy. Recent advances in atomic-resolution electron microscopy have spurred the field, providing stunning images and deep insights into structure. The iridium catalysts have typically been made from organoiridium precursors, opening the way to understanding and control of the metal-support bonding and ligands on the metal, including catalytic reaction intermediates. Platinum catalysts are usually made with less precision, from salt precursors, but they catalyze a wider array of reactions than the iridium, typically being stable at higher temperatures and seemingly offering rich prospect for discovery of new catalysts.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hanlei Sun
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
- Department of Chemical and Biochemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Fu J, Dong J, Si R, Sun K, Zhang J, Li M, Yu N, Zhang B, Humphrey MG, Fu Q, Huang J. Synergistic Effects for Enhanced Catalysis in a Dual Single-Atom Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05599] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junhong Fu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jinhu Dong
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Keju Sun
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, 438 Hebei Avenue, Qinhuangdao 066004, China
| | - Junying Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nana Yu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Qiang Fu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021; 589:396-401. [DOI: 10.1038/s41586-020-03130-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/25/2020] [Indexed: 11/09/2022]
|
14
|
Perez-Aguilar JE, Hughes JT, Chen CY, Gates BC. Transformation of atomically dispersed platinum in SAPO-37 into platinum clusters: catalyst for ethylene hydrogenation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01216a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically dispersed supported platinum catalysts were synthesized by the reaction of Pt(acac)2 (acac = acetylacetonato) with the silicoaluminophosphate molecular sieve SAPO-37, with infrared spectra showing that the reaction involved SAPO OH groups.
Collapse
Affiliation(s)
| | | | - Cong-Yan Chen
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
- Chevron Technical Center, Richmond, CA 94802, USA
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Babucci M, Guntida A, Gates BC. Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis. Chem Rev 2020; 120:11956-11985. [DOI: 10.1021/acs.chemrev.0c00864] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Adisak Guntida
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| |
Collapse
|
16
|
Trandafir MM, Neaţu F, Chirica IM, Neaţu Ş, Kuncser AC, Cucolea EI, Natu V, Barsoum MW, Florea M. Highly Efficient Ultralow Pd Loading Supported on MAX Phases for Chemoselective Hydrogenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mihaela M. Trandafir
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Florentina Neaţu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Iuliana M. Chirica
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
- University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Ştefan Neaţu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Andrei C. Kuncser
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Elena I. Cucolea
- Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street, no. 1, 077167 Tancabesti, Ilfov, Romania
| | - Varun Natu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Michel W. Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Mihaela Florea
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
17
|
Zhang L, Zhou M, Wang A, Zhang T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem Rev 2019; 120:683-733. [DOI: 10.1021/acs.chemrev.9b00230] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leilei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Maoxiang Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
18
|
Guan E, Debefve L, Vasiliu M, Zhang S, Dixon DA, Gates BC. MgO-Supported Iridium Metal Pair-Site Catalysts Are More Active and Resistant to CO Poisoning than Analogous Single-Site Catalysts for Ethylene Hydrogenation and Hydrogen–Deuterium Exchange. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Monica Vasiliu
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shengjie Zhang
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A. Dixon
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | | |
Collapse
|
19
|
Guan E, Fang CY, Yang D, Wang L, Xiao FS, Gates BC. Supported cluster catalysts synthesized to be small, simple, selective, and stable. Faraday Discuss 2018; 208:9-33. [PMID: 29901045 DOI: 10.1039/c8fd00076j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Molecular metal complexes on supports have drawn wide attention as catalysts offering new properties and opportunities for precise synthesis to make uniform catalytic species that can be understood in depth. Here we highlight advances in research with catalysts that are a step more complex than those incorporating single, isolated metal atoms on supports. These more complex catalysts consist of supported noble metal clusters and supported metal oxide clusters, and our emphasis is placed on some of the simplest and best-defined of these catalysts, made by precise synthesis, usually with organometallic precursors. Characterization of these catalysts by spectroscopic, microscopic, and theoretical methods is leading to rapid progress in fundamental understanding of catalyst structure and function, and to expansion of this class of materials. The simplest supported metal clusters incorporate two metal atoms each-they are pair-site catalysts. These and clusters containing several metal atoms have reactivities determined by the metal nuclearity, the ligands on the metal, and the supports, which themselves are ligands. Metal oxide clusters are also included in the discussion presented here, with Zr6O8 clusters that are nodes in metal-organic frameworks being among those that are understood the best. The surface and catalytic chemistries of these metal oxide clusters are distinct from those of bulk zirconia. A challenge in using any supported cluster catalysts is associated with their possible sintering, and recent research shows how metal nanoparticles can be encapsulated in sheaths with well-defined porous structures-zeolites-that make them highly resistant to sintering.
Collapse
Affiliation(s)
- Erjia Guan
- Department of Chemical Engineering, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Liu L, Corma A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem Rev 2018; 118:4981-5079. [PMID: 29658707 PMCID: PMC6061779 DOI: 10.1021/acs.chemrev.7b00776] [Citation(s) in RCA: 1962] [Impact Index Per Article: 280.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 12/02/2022]
Abstract
Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.
Collapse
Affiliation(s)
- Lichen Liu
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo
Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, España
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo
Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, España
| |
Collapse
|
21
|
Finney EE, Finke RG. Catalyst Sintering Kinetics Data: Is There a Minimal Chemical Mechanism Underlying Kinetics Previously Fit by Empirical Power-Law Expressions—and if So, What Are Its Implications? Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric E. Finney
- Department
of Chemistry, Pacific Lutheran University, Tacoma, Washington 98447, United States
| | - Richard G. Finke
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
22
|
Copéret C, Estes DP, Larmier K, Searles K. Isolated Surface Hydrides: Formation, Structure, and Reactivity. Chem Rev 2016; 116:8463-505. [DOI: 10.1021/acs.chemrev.6b00082] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Deven P. Estes
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Kim Larmier
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Keith Searles
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|
23
|
Özkar S, Finke RG. Palladium(0) Nanoparticle Formation, Stabilization, and Mechanistic Studies: Pd(acac)₂ as a Preferred Precursor, [Bu₄N]₂HPO₄ Stabilizer, plus the Stoichiometry, Kinetics, and Minimal, Four-Step Mechanism of the Palladium Nanoparticle Formation and Subsequent Agglomeration Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3699-716. [PMID: 27046305 DOI: 10.1021/acs.langmuir.6b00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Palladium(0) nanoparticles continue to be important in the field of catalysis. However, and despite the many prior reports of Pd(0)n nanoparticles, missing is a study that reports the kinetically controlled formation of Pd(0)n nanoparticles with the simple stabilizer [Bu4N]2HPO4 in an established, balanced formation reaction where the kinetics and mechanism of the nanoparticle-formation reaction are also provided. It is just such studies that are the focus of the present work. Specifically, the present studies reveal that Pd(acac)2, in the presence of 1 equiv of [Bu4N]2HPO4 as stabilizer in propylene carbonate, serves as a preferred precatalyst for the kinetically controlled nucleation following reduction under 40 ± 1 psig initial H2 pressure at 22.0 ± 0.1 °C to yield 7 ± 2 nm palladium(0) nanoparticles. Studies of the balanced stoichiometry of the Pd(0)n nanoparticle-formation reaction shows that 1.0 Pd(acac)2 consumes 1.0 equiv of H2 and produces 1.0 equiv of Pd(0)n while also releasing 2.0 ± 0.2 equiv of acetylacetone. The inexpensive, readily available HPO4(2-) also proved to be as effective a Pd(0)n nanoparticle stabilizer as the more anionic, sterically larger, "Gold Standard" stabilizer P2W15Nb3O62(9-). The kinetics and associated minimal mechanism of formation of the [Bu4N]2HPO4-stabilized Pd(0)n nanoparticles are also provided, arguably the most novel part of the present studies, specifically the four-step mechanism of nucleation (A → B, rate constant k1), autocatalytic surface growth (A + B → 2B, rate constant k2), bimolecular agglomeration (B + B → C, rate constant k3), and secondary autocatalytic surface growth (A + C → 1.5C, rate constant k4), where A is Pd(acac)2, B represents the growing, smaller Pd(0)n nanoparticles, and C represents the larger, most catalytically active Pd(0)n nanoparticles. Additional details on the mechanism and catalytic properties of the resultant Pd(0)n·HPO4(2-) nanoparticles are provided in this work.
Collapse
Affiliation(s)
- Saim Özkar
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523 United States
- Department of Chemistry, Middle East Technical University , 06800 Ankara, Turkey
| | - Richard G Finke
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523 United States
| |
Collapse
|
24
|
Willett DR, Chumanov G. One-step synthesis and applications of highly concentrated silver nanoparticles with an ultra-thin silica shell. RSC Adv 2016. [DOI: 10.1039/c6ra20669g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
One-step synthesis resulting in highly concentrated silver nanoparticles with ultra-thin silica shell that were used for SERS & chemiresistor applications.
Collapse
|
25
|
Yang D, Odoh SO, Borycz J, Wang TC, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Gates BC. Tuning Zr6 Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02243] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering & Materials Science, University of California, Davis, California 95616, United States
| | - Samuel O. Odoh
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Joshua Borycz
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Timothy C. Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Faculty of Science, King Abdul-Aziz University, Jeddah 22254, Saudi Arabia
| | - Joseph T. Hupp
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher J. Cramer
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Bruce C. Gates
- Department of Chemical Engineering & Materials Science, University of California, Davis, California 95616, United States
| |
Collapse
|
26
|
Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Rhodium nanoparticles stabilized by sulfonic acid functionalized metal-organic framework for the selective hydrogenation of phenol to cyclohexanone. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.09.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Asatryan R, Ruckenstein E. Effect of “Reducible” Titania Promotion on the Mechanism of H-Migration in Pd/SiO2 Clusters. Catal Letters 2015. [DOI: 10.1007/s10562-015-1642-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Martinez-Macias C, Chen M, Dixon DA, Gates BC. Single-Site Zeolite-Anchored Organoiridium Carbonyl Complexes: Characterization of Structure and Reactivity by Spectroscopy and Computational Chemistry. Chemistry 2015; 21:11825-35. [DOI: 10.1002/chem.201501277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/08/2022]
|
30
|
Cano I, Huertos MA, Chapman AM, Buntkowsky G, Gutmann T, Groszewicz PB, van Leeuwen PWNM. Air-Stable Gold Nanoparticles Ligated by Secondary Phosphine Oxides as Catalyst for the Chemoselective Hydrogenation of Substituted Aldehydes: a Remarkable Ligand Effect. J Am Chem Soc 2015; 137:7718-27. [DOI: 10.1021/jacs.5b02802] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Israel Cano
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Miguel A. Huertos
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Andrew M. Chapman
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Gerd Buntkowsky
- Eduard-Zintl Institut for Inorganic and Physical Chemistry, 64287 Darmstadt, Germany
| | - Torsten Gutmann
- Eduard-Zintl Institut for Inorganic and Physical Chemistry, 64287 Darmstadt, Germany
| | - Pedro B. Groszewicz
- Eduard-Zintl Institut for Inorganic and Physical Chemistry, 64287 Darmstadt, Germany
| | - Piet W. N. M. van Leeuwen
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
- Laboratoire
de Physique et Chimie des Nano Objets, LPCNO, UMR5215 INSA-UPS-CNRS,
Institut National des Sciences Appliquées, Université de Toulouse, 135 avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
31
|
Bayram E, Lu J, Aydin C, Browning ND, Özkar S, Finney E, Gates BC, Finke RG. Agglomerative Sintering of an Atomically Dispersed Ir1/Zeolite Y Catalyst: Compelling Evidence Against Ostwald Ripening but for Bimolecular and Autocatalytic Agglomeration Catalyst Sintering Steps. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00321] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ercan Bayram
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jing Lu
- Department
of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ceren Aydin
- Department
of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Nigel D. Browning
- Department
of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Fundamental and Computational Sciences, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Saim Özkar
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Eric Finney
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bruce C. Gates
- Department
of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Richard G. Finke
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
32
|
Rimoldi M, Fodor D, van Bokhoven JA, Mezzetti A. Catalytic hydrogenation of liquid alkenes with a silica-grafted hydride pincer iridium(iii) complex: support for a heterogeneous mechanism. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00837a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The silica-grafted Ir(iii) hydride complex [IrH(O–SBA-15)(POCOP)], prepared by treating [IrH2(O–SBA-15)] with SBA-15 (mesoporous silica), hydrogenates liquid alkenes at room temperature and under 1 atm H2 without leaching into solution.
Collapse
Affiliation(s)
- M. Rimoldi
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Switzerland
| | - D. Fodor
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Switzerland
| | - J. A. van Bokhoven
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Switzerland
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
| | - A. Mezzetti
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Switzerland
| |
Collapse
|
33
|
Yang D, Chen M, Martinez-Macias C, Dixon DA, Gates BC. Mononuclear Iridium Dinitrogen Complexes Bonded to Zeolite HY. Chemistry 2014; 21:631-40. [DOI: 10.1002/chem.201404794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 11/08/2022]
|
34
|
Rimoldi M, Mezzetti A. Silica-grafted 16-electron hydride pincer complexes of iridium(III) and their soluble analogues: synthesis and reactivity with CO. Inorg Chem 2014; 53:11974-84. [PMID: 25345601 DOI: 10.1021/ic501593k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dihydride complexes [IrH2(POCOP)] (1a) and [IrH2(PCP)] (1b) (POCOP = 1,3-bis((di-tert-butylphosphino)oxy)benzene; PCP = 1,3-bis((di-tert-butylphosphino)methyl)benzene) react with the surface silanols of mesoporous amorphous silica (SBA-15) to give H2 and the silica-grafted, 16-electron iridium(III) monohydride species [IrH(O-SBA-15)(pincer)] (2a and 2b). These materials contain a single iridium(III) species, that is a highly dispersed, coordinatively unsaturated siloxo hydride complex, as indicated by solid-state spectroscopic data. The siloxo complexes [IrH((i)Bu-POSS)(POCOP)] (3a) and [IrH((i)Bu-POSS)(PCP)] (3b) ((i)Bu-POSS = OSi8O12(i)Bu7) were prepared as soluble analogues of 2a and 2b to support their spectroscopic characterization. The coordinatively unsaturated, 16-electron species 2a and 2b react with CO to give the six-coordinate iridium(III) adducts [IrH(O-SBA-15)(CO)(POCOP)] (7a) and [IrH(O-SBA-15)(CO)(PCP)] (7b). Due to dissimilar electronic properties of the pincer ligands, 7a undergoes reductive elimination of the silanol forming the Ir(I) complex [Ir(CO)(POCOP)] (8a), whereas 7b is stable in oxidation state of III. The homogeneous siloxo carbonyl complexes [IrH((i)Bu-POSS)(CO)(POCOP)] (9a), [IrH((i)Bu-POSS)(CO)(PCP)] (9b), and [IrH(OSiMe3)(CO)(POCOP)] (11a) were prepared to substantiate the reactivity and the characterization of the silica grafted species.
Collapse
Affiliation(s)
- Martino Rimoldi
- Department of Chemistry and Applied Biosciences, ETH Zürich , HCI H235, Zürich CH-8093, Switzerland
| | | |
Collapse
|
35
|
Asatryan R, Ruckenstein E. Dihydrogen Catalysis: A Remarkable Avenue in the Reactivity of Molecular Hydrogen. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2014. [DOI: 10.1080/01614940.2014.953356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Serna P, Gates BC. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc Chem Res 2014; 47:2612-20. [PMID: 25036259 DOI: 10.1021/ar500170k] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.
Collapse
Affiliation(s)
- Pedro Serna
- Department
of Chemical Engineering and Materials Science, University of California, Davis, California 95616, United States
- Instituto
de Tecnología Química. Universidad Politécnica de Valencia−Consejo Superior de Investigaciones Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Bruce C. Gates
- Department
of Chemical Engineering and Materials Science, University of California, Davis, California 95616, United States
| |
Collapse
|
37
|
Rimoldi M, Mezzetti A. Site isolated complexes of late transition metals grafted on silica: challenges and chances for synthesis and catalysis. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00450g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Grafting, quo vadis? The reasons for the aggregation of late transition metal complexes on oxide supports under reducing conditions and/or in the presence of π-accepting ligands are discussed, and strategies are suggested to prevent it.
Collapse
Affiliation(s)
- Martino Rimoldi
- Department of Chemistry and Applied Biosciences
- ETH Zurich, Switzerland
| | - Antonio Mezzetti
- Department of Chemistry and Applied Biosciences
- ETH Zurich, Switzerland
| |
Collapse
|
38
|
Adams RD, Chen M. Synthesis and structures of new tetrairidium carbonyl clusters containing phenylgermanium ligands. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Lu J, Martinez-Macias C, Aydin C, Browning ND, Gates BC. Zeolite-supported bimetallic catalyst: controlling selectivity of rhodium complexes by nearby iridium complexes. Catal Sci Technol 2013. [DOI: 10.1039/c3cy00113j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Rimoldi M, Fodor D, van Bokhoven JA, Mezzetti A. A stable 16-electron iridium(iii) hydride complex grafted on SBA-15: a single-site catalyst for alkene hydrogenation. Chem Commun (Camb) 2013; 49:11314-6. [DOI: 10.1039/c3cc47296e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Rafter E, Gutmann T, Löw F, Buntkowsky G, Philippot K, Chaudret B, van Leeuwen PWNM. Secondary phosphineoxides as pre-ligands for nanoparticle stabilization. Catal Sci Technol 2013. [DOI: 10.1039/c2cy20683h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Bayram E, Lu J, Aydin C, Uzun A, Browning ND, Gates BC, Finke RG. Mononuclear Zeolite-Supported Iridium: Kinetic, Spectroscopic, Electron Microscopic, and Size-Selective Poisoning Evidence for an Atomically Dispersed True Catalyst at 22 °C. ACS Catal 2012. [DOI: 10.1021/cs300366w] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ercan Bayram
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523,
United States
| | - Jing Lu
- Department
of Chemical Engineering
and Materials Science, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Ceren Aydin
- Department
of Chemical Engineering
and Materials Science, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Alper Uzun
- Department
of Chemical Engineering
and Materials Science, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Nigel D. Browning
- Department
of Chemical Engineering
and Materials Science, University of California, One Shields Avenue, Davis, California 95616, United States
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 700 East Avenue,
Livermore, California 94550, United States
| | - Bruce C. Gates
- Department
of Chemical Engineering
and Materials Science, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523,
United States
| |
Collapse
|