1
|
Chen X, Yu H, Li Z, Ye W, Liu Z, Gao J, Wang Y, Li X, Zhang L, Alenina N, Bader M, Ding H, Li P, Aung LHH. Oxidative RNA Damage in the Pathogenesis and Treatment of Type 2 Diabetes. Front Physiol 2022; 13:725919. [PMID: 35418873 PMCID: PMC8995861 DOI: 10.3389/fphys.2022.725919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Excessive production of free radicals can induce cellular damage, which is associated with many diseases. RNA is more susceptible to oxidative damage than DNA due to its single-stranded structure, and lack of protective proteins. Yet, oxidative damage to RNAs received little attention. Accumulating evidence reveals that oxidized RNAs may be dysfunctional and play fundamental role in the occurrence and development of type 2 diabetes (T2D) and its complications. Oxidized guanine nucleoside, 8-oxo-7, 8-dihydroguanine (8-oxoGuo) is a biomarker of RNA oxidation that could be associated with prognosis in patients with T2D. Nowadays, some clinical trials used antioxidants for the treatment of T2D, though the pharmacological effects remained unclear. In this review, we overview the cellular handling mechanisms and the consequences of the oxidative RNA damage for the better understanding of pathogenesis of T2D and may provide new insights to better therapeutic strategy.
Collapse
Affiliation(s)
- Xiatian Chen
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Zhe Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Hongyan Ding
- School of Bioengineering, Suqian University, Suqian, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| |
Collapse
|
2
|
León EI, Martín Á, Montes AS, Pérez-Martín I, Del Sol Rodríguez M, Suárez E. 1,5-Hydrogen Atom Transfer/Surzur-Tanner Rearrangement: A Radical Cascade Approach for the Synthesis of 1,6-Dioxaspiro[4.5]decane and 6,8-Dioxabicyclo[3.2.1]octane Scaffolds in Carbohydrate Systems. J Org Chem 2021; 86:14508-14552. [PMID: 34554734 PMCID: PMC8576821 DOI: 10.1021/acs.joc.1c01376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The 1,5-HAT–1,2-(ester)alkyl
radical migration (Surzur–Tanner
rearrangement) radical/polar sequence triggered by alkoxyl radicals
has been studied on a series of C-glycosyl substrates
with 3-C-(α,β-d,l-glycopyranosyl)1-propanol
and C-(α-d,l-glycopyranosyl)methanol
structures prepared from chiral pool d- and l-sugar.
The use of acetoxy and diphenoxyphosphatoxy as leaving groups provides
an efficient construction of 10-deoxy-1,6-dioxaspiro[4.5]decane and
4-deoxy-6,8-dioxabicyclo[3.2.1]octane frameworks. The alkoxyl radicals
were generated by the reaction of the corresponding N-alkoxyphthalimides with group 14 hydrides [n-Bu3SnH(D) and (TMS)3SiH], and in comparative terms,
the reaction was also initiated by visible light photocatalysis using
the Hantzsch ester/fac-Ir(ppy)3 procedure.
Special attention was devoted to the influence of the relative stereochemistry
of the centers involved in the radical sequence on the reaction outcome.
The addition of BF3•Et2O as a catalyst
to the radical sequence resulted in a significant increase in the
yields of the desired bicyclic ketals.
Collapse
Affiliation(s)
- Elisa I León
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Ángeles Martín
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Adrián S Montes
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain.,Doctoral and Postgraduate School, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38200 La Laguna, Tenerife, Spain
| | - Inés Pérez-Martín
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - María Del Sol Rodríguez
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Ernesto Suárez
- Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
3
|
Bell M, Kumar A, Sevilla MD. Electron-Induced Repair of 2'-Deoxyribose Sugar Radicals in DNA: A Density Functional Theory (DFT) Study. Int J Mol Sci 2021; 22:ijms22041736. [PMID: 33572317 PMCID: PMC7916153 DOI: 10.3390/ijms22041736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
In this work, we used ωB97XD density functional and 6-31++G** basis set to study the structure, electron affinity, populations via Boltzmann distribution, and one-electron reduction potentials (E°) of 2′-deoxyribose sugar radicals in aqueous phase by considering 2′-deoxyguanosine and 2′-deoxythymidine as a model of DNA. The calculation predicted the relative stability of sugar radicals in the order C4′• > C1′• > C5′• > C3′• > C2′•. The Boltzmann distribution populations based on the relative stability of the sugar radicals were not those found for ionizing radiation or OH-radical attack and are good evidence the kinetic mechanisms of the processes drive the products formed. The adiabatic electron affinities of these sugar radicals were in the range 2.6–3.3 eV which is higher than the canonical DNA bases. The sugar radicals reduction potentials (E°) without protonation (−1.8 to −1.2 V) were also significantly higher than the bases. Thus the sugar radicals will be far more readily reduced by solvated electrons than the DNA bases. In the aqueous phase, these one-electron reduced sugar radicals (anions) are protonated from solvent and thus are efficiently repaired via the “electron-induced proton transfer mechanism”. The calculation shows that, in comparison to efficient repair of sugar radicals by the electron-induced proton transfer mechanism, the repair of the cyclopurine lesion, 5′,8-cyclo-2′-dG, would involve a substantial barrier.
Collapse
|
4
|
Bucher G, Lal M, Rana A, Schmittel M. Fragmentation of a dioxolanyl radical via nonstatistical reaction dynamics: characterization of the vinyloxy radical by ns time-resolved laser flash photolysis. Phys Chem Chem Phys 2018; 20:19819-19828. [PMID: 30033465 DOI: 10.1039/c8cp03311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemistry of two Barton esters, one derived from a dioxolane carboxylic acid and the other from pivalic acid, was investigated by product analysis and nanosecond laser flash photolysis (LFP). As expected, photolysis of the pivalate ester resulted in formation of the pyridine-2-thiyl and the t-butyl radical. Photolysis of the Barton ester of 2,2-dimethyl-1,3-dioxolane-4-carboxylic acid, on the other hand, revealed a complex multi-step fragmentation. In addition to the pyridine-2-thiyl and dioxolanyl radical, we gained evidence for the formation of the vinyloxy radical, CH2[double bond, length as m-dash]CHO˙. The latter was identified in the LFP by its π-complexes with benzene and diphenylether, its rapid quenching by electron-rich arenes and tri-n-butyl tin hydride, and its oxidative power in presence of trifluoroacetic acid as demonstrated by the oxidation of ferrocene to ferrocenium. Formation of CH2[double bond, length as m-dash]CHO˙ can be rationalized via fragmentation of the dioxolanyl radical. As the calculated barriers are too high for the reaction sequence to occur on the LFP time scale, we investigated the fragmentation of the photoexcited Barton ester via Born-Oppenheimer molecular dynamics simulations. In one trajectory, we could observe all reaction steps including ring opening of the dioxolanyl radical, suggesting that the excess energy gained in the ester cleavage and decarboxylation may lead to fragmentation of the hot dioxolanyl radical.
Collapse
Affiliation(s)
- Götz Bucher
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
5
|
Jagiello K, Makurat S, Pereć S, Rak J, Puzyn T. Molecular features of thymidine analogues governing the activity of human thymidine kinase. Struct Chem 2018. [DOI: 10.1007/s11224-018-1124-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Paul R, Greenberg MM. Mechanistic Studies on RNA Strand Scission from a C2'-Radical. J Org Chem 2016; 81:9199-9205. [PMID: 27668445 DOI: 10.1021/acs.joc.6b01760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C2'-carbon-hydrogen bond in ribonucleotides is significantly weaker than other carbohydrate carbon-hydrogen bonds in RNA or DNA. Independent generation of the C2'-uridine radical (1) in RNA oligonucleotides via Norrish type I photocleavage of a ketone-substituted nucleotide yields direct strand breaks via cleavage of the β-phosphate. The reactivity of 1 in different sequences and under a variety of conditions suggests that the rate constant for strand scission is significantly greater than 106 s-1 at pH 7.2. The initially formed C2'-radical (1) is not trapped under a variety of conditions, consistent with computational studies ( Chem.-Eur. J. 2009 , 15 , 2394 ) that suggest that the barrier to strand scission is very low and that synchronous proton transfer from the 2'-hydroxyl to the departing phosphate group facilitates cleavage. The C2'-radical could be a significant contributor to RNA strand scission by the hydroxyl radical, particularly under anaerobic conditions where 1 can be produced from nucleobase radicals.
Collapse
Affiliation(s)
- Rakesh Paul
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Abstract
Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.
Collapse
Affiliation(s)
- Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| |
Collapse
|
8
|
Aparici-Espert I, Francés-Monerris A, Rodríguez-Muñiz GM, Roca-Sanjuán D, Lhiaubet-Vallet V, Miranda MA. A Combined Experimental and Theoretical Approach to the Photogeneration of 5,6-Dihydropyrimidin-5-yl Radicals in Nonaqueous Media. J Org Chem 2016; 81:4031-8. [DOI: 10.1021/acs.joc.6b00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isabel Aparici-Espert
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | | | - Gemma M. Rodríguez-Muñiz
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | - Miguel A. Miranda
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
9
|
Greenberg MM. Reactivity of Nucleic Acid Radicals. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016; 50:119-202. [PMID: 28529390 DOI: 10.1016/bs.apoc.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers' structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes.
Collapse
|
10
|
Rak J, Chomicz L, Wiczk J, Westphal K, Zdrowowicz M, Wityk P, Żyndul M, Makurat S, Golon Ł. Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV Radiation. J Phys Chem B 2015; 119:8227-38. [PMID: 26061614 DOI: 10.1021/acs.jpcb.5b03948] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia--a hallmark of solid tumors--makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet radiation. While incorporated into genomic DNA, modified nucleosides, 5-bromo-2'-deoxyuridine in particular, sensitize cells to both near-ultraviolet photons and γ rays. It is believed that, in both sensitization modes, the reactive nucleobase radical is formed as a primary product which swiftly stabilizes, leading to serious DNA damage, like strand breaks or cross-links. However, despite the apparent similarity, such radio- and photosensitization of DNA seems to be ruled by fundamentally different mechanisms. In this review, we demonstrate that the most important factors deciding on radiodamage to the labeled DNA are (i) the electron affinity (EA) of modified nucleoside (mNZ), (ii) the local surroundings of the label that significantly influences the EA of mNZ, and (iii) the strength of the chemical bond holding together the substituent and a nucleobase. On the other hand, we show that the UV damage to sensitized DNA is governed by long-range photoinduced electron transfer, the efficiency of which is controlled by local DNA sequences. A critical review of the literature mechanisms concerning both types of damage to the labeled biopolymer is presented. Ultimately, the perspectives of studies on DNA sensitization in the context of cancer therapy are discussed.
Collapse
Affiliation(s)
- Janusz Rak
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Lidia Chomicz
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Justyna Wiczk
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Kinga Westphal
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Zdrowowicz
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paweł Wityk
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał Żyndul
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Samanta Makurat
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Łukasz Golon
- Faculty of Chemistry University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Paul R, Greenberg MM. Rapid RNA strand scission following C2'-hydrogen atom abstraction. J Am Chem Soc 2015; 137:596-9. [PMID: 25580810 DOI: 10.1021/ja511401g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
C2'-Nucleotide radicals have been proposed as key intermediates in direct strand break formation in RNA exposed to ionizing radiation. Uridin-2'-yl radical (1) was independently generated in single- and double-stranded RNA via photolysis of a ketone precursor. Direct stand breaks result from heterolytic cleavage of the adjacent C3'-carbon-oxygen bond. Trapping of 1 by O2 or β-mercaptoethanol (1 M) does not compete with strand scission, indicating that phosphate elimination is >10(6) s(-1). Uracil loss also does not compete with strand scission. When considered in conjunction with reports that nucleobase radicals produce 1, this chemistry explains why RNA is significantly more susceptible to strand scission by ionizing radiation (hydroxyl radical) than is DNA.
Collapse
Affiliation(s)
- Rakesh Paul
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
12
|
Ingle S, Azad RN, Jain SS, Tullius TD. Chemical probing of RNA with the hydroxyl radical at single-atom resolution. Nucleic Acids Res 2014; 42:12758-67. [PMID: 25313156 PMCID: PMC4227780 DOI: 10.1093/nar/gku934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/02/2022] Open
Abstract
While hydroxyl radical cleavage is widely used to map RNA tertiary structure, lack of mechanistic understanding of strand break formation limits the degree of structural insight that can be obtained from this experiment. Here, we determine how individual ribose hydrogens of sarcin/ricin loop RNA participate in strand cleavage. We find that substituting deuterium for hydrogen at a ribose 5'-carbon produces a kinetic isotope effect on cleavage; the major cleavage product is an RNA strand terminated by a 5'-aldehyde. We conclude that hydroxyl radical abstracts a 5'-hydrogen atom, leading to RNA strand cleavage. We used this approach to obtain structural information for a GUA base triple, a common tertiary structural feature of RNA. Cleavage at U exhibits a large 5' deuterium kinetic isotope effect, a potential signature of a base triple. Others had noted a ribose-phosphate hydrogen bond involving the G 2'-OH and the U phosphate of the GUA triple, and suggested that this hydrogen bond contributes to backbone rigidity. Substituting deoxyguanosine for G, to eliminate this hydrogen bond, results in a substantial decrease in cleavage at G and U of the triple. We conclude that this hydrogen bond is a linchpin of backbone structure around the triple.
Collapse
Affiliation(s)
- Shakti Ingle
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Robert N Azad
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Swapan S Jain
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Thomas D Tullius
- Department of Chemistry, Boston University, Boston, MA 02215, USA Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Abstract
The uridin-2'-yl radical (1) has been proposed as an intermediate during RNA oxidation. However, its reactivity has not been thoroughly studied due to the complex conditions under which it is typically generated. The uridin-2'-yl radical was independently generated from a benzyl ketone (2a) via Norrish type I photocleavage upon irradiation at λmax = 350 nm. Dioxygen and β-mercaptoethanol are unable to compete with loss of uracil from 1 in phosphate buffer. Thiol trapping competes with uracil fragmentation in less polar solvent conditions. This is ascribed mostly to a reduction in the rate constant for uracil elimination in the less polar solvent. Hydrogen atom transfer to 1 from β-mercaptoethanol occurs exclusively from the α-face to produce arabinouridine. Mass balances range from 72 to 95%. Furthermore, the synthesis of 2a is amenable to formation of the requisite phosphoramidite for solid-phase oligonucleotide synthesis. This and the fidelity with which the urdin-2'-yl radical is generated from 2a suggest that this precursor should be useful for studying the radical's reactivity in synthetic oligonucleotides.
Collapse
Affiliation(s)
- Rakesh Paul
- Department of Chemistry, Johns
Hopkins University 3400
North Charles Street, Baltimore, Maryland 21218, United
States
| | - Marc M. Greenberg
- Department of Chemistry, Johns
Hopkins University 3400
North Charles Street, Baltimore, Maryland 21218, United
States
| |
Collapse
|
14
|
Abstract
![]()
Nucleobase radicals are a major family
of reactive species produced
in DNA as a result of oxidative stress. Two such radicals, 5-hydroxy-5,6-dihydrothymidin-6-yl
radical (1) and 5,6-dihydrouridin-6-yl radical (5), were independently generated within chemically synthesized
oligonucleotides from photochemical precursors. Neither nucleobase
radical produces direct strand breaks or alkali-labile lesions in
single or double stranded DNA. The respective peroxyl radicals, resulting
from O2 trapping, add to 5′-adjacent nucleobases,
with a preference for dG. Distal dG’s are also oxidatively
damaged by the peroxyl radicals. Experiments using a variety of sequences
indicate that distal damage occurs via covalent modification of the
5′-adjacent dG, but there is no evidence for electron transfer
by the nucleobase peroxyl radicals.
Collapse
Affiliation(s)
- Joanna Maria N San Pedro
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | | |
Collapse
|
15
|
Li Z, Malla S, Shin B, Li JM. Battle against RNA oxidation: molecular mechanisms for reducing oxidized RNA to protect cells. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:335-46. [PMID: 24375979 DOI: 10.1002/wrna.1214] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/08/2023]
Abstract
Oxidation is probably the most common type of damage that occurs in cellular RNA. Oxidized RNA may be dysfunctional and is implicated in the pathogenesis of age-related human diseases. Cellular mechanisms controlling oxidized RNA have begun to be revealed. Currently, a number of ribonucleases and RNA-binding proteins have been shown to reduce oxidized RNA and to protect cells under oxidative stress. Although information about how these factors work is still very limited, we suggest several mechanisms that can be used to minimize oxidized RNA in various organisms.
Collapse
Affiliation(s)
- Zhongwei Li
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | | | | |
Collapse
|
16
|
Insight into reaction mechanism and product formation a C8-purine radical in RNA: a theoretical perspective. Theor Chem Acc 2013. [DOI: 10.1007/s00214-013-1355-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Morinaga H, Kizaki S, Takenaka T, Kanesato S, Sannohe Y, Tashiro R, Sugiyama H. Photoreactivities of 5-Bromouracil-containing RNAs. Bioorg Med Chem 2013; 21:466-9. [DOI: 10.1016/j.bmc.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/10/2012] [Accepted: 11/10/2012] [Indexed: 11/16/2022]
|
18
|
Haidasz EA, Li B, Pratt DA. Reaction mechanisms: radical and radical ion reactions. ACTA ACUST UNITED AC 2013. [DOI: 10.1039/c3oc90013d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Kumar A, Pottiboyina V, Sevilla MD. One-electron oxidation of neutral sugar radicals of 2'-deoxyguanosine and 2'-deoxythymidine: a density functional theory (DFT) study. J Phys Chem B 2012; 116:9409-16. [PMID: 22793263 DOI: 10.1021/jp3059068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One electron oxidation of neutral sugar radicals has recently been suggested to lead to important intermediates in the DNA damage process culminating in DNA strand breaks. In this work, we investigate sugar radicals in a DNA model system to understand the energetics of sugar radical formation and oxidation. The geometries of neutral sugar radicals C(1')(•), C(2')(•), C(3')(•), C(4')(•), and C(5')(•) of 2'-deoxyguanosine (dG) and 2'-deoxythymidine (dT) were optimized in the gas phase and in solution using the B3LYP and ωB97x functionals and 6-31++G(d) basis set. Their corresponding cations (C(1')(+), C(2')(+), C(3')(+), C(4')(+), and C(5')(+)) were generated by removing an electron (one-electron oxidation) from the neutral sugar radicals, and their geometries were also optimized using the same methods and basis set. The calculation predicts the relative stabilities of the neutral sugar radicals in the order C(1')(•) > C(4')(•) > C(5')(•) > C(3')(•) > C(2')(•), respectively. Of the neutral sugar radicals, C(1')(•) has the lowest vertical ionization potential (IP(vert)), ca. 6.33 eV in the gas phase and 4.71 eV in solution. C(2')(•) has the highest IP(vert), ca. 8.02 eV, in the gas phase, and the resultant C(2') cation is predicted to undergo a barrierless hydride transfer from the C(1') site to produce the C(1') cation. One electron oxidation of C(2')(•) in dG is predicted to result in a low lying triplet state consisting of G(+•) and C(2')(•). The 5',8-cyclo-2'-deoxyguanosin-7-yl radical formed by intramolecular bonding between C(5')(•) and C(8) of guanine transfers spin density from C(5') site to guanine, and this structure has IP(vert) 6.25 and 5.48 eV in the gas phase and in solution.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | |
Collapse
|
20
|
San Pedro JMN, Greenberg MM. Photochemical generation and reactivity of the major hydroxyl radical adduct of thymidine. Org Lett 2012; 14:2866-9. [PMID: 22616940 DOI: 10.1021/ol301109z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5,6-Dihydro-5-hydroxythymidin-6-yl radical (1), the major reactive intermediate resulting from hydroxyl radical addition to C5 of the pyrimidine, is produced via 350 nm photolysis of a 2,5-dimethoxyphenylsulfide precursor (2). Competition between O(2) and thiol for 1 suggests that the radical reacts relatively slowly with β-mercaptoethanol compared to other alkyl radicals. Overall, aryl sulfide 2 should be an effective precursor for the major hydroxyl radical adduct of thymidine in DNA.
Collapse
Affiliation(s)
- Joanna Maria N San Pedro
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
21
|
Cerón-Carrasco JP, Jacquemin D. Interplay between hydroxyl radical attack and H-bond stability in guanine–cytosine. RSC Adv 2012. [DOI: 10.1039/c2ra22389a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|