1
|
Sundaram P, Spencer RB, Tiwari A, Whittaker SJ, Mandal T, Yang Y, Holland EK, Kingsbury CJ, Klopfenstein M, Anthony JE, Kahr B, Jeong S, Shtukenberg AG, Lee SS. Polymer-Assisted Polymorph Transition in Melt-Processed Molecular Semiconductor Crystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5976-5985. [PMID: 38947980 PMCID: PMC11209941 DOI: 10.1021/acs.chemmater.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024]
Abstract
A previously unreported polymorph of 5,11-bis(triisopropylsilylethynyl)anthradithiophene (TIPS ADT), Form II, crystallizes from melt-processed TIPS ADT films blended with 16 ± 1 wt % medium density polyethylene (PE). TIPS ADT/PE blends that initially are crystallized from the melt produce twisted TIPS ADT crystals of a metastable polymorph (Form IV, space group P1̅) with a brickwork packing motif distinct from the slipstack packing by solution-processed TIPS ADT crystals (Form I, space group P21/c) at room temperature. When these films were cooled to room temperature and subsequently annealed at 100 °C, near a PE melting temperature of 110 °C, Form II crystals nucleated and grew while consuming Form IV. The growth rate and orientations of Form II crystals were predetermined by the twisting pitch and growth direction of the original banded spherulites in the melt-processed films of the blends. Notably, the Form IV → II transition was not observed during thermal annealing of neat TIPS ADT films without PE. The presence of the mobile PE phase during thermal annealing of TIPS ADT/PE blend films increases the diffusion rate of TIPS ADT molecules, and the rate of nucleation of Form II. Form IV crystals are more conductive but less emissive compared to Form II crystals.
Collapse
Affiliation(s)
- Pallavi Sundaram
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Rochelle B. Spencer
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Akash Tiwari
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - St. John Whittaker
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Trinanjana Mandal
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yongfan Yang
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Emma K. Holland
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | | | - Mia Klopfenstein
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - John E. Anthony
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bart Kahr
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Sehee Jeong
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Alexander G. Shtukenberg
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stephanie S. Lee
- Molecular
Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Whittaker SJ, Zhou H, Spencer RB, Yang Y, Tiwari A, Bendesky J, McDowell M, Sundaram P, Lozano I, Kim S, An Z, Shtukenberg AG, Kahr B, Lee SS. Leveling up Organic Semiconductors with Crystal Twisting. CRYSTAL GROWTH & DESIGN 2024; 24:613-626. [PMID: 38250542 PMCID: PMC10797633 DOI: 10.1021/acs.cgd.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
The performance of crystalline organic semiconductors depends on the solid-state structure, especially the orientation of the conjugated components with respect to device platforms. Often, crystals can be engineered by modifying chromophore substituents through synthesis. Meanwhile, dissymetry is necessary for high-tech applications like chiral sensing, optical telecommunications, and data storage. The synthesis of dissymmetric molecules is a labor-intensive exercise that might be undermined because common processing methods offer little control over orientation. Crystal twisting has emerged as a generalizable method for processing organic semiconductors and offers unique advantages, such as patterning of physical and chemical properties and chirality that arises from mesoscale twisting. The precession of crystal orientations can enrich performance because achiral molecules in achiral space groups suddenly become candidates for the aforementioned technologies that require dissymetry.
Collapse
Affiliation(s)
- St. John Whittaker
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Hengyu Zhou
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Rochelle B. Spencer
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yongfan Yang
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Akash Tiwari
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Justin Bendesky
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Merritt McDowell
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Pallavi Sundaram
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Idalys Lozano
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Shin Kim
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Zhihua An
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Alexander G. Shtukenberg
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Bart Kahr
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stephanie S. Lee
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Whittaker SJ, McDowell M, Bendesky J, An Z, Yang Y, Zhou H, Zhang Y, Shtukenberg AG, Kalyon DM, Kahr B, Lee SS. Self-Patterning Tetrathiafulvalene Crystalline Films. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8599-8606. [PMID: 37901143 PMCID: PMC10601475 DOI: 10.1021/acs.chemmater.3c01604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Indexed: 10/31/2023]
Abstract
Tetrathiafulvalene (TTF) crystals grown from the melt are organized as spherulites in which helicoidal fibrils growing radially from the nucleation center twist in concert with one another. Alternating bright and dark concentric bands are apparent when films are viewed between crossed polarizers, indicating an alternating pattern of crystallographic faces exposed at the film surface. Band-dependent reorganization of the TTF crystals was observed during exposure to methanol vapor. Crystalline growth appears on bright bands at the expense of the dark bands. After a 24 h period of exposure to methanol vapor, the original spherulites were completely restructured, and the films comprise isolated, concentric circles of crystallites whose orientations are determined by the initial TTF crystal fibril orientation. While the surface of these outgrowths appears faceted and smooth, cross-sectional SEM images revealed a semiporous inner structure, suggesting solvent-vapor-induced recrystallization. Collectively, these results show that crystal twisting can be used to rhythmically redistribute material. Crystal twisting is a common and often controllable phenomenon independent of molecular or crystal structure and therefore offers a generalizable path to spontaneous pattern formation in a wide range of materials.
Collapse
Affiliation(s)
- St. John Whittaker
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Merritt McDowell
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Justin Bendesky
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Zhihua An
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Yongfan Yang
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Hengyu Zhou
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Yuze Zhang
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander G. Shtukenberg
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Dilhan M. Kalyon
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Bart Kahr
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| | - Stephanie S. Lee
- Department
of Chemistry, Molecular Design Institute,
New York University, New York, New York 10003, United States
| |
Collapse
|
4
|
Du W, Gao F, Cui P, Yu Z, Tong W, Wang J, Ren Z, Song C, Xu J, Ma H, Dang L, Zhang D, Lu Q, Jiang J, Wang J, Pi L, Sheng Z, Lu Q. Twisting, untwisting, and retwisting of elastic Co-based nanohelices. Nat Commun 2023; 14:4426. [PMID: 37481654 PMCID: PMC10363140 DOI: 10.1038/s41467-023-40001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/07/2023] [Indexed: 07/24/2023] Open
Abstract
The reversible transformation of a nanohelix is one of the most exquisite and important phenomena in nature. However, nanomaterials usually fail to twist into helical crystals. Considering the irreversibility of the previously studied twisting forces, the reverse process (untwisting) is more difficult to achieve, let alone the retwisting of the untwisted crystalline nanohelices. Herein, we report a new reciprocal effect between molecular geometry and crystal structure which triggers a twisting-untwisting-retwisting cycle for tri-cobalt salicylate hydroxide hexahydrate. The twisting force stems from competition between the condensation reaction and stacking process, different from the previously reported twisting mechanisms. The resulting distinct nanohelices give rise to unusual structure elasticity, as reflected in the reversible change of crystal lattice parameters and the mutual transformation between the nanowires and nanohelices. This study proposes a fresh concept for designing reversible processes and brings a new perspective in crystallography.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Science, Nanjing University, 210023, Nanjing, P. R. China.
| | - Peng Cui
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China
| | - Zhiwu Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Wei Tong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Jihao Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Zhuang Ren
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Chuang Song
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Science, Nanjing University, 210023, Nanjing, P. R. China
| | - Jiaying Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Haifeng Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Liyun Dang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Di Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Qingyou Lu
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China.
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China.
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China.
| | - Li Pi
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Zhigao Sheng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China.
| |
Collapse
|
5
|
Chen Y, Jing B, Chang Z, Gong J. Luminescent Möbius Strip of a Flexible Halogen-Bonded Cocrystal Evolved from Ring and Helix. JACS AU 2022; 2:2686-2692. [PMID: 36590258 PMCID: PMC9795465 DOI: 10.1021/jacsau.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Luminescent Möbius strip microstructures have been created for the first time based on flexible organic single crystals via a template-free solution self-assembly. We herein demonstrated a rationally designed morphological evolution toward Möbius strips from rings and helixes. Our findings lay the foundation for the future construction of complex matters with predetermined morphologies and functions from crystal systems.
Collapse
Affiliation(s)
- Yifu Chen
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Bo Jing
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Zewei Chang
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Junbo Gong
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| |
Collapse
|
6
|
Safitri BFS, Nagarajan S, Woo EM. Self-Assembly Modulation of Stereocomplexes of Chiral 2-Hydroxy-2-Phenylacetic Acids in Poly(ethylene oxide). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
| | - Selvaraj Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701-01, Taiwan
| | - Eamor M. Woo
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701-01, Taiwan
| |
Collapse
|
7
|
Tang S, Ye K, Zhang H. Integrating Low‐Temperature‐Resistant Two‐Dimensional Elastic‐Bending and Reconfigurable Plastic‐Twisting Deformations into an Organic Crystal. Angew Chem Int Ed Engl 2022; 61:e202210128. [DOI: 10.1002/anie.202210128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shiyue Tang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
8
|
Yang Y, Silva de Moraes L, Ruzié C, Schweicher G, Geerts YH, Kennedy AR, Zhou H, Whittaker SJ, Lee SS, Kahr B, Shtukenberg AG. Charge Transport in Twisted Organic Semiconductor Crystals of Modulated Pitch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203842. [PMID: 35986443 DOI: 10.1002/adma.202203842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Many molecular crystals (approximately one third) grow as twisted, helicoidal ribbons from the melt, and this preponderance is even higher in restricted classes of materials, for instance, charge-transfer complexes. Previously, twisted crystallites of such complexes present an increase in carrier mobilities. Here, the effect of twisting on charge mobility is better analyzed for a monocomponent organic semiconductor, 2,5-bis(3-dodecyl-2-thienyl)-thiazolo[5,4-d]thiazole (BDT), that forms twisted crystals with varied helicoidal pitches and makes possible a correlation of twist strength with carrier mobility. Films are analyzed by X-ray scattering and Mueller matrix polarimetry to characterize the microscale organization of the polycrystalline ensembles. Carrier mobilities of organic field-effect transistors are five times higher when the crystals are grown with the smallest pitches (most twisted), compared to those with the largest pitches, along the fiber elongation direction. A tenfold increase is observed along the perpendicular direction. Simulation of electrical potential based on scanning electron microscopy images and density functional theory suggests that the twisting-enhanced mobility is mainly controlled by the fiber organization in the film. A greater number of tightly packed twisted fibers separated by numerous smaller gaps permit better charge transport over the film surface compared to fewer big crystallites separated by larger gaps.
Collapse
Affiliation(s)
- Yongfan Yang
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Lygia Silva de Moraes
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Brussel, 1050, Belgium
| | - Christian Ruzié
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Brussel, 1050, Belgium
| | - Guillaume Schweicher
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Brussel, 1050, Belgium
| | - Yves Henri Geerts
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Brussel, 1050, Belgium
- International Solvay Institutes of Physics and Chemistry, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 231, Brussels, 1050, Belgium
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, Cathedral Street 295, Glasgow, G1 1XL, UK
| | - Hengyu Zhou
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - St John Whittaker
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Stephanie S Lee
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Alexander G Shtukenberg
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY, 10003, USA
| |
Collapse
|
9
|
Tang S, Ye K, Zhang H. Integrating Low‐Temperature‐Resistant Two‐Dimensional Elastic‐Bending and Reconfigurable Plastic‐Twisting Deformations into an Organic Crystal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Kaiqi Ye
- Jilin University College of Chemistry CHINA
| | - Hongyu Zhang
- Jilin University Chemistry Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
10
|
Polymorphism and grating assembly with unique iridescence features in periodically banded Poly(ethylene adipate). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
A Critical Review on Engineering of d-Mannitol Crystals: Properties, Applications, and Polymorphic Control. CRYSTALS 2022. [DOI: 10.3390/cryst12081080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
d-mannitol is a common six-carbon sugar alcohol, which is widely used in food, chemical, pharmaceutical, and other industries. Polymorphism is defined as the ability of materials to crystallize into different crystal structures. It has been reported for a long time that d-mannitol has three polymorphs: β, δ, and α. These different polymorphs have unique physicochemical properties, thus affecting the industrial applications of d-mannitol. In this review, we firstly introduced the characteristics of different d-mannitol polymorphs, e.g., crystal structure, morphology, molecular conformational energy, stability, solubility and the analytical techniques of d-mannitol polymorphisms. Then, we described the different strategies for the preparation of d-mannitol crystals and focused on the polymorphic control of d-mannitol crystals in the products. Furthermore, the factors of the formation of different d-mannitol polymorphisms were summarized. Finally, the application of mannitol polymorphism was summarized. The purpose of this paper is to provide new ideas for a more personalized design of d-mannitol for various applications, especially as a pharmaceutical excipient. Meanwhile, the theoretical overview on polymorphic transformation of d-mannitol may shed some light on the crystal design study of other polycrystalline materials.
Collapse
|
12
|
Application of functionalized magnetic silica nanoparticles for selective induction of three coumarin metastable polymorphs. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Rohullah M, Pradeep VV, Ravi J, Kumar AV, Chandrasekar R. Micromechanically-Powered Rolling Locomotion of a Twisted-Crystal Optical-Waveguide Cavity as a Mobile Light Polarization Rotor. Angew Chem Int Ed Engl 2022; 61:e202202114. [PMID: 35278020 DOI: 10.1002/anie.202202114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/06/2022]
Abstract
We demonstrate mechanically-powered rolling locomotion of a twisted-microcrystal optical-waveguide cavity on the substrate, rotating the output signal's linear-polarization. Self-assembly of (E)-2-bromo-6-(((4-methoxyphenyl)imino)methyl)-4-nitrophenol produces naturally twisted microcrystals. The strain between several intergrowing, orientationally mismatched nanocrystalline fibres dictates the pitch lengths of the twisted crystals. The crystals are flexible, perpendicular to twisted (001) and (010) planes due to π⋅⋅⋅π stacking, C-H⋅⋅⋅Br, N-H⋅⋅⋅O and C-H⋅⋅⋅O interactions. The twisted crystals in their straight and bent geometries guide fluorescence along their body axes and display optical modes. Depending upon the degree of mechanical rolling locomotion, the crystal-waveguide cavity correspondingly rotates the output signal polarization. The presented twisted-crystal cavity with a combination of mechanical locomotion and photonic attributes unfolds a new dimension in mechanophotonics.
Collapse
Affiliation(s)
- Mehdi Rohullah
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Vuppu Vinay Pradeep
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Jada Ravi
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Avulu Vinod Kumar
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Rajadurai Chandrasekar
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| |
Collapse
|
14
|
Erriah B, Zhu X, Hu CT, Kahr BE, Shtukenberg A, Ward MD. Crystallography of Contemporary Contact Insecticides. INSECTS 2022; 13:insects13030292. [PMID: 35323590 PMCID: PMC8949367 DOI: 10.3390/insects13030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/12/2022] [Indexed: 12/04/2022]
Abstract
The active forms of contact insecticides used for combatting mosquito-borne infectious diseases are typically crystalline solids. Numerous molecular crystals are polymorphic, crystallizing in several solid forms characterized by different physicochemical properties, including bioavailability. Our laboratory recently found that the activity of crystalline contact insecticides is inversely dependent on the thermodynamic stability of their polymorphs, suggesting that efficacy can be enhanced by the manipulation of the solid-state structure. This paper argues that crystallography should be central to the development of contact insecticides, particularly because their efficacy continues to be compromised by insecticide resistance, especially among Anopheles mosquito populations that spread malaria. Although insecticidal compounds with new modes of action have been introduced to overcome resistance, new insecticides are expensive to develop and implement. The repurposing of existing chemical agents in metastable, more active crystalline forms provides an inexpensive and efficient method for ‘evergreening’ compounds whose risks are already well-established. We report herein seven new single-crystal structures of insecticides used for controlling infectious disease vectors. The structures reported herein include pyrethroid insecticides recommended by the WHO for indoor residual spraying (IRS)-bifenthrin, β-cyfluthrin, etofenprox, α-cypermethrin, and λ-cyhalothrin as well as the neonicotinoid insecticide thiacloprid.
Collapse
Affiliation(s)
| | | | | | - Bart E. Kahr
- Correspondence: (B.E.K.); (M.D.W.); Tel.: +1-212-992-9579 (B.E.K.)
| | | | - Michael D. Ward
- Correspondence: (B.E.K.); (M.D.W.); Tel.: +1-212-992-9579 (B.E.K.)
| |
Collapse
|
15
|
Rohullah M, Pradeep VV, Ravi J, Kumar AV, Chandrasekar R. Micromechanically‐Powered Rolling Locomotion of Twisted‐Crystal Optical‐Waveguide‐Cavity as a Mobile Light Polarization Rotor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Jada Ravi
- University of Hyderabad Chemistry INDIA
| | | | - Rajadurai Chandrasekar
- University of Hyderabad School of chemistry GachiBowliCentral University post 500046 Hyderabad INDIA
| |
Collapse
|
16
|
Huang KY, Woo EM, Nagarajan S. Unique Periodic Rings Composed of Fractal-Growth Dendritic Branching in Poly(p-dioxanone). Polymers (Basel) 2022; 14:polym14040805. [PMID: 35215718 PMCID: PMC8963038 DOI: 10.3390/polym14040805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amorphous poly(p-vinyl phenol) (PVPh) was added into semicrystalline poly(p-dioxanone) (PPDO) to induce a uniquely novel dendritic/ringed morphology. Polarized-light optical, atomic-force and scanning electron microscopy (POM, AFM, and SEM) techniques were used to observe the crystal arrangement of a uniquely peculiar cactus-like dendritic PPDO spherulite, with periodic ring bands not continuingly circular such as those conventional types reported in the literature, but discrete and detached to self-assemble on each of the branches of the lobs. Correlations and responsible mechanisms for the formation of this peculiar banded-dendritic structure were analyzed. The periodic bands on the top surface and interior of each of the cactus-like lobs were discussed. The banded pattern was composed of feather-like lamellae in random fractals alternately varying their orientations from the radial direction to the tangential one. The tail ends of lamellae at the growth front spawned nucleation cites for new branches; in cycles, the feather-like lamellae self-divided into multiple branches following the Fibonacci sequence to fill the ever-expanding space with the increase of the radius. The branching fractals in the sequence and the periodic ring-banded assembly on each of the segregated lobs of cactus-like dendrites were the key characteristics leading to the formation of this unique dendritic/ringed PPDO spherulite.
Collapse
Affiliation(s)
| | - Eamor M. Woo
- Correspondence: ; Tel.: +886-6-275-7575 (ext. 62670)
| | | |
Collapse
|
17
|
Affiliation(s)
- Catherine E. Killalea
- School of Chemistry The GSK Carbon Neutral Laboratories for Sustainable Chemistry The University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - David B. Amabilino
- School of Chemistry The GSK Carbon Neutral Laboratories for Sustainable Chemistry The University of Nottingham Triumph Road Nottingham NG7 2TU UK
| |
Collapse
|
18
|
Martin AT, Nichols SM, Murphy VL, Kahr B. Chiroptical anisotropy of crystals and molecules. Chem Commun (Camb) 2021; 57:8107-8120. [PMID: 34322691 DOI: 10.1039/d1cc00991e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical activity, a foundational part of chemistry, is not restricted to chiral molecules although generations have been instructed otherwise. A more inclusive view of optical activity is valuable because it clarifies structure-property relationships however, this view only comes into focus in measurements of oriented molecules, commonly found in crystals. Unfortunately, measurements of optical rotatory dispersion or circular dichroism in anisotropic single crystals have challenged scientists for more than two centuries. New polarimetric methods for unpacking the optical activity of crystals in general directions are still needed. Such methods are reviewed as well as some of the 'nourishment' they provide, thereby inviting to new researchers. Methods for fitting intensity measurements in terms of the constitutive tensor that manifests as the differential refraction and absorption of circularly polarized light, are described, and examples are illustrated. Single oriented molecules, as opposed to single oriented crystals, can be treated computationally. Structure-property correlations for such achiral molecules with comparatively simple electronic structures are considered as a heuristic foundation for the response of crystals that may be subject to measurement.
Collapse
Affiliation(s)
- Alexander T Martin
- Department of Chemistry and Molecular Design Institute, New York University, New York City, NY 10003, USA.
| | | | | | | |
Collapse
|
19
|
Tu CH, Woo EM, Nagarajan S, Lugito G. Sophisticated dual-discontinuity periodic bands of poly(nonamethylene terephthalate). CrystEngComm 2021. [DOI: 10.1039/d0ce01329c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallized poly(nonamethylene terephthalate) (PNT) displays mirror-image and Fermat's-spiral ring-banded spherulites, respectively.
Collapse
Affiliation(s)
- Chien-Hua Tu
- Department of Chemical Engineering
- National Cheng Kung University No.1
- Tainan
- Taiwan
| | - Eamor M. Woo
- Department of Chemical Engineering
- National Cheng Kung University No.1
- Tainan
- Taiwan
| | - Selvaraj Nagarajan
- Department of Chemical Engineering
- National Cheng Kung University No.1
- Tainan
- Taiwan
| | - Graecia Lugito
- Department of Chemical Engineering
- National Cheng Kung University No.1
- Tainan
- Taiwan
- Department of Chemical Engineering
| |
Collapse
|
20
|
Nagarajan S, Woo EM. Sluggish growth of poly(ε-caprolactone) leads to petal-shaped aggregates packed with thick-stack lamellar bundles. CrystEngComm 2021. [DOI: 10.1039/d1ce00507c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetically sluggish growth of poly(ε-caprolactone) leads to peculiar camellia-petal-like bands on top, where a stereo-dissection demonstrates interior self-assembled lamellae being periodically grating-structured.
Collapse
Affiliation(s)
- Selvaraj Nagarajan
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan
- Taiwan
| | - Eamor M. Woo
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan
- Taiwan
| |
Collapse
|
21
|
Shtukenberg AG, Drori R, Sturm EV, Vidavsky N, Haddad A, Zheng J, Estroff LA, Weissman H, Wolf SG, Shimoni E, Li C, Fellah N, Efrati E, Kahr B. Crystals of Benzamide, the First Polymorphous Molecular Compound, Are Helicoidal. Angew Chem Int Ed Engl 2020; 59:14593-14601. [PMID: 32472617 DOI: 10.1002/anie.202005738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The growth of spontaneously twisted crystals is a common but poorly understood phenomenon. An analysis of the formation of twisted crystals of a metastable benzamide polymorph (form II) crystallizing from highly supersaturated aqueous and ethanol solutions is given here. Benzamide, the first polymorphic molecular crystal reported (1832), would have been the first helicoidal crystal observed had the original authors undertaken an analysis by light microscopy. Polymorphism and twisting frequently concur as they are both associated with high thermodynamic driving forces for crystallization. Optical and electron microscopies as well as electron and powder X-ray diffraction reveal a complex lamellar structure of benzamide form II needle-like crystals. The internal stress produced by the overgrowth of lamellae is shown to be able to create a twist moment that is responsible for the observed non-classical morphologies.
Collapse
Affiliation(s)
- Alexander G Shtukenberg
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Ran Drori
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Elena V Sturm
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Asaf Haddad
- Department of Physics of Complex Systems, Faculty of Physics, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Jason Zheng
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, 210 Bard Hall, Ithaca, NY, 14850, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, 420 Physical Sciences Building, Ithaca, NY, 14853, USA
| | - Haim Weissman
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Chao Li
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Noalle Fellah
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Faculty of Physics, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
22
|
Shtukenberg AG, Drori R, Sturm EV, Vidavsky N, Haddad A, Zheng J, Estroff LA, Weissman H, Wolf SG, Shimoni E, Li C, Fellah N, Efrati E, Kahr B. Crystals of Benzamide, the First Polymorphous Molecular Compound, Are Helicoidal. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Ran Drori
- Department of Chemistry and Biochemistry Yeshiva University 245 Lexington Avenue New York NY 10016 USA
| | - Elena V. Sturm
- Department of Chemistry University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Netta Vidavsky
- Department of Chemical Engineering Ben-Gurion University of the Negev 84105 Beer Sheva Israel
| | - Asaf Haddad
- Department of Physics of Complex Systems Faculty of Physics Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Jason Zheng
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering Cornell University 210 Bard Hall Ithaca NY 14850 USA
- Kavli Institute at Cornell for Nanoscale Science Cornell University 420 Physical Sciences Building Ithaca NY 14853 USA
| | - Haim Weissman
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support Faculty of Chemistry Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Eyal Shimoni
- Department of Chemical Research Support Faculty of Chemistry Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Chao Li
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Noalle Fellah
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Efi Efrati
- Department of Physics of Complex Systems Faculty of Physics Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
23
|
Chen C, Wang Y, Jiang M, Wang J, Guan J, Zhang B, Wang L, Lin J, Jin P. Parallel Polarization Illumination with a Multifocal Axicon Metalens for Improved Polarization Imaging. NANO LETTERS 2020; 20:5428-5434. [PMID: 32584049 DOI: 10.1021/acs.nanolett.0c01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polarization imaging is an important branch of the microscopy technique that can provide additional information and enhanced contrast. The illumination system of a polarization microscope enables many different polarizations but makes the setup bulky, complicated, and slow. Here, we design and fabricate an ultrathin planar axicon metalens that also enables parallel illumination with different polarizations. Our results reveal a diffraction-limited size and high degree of linear polarization. To verify our approach, we accurately map the polarization angle of an aluminum grating, which is used as a polarizer. Furthermore, we demonstrate that elliptical polarization can be generated without additional design. A single metalens has the same capabilities as a conventional illumination module containing a polarizer, compensator, and rotation-stage/optical modulator. In addition, our device has the potential to enable rapid super-resolution polarization imaging. The new method could be useful in many applications and areas, including, e.g., materials research and biomedicine.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiqun Wang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Minwei Jiang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jian Wang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jian Guan
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Baoshun Zhang
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Lin
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peng Jin
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
24
|
Dizon GC, Atkinson G, Argent SP, Santu LT, Amabilino DB. Sustainable sorbitol-derived compounds for gelation of the full range of ethanol-water mixtures. SOFT MATTER 2020; 16:4640-4654. [PMID: 32373900 DOI: 10.1039/d0sm00343c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the development of soft material systems inspired by green chemistry, we show that naturally occurring starting materials can be used to prepare mono- and di-benzylidene sorbitol derivatives. These compounds gelate a range of organic, aqueous (including with mono and divalent metal salt solutions) and ethanolic (ethanol-water) solutions, with the equimolar mixture of two of the gelators gelling all compositions from 100% ethanol to 100% water (something neither of the individual components do). We explored the influence of modifications to the acetal substituents on the formation of the compounds as well as the impact of steric bulk on self-assembly properties of the gelators. The effect of solvent on the self-assembly, morphology, and rheology of the 1,3:2,4-di(4-isopropylbenzylidene)-d-sorbitol (DBS-iPr), 2,4(4-isopropylbenzylidene)-d-sorbitol (MBS-iPr) and the equimolar multicomponent (DBS-MBS-iPr) gels have been investigated. DBS-iPr gelates polar solvents to form smooth flat fibres, whereas in non-polar solvents such as cyclohexane helical fibres grow where the chirality is determined by the stereochemistry of the sugar. Oscillatory rheology revealed that MBS-iPr gels have appreciable strength and elasticity, in comparison to DBS-iPr gels, regardless of the solvent medium employed. Powder X-ray diffraction was used to probe the arrangement of the gelators in the xerogels they form, and two single crystal X-ray structures of related MBS derivatives give the first precise structural information concerning layering and hydrogen bonding in the monobenzylidene compounds. This kind of layering could explain the apparent self-sorting behaviour of the DBS-MBS-iPr multicomponent gels. The combination of sorbitol-derived gelators reported in this work could find potential applications as multicomponent systems, for example, in soft materials for personal care products, polymer nucleation/clarification, and energy technology.
Collapse
Affiliation(s)
- Glenieliz C Dizon
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK. and The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, NG7 2TU, UK
| | - George Atkinson
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK. and The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, NG7 2TU, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK.
| | - Lea T Santu
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK. and The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, NG7 2TU, UK
| | - David B Amabilino
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK. and The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, NG7 2TU, UK
| |
Collapse
|
25
|
Periodic Fractal-Growth Branching to Nano-Structured Grating Aggregation in Phthalic Acid. Sci Rep 2020; 10:4062. [PMID: 32132593 PMCID: PMC7055272 DOI: 10.1038/s41598-020-60782-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
Small-molecule phthalic acid (PA), confined in micrometer thin films, was crystallized in the presence of strongly interacting tannic acid (TA) to investigate crystal assembly and correlation between banded patterns and branching structures. Several compositions of the mixture of ethanol/water solutions and evaporation temperatures were also manipulated to investigate the kinetic effects on the morphology of PA crystals. With increasing evaporation rate, the morphology of PA crystals systematically changes from circular-banded spherulites to highly ordered grating-banded patterns. A unique periodic fractal-branch pattern with contrasted birefringent bands exists at intermediate evaporation rate, and this unique grating architecture has never been found in other banded crystals. Crystal assembly of these three periodic morphologies was analyzed by utilizing atomic-force microscopy (AFM) and scanning electron microscopy (SEM) to reveal the mechanisms of formation of hierarchical structures of PA. The detailed growth mechanisms of the novel fractal-branching assembly into circular- or grating-banded patterns are analyzed in this work.
Collapse
|
26
|
Lovinger AJ. Twisted Crystals and the Origin of Banding in Spherulites of Semicrystalline Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01567] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Chen TY, Woo EM, Nagarajan S. Crystal aggregation into periodically grating-banded assemblies in phthalic acid modulated by molten poly(ethylene oxide). CrystEngComm 2020. [DOI: 10.1039/c9ce01366k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A small-molecule compound, phthalic acid (PA), crystallized in the presence of poly(ethylene oxide) (PEO) with various compositions was utilized as a model to investigate the morphology and crystal assembly of periodically ordered structures in banded spherulites.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan
- Taiwan
| | - Eamor M. Woo
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan
- Taiwan
| | - Selvaraj Nagarajan
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan
- Taiwan
| |
Collapse
|
28
|
Ye HM, Freudenthal JH, Tan M, Yang J, Kahr B. Chiroptical Differentiation of Twisted Chiral and Achiral Polymer Crystals. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hai-Mu Ye
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, P. R. China
| | - John H. Freudenthal
- Hinds Instruments, 7245 NW Evergreen Parkway, Hillsboro, Oregon 97124, United States
| | - Melissa Tan
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Jingxiang Yang
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
29
|
Liu X, Contal C, Schmutz M, Krafft MP. Two-Dimensional Radial or Ring-Banded Nonbirefringent Spherulites of Semifluorinated Alkanes Coexistent with Close-Packed Self-Assembled Surface Nanodomains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15126-15133. [PMID: 30403356 DOI: 10.1021/acs.langmuir.8b01893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of semifluorinated alkanes (C nF2 n+1C mH2 m+1 diblocks, F n H m, n = 6, 8, 10; m = 16, 18, 20), when cast as films onto solid substrates, were found to form ring-banded or radial spherulites when heated above their isotropic temperature and subsequently cooled down to room temperature, demonstrating that the formation of two-dimensional (2D) spherulites is a general feature of molecular fluorocarbon-hydrocarbon diblocks. These spherulites are not birefringent, a seldom encountered feature for such structures (never, so far, for spherulites made of small molecules). They also provide examples of fluorinated 2D spherulites. Film morphology was analyzed by optical microscopy, interferometric profilometry, atomic force microscopy (AFM), and scanning electron microscopy. Increasing the length of the Fn segment favors the formation of ring-banded spherulites, whereas short Fn segments tend to favor extended radial stripes. Variation of the cooling rate provides control over the size and morphology of the spherulites: slow cooling promotes fibers and radial spherulites, whereas fast cooling fosters ring-banded spherulites. The AFM studies of F10 H16 films revealed that the latter consist of stacks of regularly spaced lamellae. We also observed that, remarkably, stacked lamellae (repeating distance ∼6 nm) can coexist with a layer of close-packed monodisperse circular self-assembled surface nanodomains of Fn Hm diblocks (∼30 nm in diameter); the latter are known to form from such diblocks at interfaces at room temperature. Substrates partially covered with F10 H16 contain incomplete ring-banded spherulites and smaller objects in which the lamellae and circular nanodomains coexist.
Collapse
Affiliation(s)
- Xianhe Liu
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| | - Christophe Contal
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| | - Marc Schmutz
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| | - Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (ICS CNRS) , 23 rue du Loess , 67034 Strasbourg , France
| |
Collapse
|
30
|
Two polymorphic cholesterol monohydrate crystal structures form in macrophage culture models of atherosclerosis. Proc Natl Acad Sci U S A 2018; 115:7662-7669. [PMID: 29967179 DOI: 10.1073/pnas.1803119115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of atherosclerotic plaques in the blood vessel walls is the result of LDL particle uptake, and consequently of cholesterol accumulation in macrophage cells. Excess cholesterol accumulation eventually results in cholesterol crystal deposition, the hallmark of mature atheromas. We followed the formation of cholesterol crystals in J774A.1 macrophage cells with time, during accumulation of LDL particles, using a previously developed correlative cryosoft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM) technique. We show, in the initial accumulation stages, formation of small quadrilateral crystal plates associated with the cell plasma membrane, which may subsequently assemble into large aggregates. These plates match crystals of the commonly observed cholesterol monohydrate triclinic structure. Large rod-like cholesterol crystals form at a later stage in intracellular locations. Using cryotransmission electron microscopy (cryo-TEM) and cryoelectron diffraction (cryo-ED), we show that the structure of the large elongated rods corresponds to that of monoclinic cholesterol monohydrate, a recently determined polymorph of the triclinic crystal structure. These monoclinic crystals form with an unusual hollow cylinder or helical architecture, which is preserved in the mature rod-like crystals. The rod-like morphology is akin to that observed in crystals isolated from atheromas. We suggest that the crystals in the atherosclerotic plaques preserve in their morphology the memory of the structure in which they were formed. The identification of the polymorph structure, besides explaining the different crystal morphologies, may serve to elucidate mechanisms of cholesterol segregation and precipitation in atherosclerotic plaques.
Collapse
|
31
|
Kahr B. Polarization in France. Chirality 2018; 30:351-368. [DOI: 10.1002/chir.22818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Bart Kahr
- Department of Chemistry New York University New York NY USA
| |
Collapse
|
32
|
Liu X, Mielke S, Contal C, Favier D, Yamamoto A, Tanaka M, Krafft MP. 2D Spherulites of a Semi-Fluorinated Alkane: Controlled Access to Either Radial Or Ring-Banded Morphologies. Chemphyschem 2018; 19:29-33. [PMID: 29059495 DOI: 10.1002/cphc.201701064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/22/2017] [Indexed: 01/29/2023]
Abstract
Thin films of a semi-fluorinated alkane cast onto solid substrates consist of well-formed two-dimensional non-birefringent ring-banded and/or radial spherulites. Controlling the experimental conditions allows orientation of the crystallization toward either radial-only or ring-banded-only morphologies. Intermediate states were also captured in which both radial and ring-banded spherulites coexist. Monitoring of the formation of these intermediate states brought evidence for a first crystallization mode that sweeps radially outwards from a central nucleus until the propagating front edge experiences a second crystallization mode that proceeds through a diffusion-controlled rhythmic crystallization mechanism that leads to high (≈2 μm) concentric ridges. These 2D spherulites were investigated by optical and atomic force microscopies, interferometric profilometry, and off-specular neutron scattering.
Collapse
Affiliation(s)
- Xianhe Liu
- University of Strasbourg, Institut Charles Sadron (ICS CNRS), 23 rue du Loess, 67034, Strasbourg, France
| | - Salomé Mielke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Christophe Contal
- University of Strasbourg, Institut Charles Sadron (ICS CNRS), 23 rue du Loess, 67034, Strasbourg, France
| | - Damien Favier
- University of Strasbourg, Institut Charles Sadron (ICS CNRS), 23 rue du Loess, 67034, Strasbourg, France
| | - Akihisa Yamamoto
- Institute for Integrated Cell-Materials Science (WPI iCeMS), Kyoto University, 606-8501, Kyoto, Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.,Institute for Integrated Cell-Materials Science (WPI iCeMS), Kyoto University, 606-8501, Kyoto, Japan
| | - Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (ICS CNRS), 23 rue du Loess, 67034, Strasbourg, France
| |
Collapse
|
33
|
Yang J, Hu CT, Shtukenberg AG, Yin Q, Kahr B. l-Malic acid crystallization: polymorphism, semi-spherulites, twisting, and polarity. CrystEngComm 2018. [DOI: 10.1039/c7ce02107k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new polymorph and twisted semi-spherulites ofl-malic acid are described and discussed in this work.
Collapse
Affiliation(s)
- Jingxiang Yang
- Department of Chemistry and Molecular Design Institute
- New York University
- New York City
- USA
- School of Chemical Engineering and Technology
| | - Chunhua T. Hu
- Department of Chemistry and Molecular Design Institute
- New York University
- New York City
- USA
| | | | - Qiuxiang Yin
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute
- New York University
- New York City
- USA
- Department of Advanced Science and Engineering (TWins)
| |
Collapse
|
34
|
Gao Y, Yao SF, Ye HM, Guo BH, Xu J. Orientation of polymer chains in spherulites of poly(ethylene oxide)-urea inclusion compounds. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Atomic-Force Microscopy Analyses on Dislocation in Extinction Bands of Poly(dodecamethylene terephthalate) Spherulites Solely Packed of Single-Crystal-Like Lamellae. CRYSTALS 2017. [DOI: 10.3390/cryst7090274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study, using atomic-force and polarized-optical light (AFM and POM) microscopies on the extinction banded spherulites of poly(dodecamethylene terephthalate) (P12T) at high Tc = 110 °C with a film thickness kept at 1–3 µm, has verified that banded spherulites can be composed of stacks of entirely single-crystal-like lamellae free of any twisting, flipping, or bending, and no branching of lamellae. Defects in the crystal packing of extinction bands are present in both intra-band and inter-band regions. The intra-band defects originate from the miss-match in spiral-circling into circular bands while the inter-band defects are in the interfaces between successive bands where single crystals in the ridge are jammed to deformation, then suddenly precipitate prior to initiating another cycle of banding. The fish-scale lamellae, at the initiation of a cycle, are orderly packed as terrace-like single crystals; conversely, near or on the defected regions, they are highly jammed or squeezed and deformed to beyond recognition of their original single-crystal nature.
Collapse
|
36
|
Lugito G, Woo EM. Multishell Oblate Spheroid Growth in Poly(trimethylene terephthalate) Banded Spherulites. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graecia Lugito
- Department of Chemical
Engineering, National Cheng Kung University, Tainan 701-01, Taiwan
| | - Eamor M. Woo
- Department of Chemical
Engineering, National Cheng Kung University, Tainan 701-01, Taiwan
| |
Collapse
|
37
|
Chen HP, Woo EM. Dendritic lamellar assembly in solution-cast poly(l-lactic acid) spherulites. CrystEngComm 2017. [DOI: 10.1039/c7ce01378g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PLLA crystallized by solvent evaporation in THF in open atmosphere exhibits a one-ring or two-ring birefringence-banded morphology with dendritic lamellae arranged in multi-layers and shaped as a dome.
Collapse
Affiliation(s)
- Hsin-Ping Chen
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan
- Taiwan
| | - Eamor M. Woo
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan
- Taiwan
| |
Collapse
|
38
|
Savytskii D, Jain H, Tamura N, Dierolf V. Rotating lattice single crystal architecture on the surface of glass. Sci Rep 2016; 6:36449. [PMID: 27808168 PMCID: PMC5093585 DOI: 10.1038/srep36449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/14/2016] [Indexed: 02/05/2023] Open
Abstract
Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.
Collapse
Affiliation(s)
- D Savytskii
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
| | - H Jain
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
| | - N Tamura
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - V Dierolf
- Physics Department, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
39
|
Cui X, Nichols SM, Arteaga O, Freudenthal J, Paula F, Shtukenberg AG, Kahr B. Dichroism in Helicoidal Crystals. J Am Chem Soc 2016; 138:12211-8. [PMID: 27617640 DOI: 10.1021/jacs.6b06278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Department of Chemistry and Molecular Design Institute, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Shane M Nichols
- Department of Chemistry and Molecular Design Institute, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Oriol Arteaga
- Departament de Física Aplicada, Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona , C/Martí i Franqués 1, 08028 Barcelona, Catalonia, Spain
| | - John Freudenthal
- Hinds Instruments , 7245 NW Evergreen Parkway, Hillsboro, Oregon 97124, United States
| | - Froilanny Paula
- Department of Chemistry and Molecular Design Institute, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Alexander G Shtukenberg
- Department of Chemistry and Molecular Design Institute, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University , 100 Washington Square East, New York, New York 10003, United States.,Department of Advanced Science and Engineering (TWIns), Waseda University , 162-0056 Tokyo, Japan
| |
Collapse
|
40
|
|
41
|
|
42
|
Zhu Q, Shtukenberg AG, Carter DJ, Yu TQ, Yang J, Chen M, Raiteri P, Oganov AR, Pokroy B, Polishchuk I, Bygrave PJ, Day GM, Rohl AL, Tuckerman ME, Kahr B. Resorcinol Crystallization from the Melt: A New Ambient Phase and New "Riddles". J Am Chem Soc 2016; 138:4881-9. [PMID: 26986837 DOI: 10.1021/jacs.6b01120] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structures of the α and β phases of resorcinol, a major commodity chemical in the pharmaceutical, agrichemical, and polymer industries, were the first polymorphic pair of molecular crystals solved by X-ray analysis. It was recently stated that "no additional phases can be found under atmospheric conditions" (Druzbicki, K. et al. J. Phys. Chem. B 2015, 119, 1681). Herein is described the growth and structure of a new ambient pressure phase, ε, through a combination of optical and X-ray crystallography and by computational crystal structure prediction algorithms. α-Resorcinol has long been a model for mechanistic crystal growth studies from both solution and vapor because prisms extended along the polar axis grow much faster in one direction than in the opposite direction. Research has focused on identifying the absolute sense of the fast direction-the so-called "resorcinol riddle"-with the aim of identifying how solvent controls crystal growth. Here, the growth velocity dissymmetry in the melt is analyzed for the β phase. The ε phase only grows from the melt, concomitant with the β phase, as polycrystalline, radially growing spherulites. If the radii are polar, then the sense of the polar axis is an essential feature of the form. Here, this determination is made for spherulites of β resorcinol (ε, point symmetry 222, does not have a polar axis) with additives that stereoselectively modify growth velocities. Both β and ε have the additional feature that individual radial lamellae may adopt helicoidal morphologies. We correlate the appearance of twisting in β and ε with the symmetry of twist-inducing additives.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Geosciences, Stony Brook University , Stony Brook, New York 11794, United States
| | - Alexander G Shtukenberg
- Department of Chemistry and Molecular Design Institute, New York University , New York City, New York 10003, United States
| | - Damien J Carter
- Curtin Institute for Computation, Nanochemistry Research Institute and Department of Chemistry, Curtin University , P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Tang-Qing Yu
- Department of Chemistry and Courant Institute, New York University , New York City, New York 10003, United States
| | - Jingxiang Yang
- Department of Chemistry and Molecular Design Institute, New York University , New York City, New York 10003, United States
| | - Ming Chen
- Department of Chemistry and Courant Institute, New York University , New York City, New York 10003, United States
| | - Paolo Raiteri
- Curtin Institute for Computation, Nanochemistry Research Institute and Department of Chemistry, Curtin University , P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Artem R Oganov
- Department of Geosciences, Stony Brook University , Stony Brook, New York 11794, United States
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion Israel Institute of Technology , Haifa 32000, Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion Israel Institute of Technology , Haifa 32000, Israel
| | - Peter J Bygrave
- School of Chemistry, University of Southampton , Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Graeme M Day
- School of Chemistry, University of Southampton , Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Andrew L Rohl
- Curtin Institute for Computation, Nanochemistry Research Institute and Department of Chemistry, Curtin University , P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Mark E Tuckerman
- Department of Chemistry and Courant Institute, New York University , New York City, New York 10003, United States.,New York University-East China Normal University Center for Computational Chemistry at NYU Shanghai , 3663 Zhongshan Road North, Shanghai 200062, China
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University , New York City, New York 10003, United States
| |
Collapse
|
43
|
|
44
|
Woo EM, Lugito G, Yang CE. Analysis of crystal assembly in banded spherulites of phthalic acid upon solvent evaporation. CrystEngComm 2016. [DOI: 10.1039/c5ce02043c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differences are seen in the mechanism of lamellar assembly of two alternating banded regions (valley and ridge) of phthalic acid spherulites solvent-evaporation crystallized at either higher (80 °C) or ambient (28 °C) temperature.
Collapse
Affiliation(s)
- Eamor M. Woo
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan, Taiwan
| | - Graecia Lugito
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan, Taiwan
| | - Cheng-En Yang
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan, Taiwan
| |
Collapse
|
45
|
|
46
|
Fang A, Haataja M. Simulation study of twisted crystal growth in organic thin films. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042404. [PMID: 26565254 DOI: 10.1103/physreve.92.042404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate.
Collapse
Affiliation(s)
- Alta Fang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Mikko Haataja
- Department of Mechanical and Aerospace Engineering, Princeton Institute for the Science and Technology of Materials (PRISM), the Andlinger Center for Energy and the Environment (ACEE), and Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
47
|
Shtukenberg AG, Gujral A, Rosseeva E, Cui X, Kahr B. Mechanics of twisted hippuric acid crystals untwisting as they grow. CrystEngComm 2015. [DOI: 10.1039/c5ce00195a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Ni'mah H, Woo EM. Coexisting Straight, Radial, and Banded Lamellae on the Six Corners of Hexagon-Shaped Spherulites in Poly(l-Lactide). MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hikmatun Ni'mah
- Department of Chemical Engineering; National Cheng Kung University; Tainan 701 Taiwan
- Department of Chemical Engineering; Faculty of Industrial Technology; Sepuluh Nopember Institute of Technology; Kampus ITS Sukolilo Surabaya East Java 60111 Indonesia
| | - Eamor M. Woo
- Department of Chemical Engineering; National Cheng Kung University; Tainan 701 Taiwan
| |
Collapse
|
49
|
Shtukenberg AG, Lee SS, Kahr B, Ward MD. Manipulating Crystallization with Molecular Additives. Annu Rev Chem Biomol Eng 2014; 5:77-96. [DOI: 10.1146/annurev-chembioeng-061312-103308] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander G. Shtukenberg
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003; ,
| | - Stephanie S. Lee
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003; ,
| | - Bart Kahr
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003; ,
| | - Michael D. Ward
- Molecular Design Institute, Department of Chemistry, New York University, New York, New York 10003; ,
| |
Collapse
|
50
|
Cui X, Shtukenberg AG, Freudenthal J, Nichols S, Kahr B. Circular Birefringence of Banded Spherulites. J Am Chem Soc 2014; 136:5481-90. [DOI: 10.1021/ja5013382] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyan Cui
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003
| | - Alexander G. Shtukenberg
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003
| | - John Freudenthal
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003
- Hinds Instruments, 7245 NW
Evergreen Parkway, Hillsboro, Oregon 97124
| | - Shane Nichols
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003
| | - Bart Kahr
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003
| |
Collapse
|