1
|
Wang Z, Chen Y, Jiang J, Zhao X, Liu W. Mapping photoisomerization dynamics on a three-state model potential energy surface in bacteriorhodopsin using femtosecond stimulated Raman spectroscopy. Chem Sci 2025; 16:3713-3719. [PMID: 39886431 PMCID: PMC11775652 DOI: 10.1039/d4sc07540d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 02/01/2025] Open
Abstract
The process of proton translocation in Halobacterium salinarum, triggered by light, is powered by the photoisomerization of all-trans-retinal in bacteriorhodopsin (bR). The primary events in bR involving rapid structural changes upon light absorption occur within subpicoseconds to picoseconds. While the three-state model has received extensive support in describing the primary events between the H and K states, precise characterization of each excited state in the three-state model during photoisomerization remains elusive. In this study, we investigate the ultrafast structural dynamics of all-trans-retinal in bR using femtosecond stimulated Raman spectroscopy. We report Raman modes at 1820 cm-1 which arise from C[double bond, length as m-dash]C stretch vibronic coupling and provide direct experimental evidence for the involvement of the I and J states with 2A- g symmetric character in the three-state model. The detection of the C[double bond, length as m-dash]C vibronic coupling mode, C[double bond, length as m-dash]N stretching mode (1700 cm-1), and hydrogen out-of-plane (HOOP) mode (954 cm-1) further supports the three-state model that elucidates the initial charge translocation along the conjugated chain accompanied by trans-to-cis photoisomerization dynamics through H(1B+ u) → I(2A- g) → J(2A- g) → K(13-cis ground state) transitions in all-trans-retinal in bR.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yu Chen
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Xin Zhao
- Department of Physics, East China Normal University Shanghai 200062 P. R. China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
2
|
Misra R, Das I, Dér A, Steinbach G, Shim JG, Busse W, Jung KH, Zimányi L, Sheves M. Impact of protein-chromophore interaction on the retinal excited state and photocycle of Gloeobacter rhodopsin: role of conserved tryptophan residues. Chem Sci 2023; 14:9951-9958. [PMID: 37736621 PMCID: PMC10510653 DOI: 10.1039/d3sc02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
The function of microbial as well as mammalian retinal proteins (aka rhodopsins) is associated with a photocycle initiated by light excitation of the retinal chromophore of the protein, covalently bound through a protonated Schiff base linkage. Although electrostatics controls chemical reactions of many organic molecules, attempt to understand its role in controlling excited state reactivity of rhodopsins and, thereby, their photocycle is scarce. Here, we investigate the effect of highly conserved tryptophan residues, between which the all-trans retinal chromophore of the protein is sandwiched in microbial rhodopsins, on the charge distribution along the retinal excited state, quantum yield and nature of the light-induced photocycle and absorption properties of Gloeobacter rhodopsin (GR). Replacement of these tryptophan residues by non-aromatic leucine (W222L and W122L) or phenylalanine (W222F) does not significantly affect the absorption maximum of the protein, while all the mutants showed higher sensitivity to photobleaching, compared to wild-type GR. Flash photolysis studies revealed lower quantum yield of trans-cis photoisomerization in W222L as well as W222F mutants relative to wild-type. The photocycle kinetics are also controlled by these tryptophan residues, resulting in altered accumulation and lifetime of the intermediates in the W222L and W222F mutants. We propose that protein-retinal interactions facilitated by conserved tryptophan residues are crucial for achieving high quantum yield of the light-induced retinal isomerization, and affect the thermal retinal re-isomerization to the resting state.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University Seoul 04107 South Korea
| | - Wayne Busse
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin Berlin 10115 Germany
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University Seoul 04107 South Korea
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
3
|
Chakraborty P, Couto RC, List NH. Deciphering Methylation Effects on S 2( ππ*) Internal Conversion in the Simplest Linear α,β-Unsaturated Carbonyl. J Phys Chem A 2023. [PMID: 37331016 DOI: 10.1021/acs.jpca.3c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/20/2023]
Abstract
Chemical substituents can influence photodynamics by altering the location of critical points and the topography of the potential energy surfaces (electronic effect) and by selectively modifying the inertia of specific nuclear modes (inertial effects). Using nonadiabatic dynamics simulations, we investigate the impact of methylation on S2(ππ*) internal conversion in acrolein, the simplest linear α,β-unsaturated carbonyl. Consistent with time constants reported in a previous time-resolved photoelectron spectroscopy study, S2 → S1 deactivation occurs on an ultrafast time scale (∼50 fs). However, our simulations do not corroborate the sequential decay model used to fit the experiment. Instead, upon reaching the S1 state, the wavepacket bifurcates: a portion undergoes ballistic S1 → S0 deactivation (∼90 fs) mediated by fast bond-length alternation motion, while the remaining decays on the picosecond time scale. Our analysis reveals that methyl substitution, generally assumed to mainly exert inertial influence, is also manifested in important electronic effects due to its weak electron-donating ability. While methylation at the β C atom gives rise to effects principally of an inertial nature, such as retarding the twisting motion of the terminal -CHCH3 group and increasing its coupling with pyramidalization, methylation at the α or carbonyl C atom modifies the potential energy surfaces in a way that also contributes to altering the late S1-decay behavior. Specifically, our results suggest that the observed slowing of the picosecond component upon α-methylation is a consequence of a tighter surface and reduced amplitude along the central pyramidalization, effectively restricting the access to the S1/S0-intersection seam. Our work offers new insight into the S2(ππ*) internal conversion mechanisms in acrolein and its methylated derivatives and highlights site-selective methylation as a tuning knob to manipulate photochemical reactions.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Rafael C Couto
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Nanna H List
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
4
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
5
|
Borji S, Vahedpour M. Quantum chemical design of near-infrared retinal-based pigments and evaluating their vibronic/electronic properties. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
|
6
|
Gruber E, Kabylda AM, Nielsen MB, Rasmussen AP, Teiwes R, Kusochek PA, Bochenkova AV, Andersen LH. Light Driven Ultrafast Bioinspired Molecular Motors: Steering and Accelerating Photoisomerization Dynamics of Retinal. J Am Chem Soc 2022; 144:69-73. [PMID: 34958197 DOI: 10.1021/jacs.1c10752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Photoisomerization of retinal protonated Schiff base in microbial and animal rhodopsins are strikingly ultrafast and highly specific. Both protein environments provide conditions for fine-tuning the photochemistry of their chromophores. Here, by combining time-resolved action absorption spectroscopy and high-level electronic structure theory, we show that similar control can be gained in a synthetically engineered retinal chromophore. By locking the dimethylated retinal Schiff base at the C11═C12 double bond in its trans configuration (L-RSB), the excited-state decay is rendered from a slow picosecond to an ultrafast subpicosecond regime in the gas phase. Steric hindrance and pretwisting of L-RSB are found to be important for a significant reduction in the excited-state energy barriers, where isomerization of the locked chromophore proceeds along C9═C10 rather than the preferred C11═C12 isomerization path. Remarkably, the accelerated excited-state dynamics also becomes steered. We show that L-RSB is capable of unidirectional 360° rotation from all-trans to 9-cis and from 9-cis to all-trans in only two distinct steps induced by consecutive absorption of two 600 nm photons. This opens a way for the rational design of red-light-driven ultrafast molecular rotary motors based on locked retinal chromophores.
Collapse
Affiliation(s)
- Elisabeth Gruber
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Adil M Kabylda
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Anne P Rasmussen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ricky Teiwes
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Pavel A Kusochek
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Demoulin B, Maiuri M, Berbasova T, Geiger JH, Borhan B, Garavelli M, Cerullo G, Rivalta I. Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores. Chemistry 2021; 27:16389-16400. [PMID: 34653286 DOI: 10.1002/chem.202102383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2021] [Indexed: 11/07/2022]
Abstract
Artificial biomimetic chromophore-protein complexes inspired by natural visual pigments can feature color tunability across the full visible spectrum. However, control of excited state dynamics of the retinal chromophore, which is of paramount importance for technological applications, is lacking due to its complex and subtle photophysics/photochemistry. Here, ultrafast transient absorption spectroscopy and quantum mechanics/molecular mechanics simulations are combined for the study of highly tunable rhodopsin mimics, as compared to retinal chromophores in solution. Conical intersections and transient fluorescent intermediates are identified with atomistic resolution, providing unambiguous assignment of their ultrafast excited state absorption features. The results point out that the electrostatic environment of the chromophore, modified by protein point mutations, affects its excited state properties allowing control of its photophysics with same power of chemical modifications of the chromophore. The complex nature of such fine control is a fundamental knowledge for the design of bio-mimetic opto-electronic and photonic devices.
Collapse
Affiliation(s)
- Baptiste Demoulin
- Laboratoire de Chimie, Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342, Lyon, France
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Ivan Rivalta
- Laboratoire de Chimie, Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, 69342, Lyon, France.,Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
8
|
Chuang C, Brumer P. Extreme Parametric Sensitivity in the Steady-State Photoisomerization of Two-Dimensional Model Rhodopsin. J Phys Chem Lett 2021; 12:3618-3624. [PMID: 33825472 DOI: 10.1021/acs.jpclett.1c00577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/12/2023]
Abstract
We computationally studied the photoisomerization reaction of the retinal chromophore in rhodopsin using a two-state two-mode model coupled to thermal baths. Reaction quantum yields at the steady state (10 ps and beyond) were found to be considerably different than their transient values, suggesting a weak correlation between transient and steady-state dynamics in these systems. Significantly, the steady-state quantum yield was highly sensitive to minute changes in system parameters, while transient dynamics was nearly unaffected. Correlation of such sensitivity with standard level spacing statistics of the nonadiabatic vibronic system suggests a possible origin in quantum chaos. The significance of this observation of quantum yield parametric sensitivity in biological models of vision has profound conceptual and fundamental implications.
Collapse
Affiliation(s)
- Chern Chuang
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
9
|
El‐Tahawy MMT, Conti I, Bonfanti M, Nenov A, Garavelli M. Tailoring Spectral and Photochemical Properties of Bioinspired Retinal Mimics by in Silico Engineering. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
- Chemistry Department Faculty of Science Damanhour University Damanhour 22511 Egypt
| | - Irene Conti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| |
Collapse
|
10
|
El‐Tahawy MMT, Conti I, Bonfanti M, Nenov A, Garavelli M. Tailoring Spectral and Photochemical Properties of Bioinspired Retinal Mimics by in Silico Engineering. Angew Chem Int Ed Engl 2020; 59:20619-20627. [DOI: 10.1002/anie.202008644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
- Chemistry Department Faculty of Science Damanhour University Damanhour 22511 Egypt
| | - Irene Conti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| |
Collapse
|
11
|
Gueye M, Paolino M, Gindensperger E, Haacke S, Olivucci M, Léonard J. Vibrational coherence and quantum yield of retinal-chromophore-inspired molecular switches. Faraday Discuss 2020; 221:299-321. [DOI: 10.1039/c9fd00062c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
UV-Vis transient absorption (TA) spectroscopy is used to carry out a systematic investigation of the ultrafast CC double photoisomerization dynamics and quantum yield of each isomer of a set of six chromophores based on the same retinal-inspired, indanylidene pyrrolinium (IP) molecular framework.
Collapse
Affiliation(s)
- Moussa Gueye
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- UMR 7504
- F-67034 Strasbourg
| | - Marco Paolino
- Dipartimento di Biotechnologie
- Chimica e Farmacia
- Università di Siena
- I-53100 Siena
- Italy
| | - Etienne Gindensperger
- Université de Strasbourg
- CNRS
- Laboratoire de Chimie Quantique
- Institut de Chimie
- UMR 7177
| | - Stefan Haacke
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- UMR 7504
- F-67034 Strasbourg
| | - Massimo Olivucci
- Dipartimento di Biotechnologie
- Chimica e Farmacia
- Università di Siena
- I-53100 Siena
- Italy
| | - Jérémie Léonard
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- UMR 7504
- F-67034 Strasbourg
| |
Collapse
|
12
|
Agathangelou D, Orozco-Gonzalez Y, Del Carmen Marín M, Roy PP, Brazard J, Kandori H, Jung KH, Léonard J, Buckup T, Ferré N, Olivucci M, Haacke S. Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin. Faraday Discuss 2019; 207:55-75. [PMID: 29388996 DOI: 10.1039/c7fd00200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Anabaena sensory rhodopsin (ASR) is a particular microbial retinal protein for which light-adaptation leads to the ability to bind both the all-trans, 15-anti (AT) and the 13-cis, 15-syn (13C) isomers of the protonated Schiff base of retinal (PSBR). In the context of obtaining insight into the mechanisms by which retinal proteins catalyse the PSBR photo-isomerization reaction, ASR is a model system allowing to study, within the same protein, the protein-PSBR interactions for two different PSBR conformers at the same time. A detailed analysis of the vibrational spectra of AT and 13C, and their photo-products in wild-type ASR obtained through femtosecond (pump-) four-wave-mixing is reported for the first time, and compared to bacterio- and channelrhodopsin. As part of an extensive study of ASR mutants with blue-shifted absorption spectra, we present here a detailed computational analysis of the origin of the mutation-induced blue-shift of the absorption spectra, and identify electrostatic interactions as dominating steric effects that would entail a red-shift. The excited state lifetimes and isomerization reaction times (IRT) for the three mutants V112N, W76F, and L83Q are studied experimentally by femtosecond broadband transient absorption spectroscopy. Interestingly, in all three mutants, isomerization is accelerated for AT with respect to wild-type ASR, and this the more, the shorter the wavelength of maximum absorption. On the contrary, the 13C photo-reaction is slightly slowed down, leading to an inversion of the ESLs of AT and 13C, with respect to wt-ASR, in the blue-most absorbing mutant L83Q. Possible mechanisms for these mutation effects, and their steric and electrostatic origins are discussed.
Collapse
Affiliation(s)
- D Agathangelou
- University of Strasbourg, CNRS, Inst. de Physique et Chimie des Matériaux de Strasbourg, 67034 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bull JN, West CW, Anstöter CS, da Silva G, Bieske EJ, Verlet JRR. Ultrafast photoisomerisation of an isolated retinoid. Phys Chem Chem Phys 2019; 21:10567-10579. [PMID: 31073587 DOI: 10.1039/c9cp01624d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
The photoinduced excited state dynamics of gas-phase trans-retinoate (deprotonated trans-retinoic acid, trans-RA-) are studied using tandem ion mobility spectrometry coupled with laser spectroscopy, and frequency-, angle- and time-resolved photoelectron imaging. Photoexcitation of the bright S3(ππ*) ← S0 transition leads to internal conversion to the S1(ππ*) state on a ≈80 fs timescale followed by recovery of S0 and concomitant isomerisation to give the 13-cis (major) and 9-cis (minor) photoisomers on a ≈180 fs timescale. The sub-200 fs stereoselective photoisomerisation parallels that for the retinal protonated Schiff base chromophore in bacteriorhodopsin. Measurements on trans-RA- in methanol using the solution photoisomerisation action spectroscopy technique show that 13-cis-RA- is also the principal photoisomer, although the 13-cis and 9-cis photoisomers are formed with an inverted branching ratio with photon energy in methanol when compared with the gas phase, presumably due to solvent-induced modification of potential energy surfaces and inhibition of electron detachment processes. Comparison of the gas-phase time-resolved data with transient absorption spectroscopy measurements on retinoic acid in methanol suggest that photoisomerisation is roughly six times slower in solution. This work provides clear evidence that solvation significantly affects the photoisomerisation dynamics of retinoid molecules.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Christopher W West
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
14
|
Intrinsic photoisomerization dynamics of protonated Schiff-base retinal. Nat Commun 2019; 10:1210. [PMID: 30872581 PMCID: PMC6418104 DOI: 10.1038/s41467-019-09225-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2018] [Accepted: 02/27/2019] [Indexed: 11/24/2022] Open
Abstract
The retinal protonated Schiff-base (RPSB) in its all-trans form is found in bacterial rhodopsins, whereas visual rhodopsin proteins host 11-cis RPSB. In both cases, photoexcitation initiates fast isomerization of the retinal chromophore, leading to proton transport, storage of chemical energy or signaling. It is an unsolved problem, to which degree this is due to protein interactions or intrinsic RPSB quantum properties. Here, we report on time-resolved action-spectroscopy studies, which show, that upon photoexcitation, cis isomers of RPSB have an almost barrierless fast 400 fs decay, whereas all-trans isomers exhibit a barrier-controlled slow 3 ps decay. Moreover, formation of the 11-cis isomer is greatly favored for all-trans RPSB when isolated. The very fast photoresponse of visual photoreceptors is thus directly related to intrinsic retinal properties, whereas bacterial rhodopsins tune the excited state potential-energy surface to lower the barrier for particular double-bond isomerization, thus changing both the timescale and specificity of the photoisomerization. The primary photoresponse of protonated Schiff-base retinal in visual and bacterial rhodopsins is fast sub-ps isomerisation. Here, the authors show that the fast photoisomerization of rhodopsin is related to an intrinsic retinal property, whereas bacterial rhodopsins tune the excited-state potential-energy surface and improve the isomerization timescale and specificity.
Collapse
|
15
|
Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferré N, Kandori H, Buckup T. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2018; 20:30159-30173. [PMID: 30484447 DOI: 10.1039/c8cp05469j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Discrepancies in the isomerization dynamics and quantum yields of the trans and cis retinal protonated Schiff base is a well-known issue in the context of retinal photochemistry. Anabaena Sensory Rhodopsin (ASR) is a microbial retinal protein that comprises a retinal chromophore in two ground state (GS) conformations: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). In this study, we applied impulsive vibrational spectroscopic techniques (DFWM, pump-DFWM and pump-IVS) to ASR to shed more light on how the structural changes take place in the excited state within the same protein environment. Our findings point to distinct features in the ground state structural conformations as well as to drastically different evolutions in the excited state manifold. The ground state vibrational spectra show stronger Raman activity of the C14-H out-of-plane wag (at about 805 cm-1) for the 13C isomer than that for the AT isomer, which hints at a pre-distortion of 13C in the ground state. Evolution of the Raman frequency after interaction with the actinic pulse shows a blue-shift for the C[double bond, length as m-dash]C stretching and CH3 rocking mode for both isomers. For AT, however, the blue-shift is not instantaneous as observed for the 13C isomer, rather it takes more than 200 fs to reach the maximum frequency shift. This frequency blue-shift is rationalized by a decrease in the effective conjugation length during the isomerization reaction, which further confirms a slower formation of the twisted state for the AT isomer and corroborates the presence of a barrier in the excited state trajectory previously predicted by quantum chemical calculations.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Manathunga M, Yang X, Olivucci M. Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all- trans Chromophore Analogues. J Phys Chem Lett 2018; 9:6350-6355. [PMID: 30336038 PMCID: PMC6261349 DOI: 10.1021/acs.jpclett.8b02550] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Rhodopsins hosting synthetic retinal protonated Schiff base analogues are important for developing tools for optogenetics and high-resolution imaging. The ideal spectroscopic properties of such analogues include long-wavelength absorption/emission and fast/hindered photoisomerization. While the former may be achieved, for instance, by elongating the chromophore π-system, the latter requires a detailed understanding of the substituent effects (i.e., steric or electronic) on the chromophore light-induced dynamics. In the present letter we compare the results of quantum mechanics/molecular mechanics excited-state trajectories of native and analogue-hosting microbial rhodopsins from the eubacterium Anabaena. The results uncover a relationship between the nature of the substituent on the analogue (i.e., electron-donating (a Me group) or electron-withdrawing (a CF3 group)) and rhodopsin excited-state lifetime. Most importantly, we show that electron-donating or -withdrawing substituents cause a decrease or an increase in the electronic mixing of the first two excited states which, in turn, controls the photoisomerization speed.
Collapse
Affiliation(s)
- Madushanka Manathunga
- Department of Chemistry, Bowling Green State
University, Bowling Green, OH 43403, USA
| | - Xuchun Yang
- Department of Chemistry, Bowling Green State
University, Bowling Green, OH 43403, USA
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State
University, Bowling Green, OH 43403, USA
- Dipartimento di Biotecnologie, Chimica e Farmacia,
Università di Siena, via A. Moro 2, I-53100 Siena, Italy
- Institut de Physique et Chimie des Matériaux
de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg,
France
| |
Collapse
|
17
|
Barata-Morgado R, Sánchez ML, Muñoz-Losa A, Martín ME, Olivares Del Valle FJ, Aguilar MA. How Methylation Modifies the Photophysics of the Native All- trans-Retinal Protonated Schiff Base: A CASPT2/MD Study in Gas Phase and in Methanol. J Phys Chem A 2018; 122:3096-3106. [PMID: 29489369 DOI: 10.1021/acs.jpca.8b00773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
A comparison between the free-energy surfaces of the all- trans-retinal protonated Schiff base (RPSB) and its 10-methylated derivative in gas phase and methanol solution is performed at CASSCF//CASSCF and CASPT2//CASSCF levels. Solvent effects were included using the average solvent electrostatic potential from molecular dynamics method. This is a QM/MM (quantum mechanics/molecular mechanics) method that makes use of the mean field approximation. It is found that the methyl group bonded to C10 produces noticeable changes in the solution free-energy profile of the S1 excited state, mainly in the relative stability of the minimum energy conical intersections (MECIs) with respect to the Franck-Condon (FC) point. The conical intersections yielding the 9- cis and 11- cis isomers are stabilized while that yielding the 13- cis isomer is destabilized; in fact, it becomes inaccessible by excitation to S1. Furthermore, the planar S1 minimum is not present in the methylated compound. The solvent notably stabilizes the S2 excited state at the FC geometry. Therefore, if the S2 state has an effect on the photoisomerization dynamics, it must be because it permits the RPSB population to branch around the FC point. All these changes combine to speed up the photoisomerization in the 10-methylated compound with respect to the native compound.
Collapse
Affiliation(s)
- Rute Barata-Morgado
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - M Luz Sánchez
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - Aurora Muñoz-Losa
- Dpto. Didáctica de las Ciencias Experimentales y Matemáticas, Facultad de Formación del Profesorado , University of Extremadura , Avda. Universidad s/n , Cáceres 10003 , Spain
| | - M Elena Martín
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - Francisco J Olivares Del Valle
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| | - Manuel A Aguilar
- Área de Química Física , University of Extremadura , Avda. Elvas s/n , Edif. José Ma Viguera Lobo 3a, planta, Badajoz 06006 , Spain
| |
Collapse
|
18
|
Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat Chem 2018; 10:449-455. [DOI: 10.1038/s41557-018-0014-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2017] [Accepted: 01/23/2018] [Indexed: 01/05/2023]
|
19
|
Lerch MM, Medved′ M, Lapini A, Laurent AD, Iagatti A, Bussotti L, Szymański W, Buma WJ, Foggi P, Di Donato M, Feringa BL. Tailoring Photoisomerization Pathways in Donor–Acceptor Stenhouse Adducts: The Role of the Hydroxy Group. J Phys Chem A 2018; 122:955-964. [DOI: 10.1021/acs.jpca.7b10255] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael M. Lerch
- Centre
for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Miroslav Medved′
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-97400 Banská Bystrica, Slovak Republic
| | - Andrea Lapini
- LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Adèle D. Laurent
- CEISAM, UMR CNRS 6230, BP 92208, 2 Rue de la Houssinière, 44322 Nantes, Cedex 3, France
| | - Alessandro Iagatti
- LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Wiktor Szymański
- Centre
for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Department
of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wybren Jan Buma
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Paolo Foggi
- LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica, Università di Perugia, via Elce di Sotto 8, 06100 Perugia, Italy
| | - Mariangela Di Donato
- LENS (European Laboratory for Non Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- INO (Istituto Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Ben L. Feringa
- Centre
for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
20
|
Demoulin B, Altavilla SF, Rivalta I, Garavelli M. Fine Tuning of Retinal Photoinduced Decay in Solution. J Phys Chem Lett 2017; 8:4407-4412. [PMID: 28853582 DOI: 10.1021/acs.jpclett.7b01780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
Single methylation at position C10 of the all-trans retinal protonated Schiff base switches its excited-state decay in methanol from a slower picosecond into an ultrafast, protein-like subpicosecond process. QM/MM modeling in conjunction with on-the-fly excited-state dynamics provides fundamental understanding of the fine-tuning mechanics that "catalyzes" the photoinduced decay of solvated retinals. Methylation alters the interplay between the ionic S1 and covalent S2 states, reducing the excited-state lifetime by favoring the formation of a S1 transient fluorescent state with fully inverted bond lengths that accounts for the recorded transient spectroscopy and from which a space-saving conical intersection seam is quickly (<1 ps) reached. Minimal and apparently innocent chemical modifications thus affect the characteristic intramolecular charge-transfer of the S1 state as well as the interaction with the covalent S2 excited state, eventually providing the high tunability of retinal photophysics and photochemistry and delivering a new concept for the rational design of retinal-based photoactive molecular devices.
Collapse
Affiliation(s)
- Baptiste Demoulin
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Salvatore Flavio Altavilla
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , V. F. Selmi 2, 40126 Bologna, Italy
| | - Ivan Rivalta
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Marco Garavelli
- Univ Lyon, ENS de Lyon , CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , V. F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
21
|
Mališ M, Novak J, Zgrablić G, Parmigiani F, Došlić N. Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents. Phys Chem Chem Phys 2017; 19:25970-25978. [DOI: 10.1039/c7cp03293e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Counterion sensitive photodynamics of the retinal chromophore in solution.
Collapse
Affiliation(s)
- M. Mališ
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
- Centre Européen de Calcul Atomique et Moléculaire
| | - J. Novak
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - G. Zgrablić
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Politehnika Pula
| | - F. Parmigiani
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Department of Physics
| | - N. Došlić
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| |
Collapse
|
22
|
El-Tahawy MMT, Nenov A, Garavelli M. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. J Chem Theory Comput 2016; 12:4460-75. [DOI: 10.1021/acs.jctc.6b00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohsen M. T. El-Tahawy
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Chemistry
Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Artur Nenov
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Université
de Lyon, Université Claude Bernard Lyon 1, ENS Lyon, Centre
Nationale de Recherche Scientifique, 46 allée d’Italie, 69007 Lyon Cedex 07, France
| |
Collapse
|
23
|
Schnedermann C, Muders V, Ehrenberg D, Schlesinger R, Kukura P, Heberle J. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. J Am Chem Soc 2016; 138:4757-62. [DOI: 10.1021/jacs.5b12251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph Schnedermann
- Physical
and Theoretical Chemistry Laboratory, University of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | | | | | | | - Philipp Kukura
- Physical
and Theoretical Chemistry Laboratory, University of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | | |
Collapse
|
24
|
Liu L, Liu J, Martinez TJ. Dynamical Correlation Effects on Photoisomerization: Ab Initio Multiple Spawning Dynamics with MS-CASPT2 for a Model trans-Protonated Schiff Base. J Phys Chem B 2016; 120:1940-9. [DOI: 10.1021/acs.jpcb.5b09838] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lihong Liu
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| | - Jian Liu
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Todd J. Martinez
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| |
Collapse
|
25
|
Bassolino G, Sovdat T, Soares Duarte A, Lim JM, Schnedermann C, Liebel M, Odell B, Claridge TDW, Fletcher SP, Kukura P. Barrierless Photoisomerization of 11-cis Retinal Protonated Schiff Base in Solution. J Am Chem Soc 2015; 137:12434-7. [DOI: 10.1021/jacs.5b06492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni Bassolino
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Tina Sovdat
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Alex Soares Duarte
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jong Min Lim
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Christoph Schnedermann
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Matz Liebel
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Barbara Odell
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy D. W. Claridge
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Stephen P. Fletcher
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Philipp Kukura
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
26
|
Liu L, Cui G, Fang WH. Excited States and Photochemistry of Chromophores in the Photoactive Proteins Explored by the Combined Quantum Mechanical and Molecular Mechanical Calculations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 100:255-84. [PMID: 26415847 DOI: 10.1016/bs.apcsb.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
A photoactive protein usually contains a unique chromophore that is responsible for the initial photoresponse and functions of the photoactive protein are determined by the interaction between the chromophore and its protein surroundings. The combined quantum mechanical and molecular mechanical (QM/MM) approach is demonstrated to be a very useful tool for exploring structures and functions of a photoactive protein with the chromophore and its protein surroundings treated by the QM and MM methods, respectively. In this review, we summarize the basic formulas of the QM/MM approach and emphasize its applications to excited states and photoreactions of chromophores in rhodopsin protein, photoactive yellow protein, and green fluorescent protein.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
27
|
Coughlan NJA, Catani KJ, Adamson BD, Wille U, Bieske EJ. Photoisomerization action spectrum of retinal protonated Schiff base in the gas phase. J Chem Phys 2015; 140:164307. [PMID: 24784270 DOI: 10.1063/1.4871883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
The photophysical behaviour of the isolated retinal protonated n-butylamine Schiff base (RPSB) is investigated in the gas phase using a combination of ion mobility spectrometry and laser spectroscopy. The RPSB cations are introduced by electrospray ionisation into an ion mobility mass spectrometer where they are exposed to tunable laser radiation in the region of the S1 ← S0 transition (420-680 nm range). Four peaks are observed in the arrival time distribution of the RPSB ions. On the basis of predicted collision cross sections with nitrogen gas, the dominant peak is assigned to the all-trans isomer, whereas the subsidiary peaks are assigned to various single, double and triple cis geometric isomers. RPSB ions that absorb laser radiation undergo photoisomerization, leading to a detectable change in their drift speed. By monitoring the photoisomer signal as a function of laser wavelength an action spectrum, extending from 480 to 660 nm with a clear peak at 615 ± 5 nm, is obtained. The photoisomerization action spectrum is related to the absorption spectrum of isolated retinal RPSB molecules and should help benchmark future electronic structure calculations.
Collapse
Affiliation(s)
- N J A Coughlan
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - K J Catani
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - B D Adamson
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - U Wille
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - E J Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
28
|
Valsson O, Filippi C, Casida ME. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory. J Chem Phys 2015; 142:144104. [DOI: 10.1063/1.4916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
|
29
|
Cheminal A, Léonard J, Kim SY, Jung KH, Kandori H, Haacke S. 100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2015; 17:25429-39. [DOI: 10.1039/c5cp04353k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Counter-intuitive photochemistry: in Anabaena Sensory Rhodopsin, the retinal 13-cis isomer isomerizes much faster than all-trans ASR, but with a 3-times lower quantum yield.
Collapse
Affiliation(s)
- Alexandre Cheminal
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - So-Young Kim
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Hideki Kandori
- Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Stefan Haacke
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| |
Collapse
|
30
|
Coughlan NJA, Adamson BD, Gamon L, Catani K, Bieske EJ. Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of the retinal protonated Schiff base. Phys Chem Chem Phys 2015; 17:22623-31. [DOI: 10.1039/c5cp03611a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Isomers of the retinal protonated Schiff base are separated and probed using laser radiation in a tandem ion mobility spectrometer yielding isomer-specific electronic spectra.
Collapse
Affiliation(s)
| | - B. D. Adamson
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - L. Gamon
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - K. Catani
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - E. J. Bieske
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| |
Collapse
|
31
|
Walczak E, Andruniów T. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin. Phys Chem Chem Phys 2015; 17:17169-81. [DOI: 10.1039/c5cp01939g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Similar to native rhodopsin, a two-mode space-saving isomerization mechanism drives the photoreaction in (de)methylated rhodopsin analogues.
Collapse
Affiliation(s)
- Elżbieta Walczak
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Tadeusz Andruniów
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| |
Collapse
|
32
|
|
33
|
Bassolino G, Sovdat T, Liebel M, Schnedermann C, Odell B, Claridge TD, Kukura P, Fletcher SP. Synthetic Control of Retinal Photochemistry and Photophysics in Solution. J Am Chem Soc 2014; 136:2650-8. [DOI: 10.1021/ja4121814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giovanni Bassolino
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Tina Sovdat
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matz Liebel
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Christoph Schnedermann
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Barbara Odell
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy D.W. Claridge
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Philipp Kukura
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Stephen P. Fletcher
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
34
|
Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Proc Natl Acad Sci U S A 2014; 111:1714-9. [PMID: 24449866 DOI: 10.1073/pnas.1309508111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
Comparative modeling and ab initio multiconfigurational quantum chemistry are combined to investigate the reactivity of the human nonvisual photoreceptor melanopsin. It is found that both the thermal and photochemical isomerization of the melanopsin 11-cis retinal chromophore occur via a space-saving mechanism involving the unidirectional, counterclockwise twisting of the =C11H-C12H= moiety with respect to its Lys340-linked frame as proposed by Warshel for visual pigments [Warshel A (1976) Nature 260(5553):679-683]. A comparison with the mechanisms documented for vertebrate (bovine) and invertebrate (squid) visual photoreceptors shows that such a mechanism is not affected by the diversity of the three chromophore cavities. Despite such invariance, trajectory computations indicate that although all receptors display less than 100 fs excited state dynamics, human melanopsin decays from the excited state ∼40 fs earlier than bovine rhodopsin. Some diversity is also found in the energy barriers controlling thermal isomerization. Human melanopsin features the highest computed barrier which appears to be ∼2.5 kcal mol(-1) higher than that of bovine rhodopsin. When assuming the validity of both the reaction speed/quantum yield correlation discussed by Warshel, Mathies and coworkers [Weiss RM, Warshel A (1979) J Am Chem Soc 101:6131-6133; Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) Science 254(5030):412-415] and of a relationship between thermal isomerization rate and thermal activation of the photocycle, melanopsin turns out to be a highly sensitive pigment consistent with the low number of melanopsin-containing cells found in the retina and with the extraretina location of melanopsin in nonmammalian vertebrates.
Collapse
|
35
|
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
36
|
Vuković L, Burmeister CF, Král P, Groenhof G. Control Mechanisms of Photoisomerization in Protonated Schiff Bases. J Phys Chem Lett 2013; 4:1005-1011. [PMID: 26291368 DOI: 10.1021/jz400133u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
We performed ab initio excited-state molecular dynamics simulations of a gas-phase photoexcited protonated Schiff base (C1-N2═C3-C4═C5-C6) to search for control mechanisms of its photoisomerization. The excited molecule twists by ∼90° around either the N2C3 bond or the C4C5 bond and relaxes to the ground electronic state through a conical intersection with either a trans or cis outcome. We show that a large initial distortion of several dihedral angles and a specific normal vibrational mode combining pyramidalization and double-bond twisting can lead to a preferential rotation of atoms around the C4C5 bond. We also show that selective pretwisting of several dihedral angles in the initial ground state thermal ensemble (by analogy to a protein pocket) can significantly increase the fraction of photoreactive (cis → trans) trajectories. We demonstrate that new ensembles with higher degrees of control over the photoisomerization reaction can be obtained by a computational directed evolution approach on the ensembles of molecules with the pretwisted geometries.
Collapse
Affiliation(s)
- Lela Vuković
- †Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Carl F Burmeister
- †Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | - Gerrit Groenhof
- †Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
- ∥Department of Chemistry and Nanoscience Center, University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä, Finland
| |
Collapse
|
37
|
Sun Z, Qin G, Xia X, Cronin-Golomb M, Omenetto FG, Kaplan DL. Photoresponsive retinal-modified silk-elastin copolymer. J Am Chem Soc 2013; 135:3675-9. [PMID: 23383965 DOI: 10.1021/ja312647n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The chimeric proteins, silk-elastin-like protein polymers (SELPs), consist of repeating units of silk and elastin to retain the mechanical strength of silk, while incorporating the dynamic environmental sensitivity of elastin. A retinal-modified SELP was prepared, modified, and studied for photodynamic responses. The protein was designed, cloned, expressed, and purified with lysine present in the elastin repeats. The purified protein was then chemically modified with the biocompatible moiety retinal via the lysine side chains. Structural changes with the polymer were assessed before and after retinal modification using Fourier transform infrared spectroscopy and circular dichroism spectroscopy. Optical studies and spectral analysis were performed before and after retinal modification. The random-coil fraction of the protein increased after retinal modification while the β-sheet fraction significantly decreased. Birefringence of the modified protein was induced when irradiated with a linearly polarized 488 nm laser light. Retinal modification of this protein offers a useful strategy for potential use in biosensors, controlled drug delivery, and other areas of biomedical engineering.
Collapse
Affiliation(s)
- Zhongyuan Sun
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, Massachusetts 02155, United States
| | | | | | | | | | | |
Collapse
|
38
|
Chatterley AS, Young JD, Townsend D, Żurek JM, Paterson MJ, Roberts GM, Stavros VG. Manipulating dynamics with chemical structure: probing vibrationally-enhanced tunnelling in photoexcited catechol. Phys Chem Chem Phys 2013; 15:6879-92. [DOI: 10.1039/c3cp51108a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
|
39
|
Wand A, Loevsky B, Friedman N, Sheves M, Ruhman S. Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution. J Phys Chem B 2012; 117:4670-9. [DOI: 10.1021/jp309189y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Boris Loevsky
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic
Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry
and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|