1
|
Tian F, Guo RC, Wu C, Liu X, Zhang Z, Wang Y, Wang H, Li G, Yu Z. Assembly of Glycopeptides in Living Cells Resembling Viral Infection for Cargo Delivery. Angew Chem Int Ed Engl 2024; 63:e202404703. [PMID: 38655625 DOI: 10.1002/anie.202404703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a β-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via β-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing β-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chunxia Wu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yamei Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, China
| |
Collapse
|
2
|
Yang J, Liao X, Hu D, Mo J, Gao X, Liao H. Study on the design, synthesis, and activity of anti-tumor staple peptides targeting MDM2/MDMX. Front Chem 2024; 12:1403473. [PMID: 38911993 PMCID: PMC11190158 DOI: 10.3389/fchem.2024.1403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Staple peptides, which have a significantly enhanced pharmacological profile, are promising therapeutic molecules due to their remarkable resistance to proteolysis and cell-penetrating properties. In this study, we designed and synthesized a series of PMI-M3-based dual-targeting MDM2/MDMX staple peptides and compared them with straight-chain peptides. The staple peptide SM3-4 screened in the study induced apoptosis of tumor cells in vitro at low μM concentrations, and the helix was significantly increased. Studies have shown that the enhancement of staple activity is related to the increase in helicity, and SM3-4 provides an effective research basis for dual-targeted anti-tumor staple peptides.
Collapse
Affiliation(s)
- Jian Yang
- The Third Affiliated Hospital of Chengdu Medical College (Chengdu Pidu District People’s Hospital), Chengdu, China
| | | | - Damin Hu
- School of Medicine, Tarim University, China
| | - Jinqiu Mo
- School of Medicine, Tarim University, China
| | - Xiurong Gao
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Hongli Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Callahan AJ, Gandhesiri S, Travaline TL, Reja RM, Lozano Salazar L, Hanna S, Lee YC, Li K, Tokareva OS, Swiecicki JM, Loas A, Verdine GL, McGee JH, Pentelute BL. Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nat Commun 2024; 15:1813. [PMID: 38418820 PMCID: PMC10901774 DOI: 10.1038/s41467-024-45634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run. With this approach, we prepare and characterize 12 D-proteins - almost one third of all reported D-proteins to date. With access to mirror-image protein targets, we describe the successful discovery of six macrocyclic D-peptide binders: three to the oncoprotein MDM2, and three to the E3 ubiquitin ligase CHIP. Reliable production of mirror-image proteins can unlock the full potential of D-peptide drug discovery and streamline the study of mirror-image biology more broadly.
Collapse
Affiliation(s)
- Alex J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Satish Gandhesiri
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Tara L Travaline
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Rahi M Reja
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lia Lozano Salazar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephanie Hanna
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yen-Chun Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
| | - Kunhua Li
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Olena S Tokareva
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Jean-Marie Swiecicki
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
- Relay Therapeutics, Inc., 399 Binney Street, 2nd Floor, Cambridge, MA, 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gregory L Verdine
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - John H McGee
- FOG Pharmaceuticals Inc., 30 Acorn Park Drive, Cambridge, MA, 02140, USA.
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
4
|
Chen J, Hao X, Tan R, Li Y, Wang B, Pan J, Ma W, Ma L. Functional Study on Cytochrome P450 in Response to L(-)-Carvone Stress in Bursaphelenchus xylophilus. Genes (Basel) 2022; 13:1956. [PMID: 36360193 PMCID: PMC9689654 DOI: 10.3390/genes13111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
Bursaphelenchus xylophilus (PWN) causes pine wilt disease (PWD), which is one of the most devastating pine diseases worldwide. Cytochrome P450 (CYP) catalyzes the biosynthetic metabolism of terpenoids and plays an important role in the modification of secondary metabolites in all living organisms. We investigated the molecular characteristics and biological functions of Bx-cyp29A3 in B. xylophilus. The bioinformatics analysis results indicated that Bx-cyp29A3 has a transmembrane domain and could dock with L(-)-carvone. The gene expression pattern indicated that Bx-cyp29A3 was expressed in 0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL L(-)-carvone solutions. The Bx-cyp29A3 expression increased in a dose-dependent manner and peaked at 24 h of exposure when the L(-)-carvone solution concentration was 0.8 mg/mL. However, the gene expression peaked at 0.6 mg/mL after 36 h. Furthermore, RNA interference (RNAi) indicated that Bx-cyp29A3 played an essential role in the response to L(-)-carvone. The mortality rates of the Bx-cyp29A3 knockdown groups were higher than those of the control groups in the 0.4, 0.6, 0.8, and 1.0 mg/mL carvone solutions after 24 h of exposure or 36 h of exposure. In summary, bioinformatics provided the structural characteristics and conserved sequence properties of Bx-cyp29A3 and its encoded protein, which provided a target gene for the study of the P450 family of B. xylophilus. Gene silencing experiments clarified the function of Bx-cyp29A3 in the immune defense of B. xylophilus. This study provides a basis for the screening of new molecular targets for the prevention and management of B. xylophilus.
Collapse
Affiliation(s)
- Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Plant Science, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ruina Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Zhejiang University, Hangzhou 310028, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev 2022; 51:5691-5730. [PMID: 35726784 DOI: 10.1039/d1cs00991e] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a crucial regulator of protein and cellular function, yet, despite identifying an enormous number of phosphorylation sites, the role of most is still unclear. Each phosphoform, the particular combination of phosphorylations, of a protein has distinct and diverse biological consequences. Aberrant phosphorylation is implicated in the development of many diseases. To investigate their function, access to defined protein phosphoforms is essential. Materials obtained from cells often are complex mixtures. Recombinant methods can provide access to defined phosphoforms if site-specifically acting kinases are known, but the methods fail to provide homogenous material when several amino acid side chains compete for phosphorylation. Chemical and chemoenzymatic synthesis has provided an invaluable toolbox to enable access to previously unreachable phosphoforms of proteins. In this review, we selected important tools that enable access to homogeneously phosphorylated protein and discuss examples that demonstrate how they can be applied. Firstly, we discuss the synthesis of phosphopeptides and proteins through chemical and enzymatic means and their advantages and limitations. Secondly, we showcase illustrative examples that applied these tools to answer biological questions pertaining to proteins involved in signal transduction, control of transcription, neurodegenerative diseases and aggregation, apoptosis and autophagy, and transmembrane proteins. We discuss the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Tim Bilbrough
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Li X, Gohain N, Chen S, Li Y, Zhao X, Li B, Tolbert WD, He W, Pazgier M, Hu H, Lu W. Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Acta Pharm Sin B 2021; 11:2655-2669. [PMID: 34589387 PMCID: PMC8463443 DOI: 10.1016/j.apsb.2021.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Peptide inhibition of the interactions of the tumor suppressor protein P53 with its negative regulators MDM2 and MDMX activates P53 in vitro and in vivo, representing a viable therapeutic strategy for cancer treatment. Using phage display techniques, we previously identified a potent peptide activator of P53, termed PMI (TSFAEYWNLLSP), with binding affinities for both MDM2 and MDMX in the low nanomolar concentration range. Here we report an ultrahigh affinity, dual-specificity peptide antagonist of MDM2 and MDMX obtained through systematic mutational analysis and additivity-based molecular design. Functional assays of over 100 peptide analogs of PMI using surface plasmon resonance and fluorescence polarization techniques yielded a dodecameric peptide termed PMI-M3 (LTFLEYWAQLMQ) that bound to MDM2 and MDMX with Kd values in the low picomolar concentration range as verified by isothermal titration calorimetry. Co-crystal structures of MDM2 and of MDMX in complex with PMI-M3 were solved at 1.65 and 3.0 Å resolution, respectively. Similar to PMI, PMI-M3 occupied the P53-binding pocket of MDM2/MDMX, which was dominated energetically by intermolecular interactions involving Phe3, Tyr6, Trp7, and Leu10. Notable differences in binding between PMI-M3 and PMI were observed at other positions such as Leu4 and Met11 with MDM2, and Leu1 and Met11 with MDMX, collectively contributing to a significantly enhanced binding affinity of PMI-M3 for both proteins. By adding lysine residues to both ends of PMI and PMI-M3 to improve their cellular uptake, we obtained modified peptides termed PMI-2K (KTSFAEYWNLLSPK) and M3-2K (KLTFLEYWAQLMQK). Compared with PMI-2K, M3-2K exhibited significantly improved antitumor activities in vitro and in vivo in a P53-dependent manner. This super-strong peptide inhibitor of the P53-MDM2/MDMX interactions may become, in its own right, a powerful lead compound for anticancer drug development, and can aid molecular design of other classes of P53 activators as well for anticancer therapy.
Collapse
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Neelakshi Gohain
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyuan Zhao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - William D. Tolbert
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wangxiao He
- Department of Talent Highland, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Marzena Pazgier
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Corresponding authors. Tel./fax: +86 21 54237607 (Wuyuan Lu), +86 21 66131281 (Honggang Hu), +1 301 295 3291 (Marzena Pazgier).
| | - Honggang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Corresponding authors. Tel./fax: +86 21 54237607 (Wuyuan Lu), +86 21 66131281 (Honggang Hu), +1 301 295 3291 (Marzena Pazgier).
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) of School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity of School of Public Health, Fudan University, Shanghai 200032, China
- Corresponding authors. Tel./fax: +86 21 54237607 (Wuyuan Lu), +86 21 66131281 (Honggang Hu), +1 301 295 3291 (Marzena Pazgier).
| |
Collapse
|
7
|
Oh S, Lee MK, Chi SW. Single-molecule analysis of interaction between p53TAD and MDM2 using aerolysin nanopores. Chem Sci 2021; 12:5883-5891. [PMID: 34168813 PMCID: PMC8179679 DOI: 10.1039/d1sc00386k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are regarded as important, but undruggable targets. Intrinsically disordered p53 transactivation domain (p53TAD) mediates PPI with mouse double minute 2 (MDM2), which is an attractive anticancer target for therapeutic intervention. Here, using aerolysin nanopores, we probed the p53TAD peptide/MDM2 interaction and its modulation by small-molecule PPI inhibitors or p53TAD phosphorylation. Although the p53TAD peptide showed short-lived (<100 ms) translocation, the protein complex induced the characteristic extraordinarily long-lived (0.1 s ∼ tens of min) current blockage, indicating that the MDM2 recruitment by p53TAD peptide almost fully occludes the pore. Simultaneously, the protein complex formation substantially reduced the event frequency of short-lived peptide translocation. Notably, the addition of small-molecule PPI inhibitors, Nutlin-3 and AMG232, or Thr18 phosphorylation of p53TAD peptide, were able to diminish the extraordinarily long-lived events and restore the short-lived translocation of the peptide rescued from the complex. Taken together, our results elucidate a novel mechanism of single-molecule sensing for analyzing PPIs and their inhibitors using aerolysin nanopores. This novel methodology may contribute to remarkable improvements in drug discovery targeted against undruggable PPIs.
Collapse
Affiliation(s)
- Sohee Oh
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
8
|
Hartrampf N, Saebi A, Poskus M, Gates ZP, Callahan AJ, Cowfer AE, Hanna S, Antilla S, Schissel CK, Quartararo AJ, Ye X, Mijalis AJ, Simon MD, Loas A, Liu S, Jessen C, Nielsen TE, Pentelute BL. Synthesis of proteins by automated flow chemistry. Science 2020; 368:980-987. [PMID: 32467387 DOI: 10.1126/science.abb2491] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Ribosomes can produce proteins in minutes and are largely constrained to proteinogenic amino acids. Here, we report highly efficient chemistry matched with an automated fast-flow instrument for the direct manufacturing of peptide chains up to 164 amino acids long over 327 consecutive reactions. The machine is rapid: Peptide chain elongation is complete in hours. We demonstrate the utility of this approach by the chemical synthesis of nine different protein chains that represent enzymes, structural units, and regulatory factors. After purification and folding, the synthetic materials display biophysical and enzymatic properties comparable to the biologically expressed proteins. High-fidelity automated flow chemistry is an alternative for producing single-domain proteins without the ribosome.
Collapse
Affiliation(s)
- N Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A Saebi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - M Poskus
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Z P Gates
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A E Cowfer
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Hanna
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Antilla
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C K Schissel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - X Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Mijalis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - M D Simon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C Jessen
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - T E Nielsen
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - B L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Simulation of MDM2 N-terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2-p53 protein–protein interaction. J Comput Aided Mol Des 2019; 34:55-70. [DOI: 10.1007/s10822-019-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
10
|
Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. Eur J Med Chem 2019; 182:111588. [PMID: 31421630 DOI: 10.1016/j.ejmech.2019.111588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 01/17/2023]
Abstract
Intrinsically disordered proteins are an emerging class of proteins without a folded structure and currently disorder-based drug targeting remains a challenge. p53 is the principal regulator of cell division and growth whereas MDM2 consists its main negative regulator. The MDM2-p53 recognition is a dynamic and multistage process that amongst other, employs the dissociation of a transient α-helical N-terminal ''lid'' segment of MDM2 from the proximity of the p53-complementary interface. Several small molecule inhibitors have been reported to inhibit the formation of the p53-MDM2 complex with the vast majority mimicking the p53 residues Phe19, Trp23 and Leu26. Recently, we have described the transit from the 3-point to 4-point pharmacophore model stabilizing this intrinsically disordered N-terminus by increasing the binding affinity by a factor of 3. Therefore, we performed a thorough SAR analysis, including chiral separation of key compound which was evaluated by FP and 2D NMR. Finally, p53-specific anti-cancer activity towards p53-wild-type cancer cells was observed for several representative compounds.
Collapse
|
11
|
Feng C, Huang Y, He W, Cheng X, Liu H, Huang Y, Ma B, Zhang W, Liao C, Wu W, Shao Y, Xu D, Su Z, Lu W. Tanshinones: First-in-Class Inhibitors of the Biogenesis of the Type 3 Secretion System Needle of Pseudomonas aeruginosa for Antibiotic Therapy. ACS CENTRAL SCIENCE 2019; 5:1278-1288. [PMID: 31403076 PMCID: PMC6662154 DOI: 10.1021/acscentsci.9b00452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 05/17/2023]
Abstract
The type 3 secretion system (T3SS) found as cell-surface appendages of many pathogenic Gram-negative bacteria, although nonessential for bacterial survival, is an important therapeutic target for drug discovery and development aimed at inhibiting bacterial virulence without inducing antibiotic resistance. We designed a fluorescence-polarization-based assay for high-throughput screening as a mechanistically well-defined general strategy for antibiotic discovery targeting the T3SS and made a serendipitous discovery of a subset of tanshinones-natural herbal compounds in traditional Chinese medicine widely used for the treatment of cardiovascular and cerebrovascular diseases-as effective inhibitors of the biogenesis of the T3SS needle of multi-drug-resistant Pseudomonas aeruginosa. By inhibiting the T3SS needle assembly and, thus, cytotoxicity and pathogenicity, selected tanshinones reduced the secretion of bacterial virulence factors toxic to macrophages in vitro, and rescued experimental animals challenged with lethal doses of Pseudomonas aeruginosa in a murine model of acute pneumonia. As first-in-class inhibitors with a demonstrable safety profile in humans, tanshinones may be used directly to alleviate Pseudomonas-aeruginosa-associated pulmonary infections without inducing antibiotic resistance. Since the T3SS is highly conserved among Gram-negative bacteria, this antivirulence strategy may be applicable to the discovery and development of novel classes of antibiotics refractory to existing resistance mechanisms for the treatment of many bacterial infections.
Collapse
Affiliation(s)
- Chao Feng
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yinong Huang
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wangxiao He
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Xiyao Cheng
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Huili Liu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Yongqi Huang
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Bohan Ma
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wei Zhang
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Chongbing Liao
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Weihui Wu
- State Key
Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular
Microbiology and Technology of the Ministry of Education, Department
of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongping Shao
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Dan Xu
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhengding Su
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Wuyuan Lu
- Institute
of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
12
|
Li X, Tolbert WD, Hu HG, Gohain N, Zou Y, Niu F, He WX, Yuan W, Su JC, Pazgier M, Lu W. Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chem Sci 2018; 10:1522-1530. [PMID: 30809370 PMCID: PMC6357863 DOI: 10.1039/c8sc03275k] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
A novel peptide stapling strategy based on the dithiocarbamate chemistry linking the side chains of residues Lys(i) and Cys(i + 4) of unprotected peptides is developed.
Two major pharmacological hurdles severely limit the widespread use of small peptides as therapeutics: poor proteolytic stability and membrane permeability. Importantly, low aqueous solubility also impedes the development of peptides for clinical use. Various elaborate side chain stapling chemistries have been developed for α-helical peptides to circumvent this problem, with considerable success in spite of inevitable limitations. Here we report a novel peptide stapling strategy based on the dithiocarbamate chemistry linking the side chains of residues Lys(i) and Cys(i + 4) of unprotected peptides and apply it to a series of dodecameric peptide antagonists of the p53-inhibitory oncogenic proteins MDM2 and MDMX. Crystallographic studies of peptide–MDM2/MDMX complexes structurally validated the chemoselectivity of the dithiocarbamate staple bridging Lys and Cys at (i, i + 4) positions. One dithiocarbamate-stapled PMI derivative, DTCPMI, showed a 50-fold stronger binding to MDM2 and MDMX than its linear counterpart. Importantly, in contrast to PMI and its linear derivatives, the DTCPMI peptide actively traversed the cell membrane and killed HCT116 tumor cells in vitro by activating the tumor suppressor protein p53. Compared with other known stapling techniques, our solution-based DTC stapling chemistry is simple, cost-effective, regio-specific and environmentally friendly, promising an important new tool for the development of peptide therapeutics with improved pharmacological properties including aqueous solubility, proteolytic stability and membrane permeability.
Collapse
Affiliation(s)
- Xiang Li
- School of Pharmacy , Second Military Medical University , Shanghai 200433 , China.,Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| | - W David Tolbert
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| | - Hong-Gang Hu
- School of Pharmacy , Second Military Medical University , Shanghai 200433 , China
| | - Neelakshi Gohain
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| | - Yan Zou
- School of Pharmacy , Second Military Medical University , Shanghai 200433 , China
| | - Fan Niu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| | - Wang-Xiao He
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| | - Jia-Can Su
- Changhai Hospital , Second Military Medical University , Shanghai 200433 , China .
| | - Marzena Pazgier
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland , School of Medicine , Baltimore , MD , USA . ;
| |
Collapse
|
13
|
Chen Y, Wang DD, Wu YP, Su D, Zhou TY, Gai RH, Fu YY, Zheng L, He QJ, Zhu H, Yang B. MDM2 promotes epithelial-mesenchymal transition and metastasis of ovarian cancer SKOV3 cells. Br J Cancer 2017; 117:1192-1201. [PMID: 28817834 PMCID: PMC5674096 DOI: 10.1038/bjc.2017.265] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Metastasis accounts for the most lethal reason for the death of ovarian cancer patients, but remains largely untreated. Epithelial–mesenchymal transition (EMT) is critical for the conversion of early-stage ovarian tumours into metastatic malignancies. Thus the exploration of the signalling pathways promoting EMT would open potential opportunities for the treatment of metastatic ovarian cancer. Herein, the putative role of MDM2 in regulating EMT and metastasis of ovarian cancer SKOV3 cells was investigated. Methods: The regulatory effects by MDM2 on cell motility was emulated by wound-healing and transwell assays. The effects on EMT transition and Smad pathway were studied by depicting the expression levels of epithelial marker E-cadherin as well as key components of Smad pathway. To evaluate the clinical relevance of our findings, the correlation of MDM2 expression levels with the stages of 104 ovarian cancer patients was investigated by immunohistochemistry assay. Results: We demonstrate that MDM2 functions as a key factor to drive EMT and motility of ovarian SKOV3 cells, by facilitating the activation of TGF-β-Smad pathway, which results in the increased transcription of snail/slug and the subsequent loss of E-cadherin levels. Such induction of EMT is sustained in either E3 ligase-depleted MDM2 or E3 ligase inhibitor HLI-373-treated cells, while being impaired by the N-terminal deletion of MDM2, which is also reflected by the inhibitory effects against EMT by Nutlin-3a, the N-terminal targeting agent. The expression levels of MDM2 is highly correlated with the stages of the ovarian cancer patients, and the higher expression of MDM2 together with TGFB are closely correlated with poor prognosis and predict a high risk of ovarian cancer patients. Conclusions: This study suggests that MDM2 activates Smad pathway to promote EMT in ovarian cancer metastasis, and targeting the N-terminal of MDM2 can reprogram EMT and impede the mobility of cancer cells.
Collapse
Affiliation(s)
- Ying Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan-Dan Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ye-Ping Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Su
- Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Tian-Yi Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ren-Hua Gai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Ying Fu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Li L, Liu J, Nie S, Ding L, Wang L, Liu J, Liu W, Zhang T. Direct inhibition of Keap1–Nrf2 interaction by egg-derived peptides DKK and DDW revealed by molecular docking and fluorescence polarization. RSC Adv 2017. [DOI: 10.1039/c7ra04352j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DKK and DDW, egg-derived direct inhibitors of the Keap1–Nrf2 interaction, screening by fluorescence polarization assays and cell experiments.
Collapse
Affiliation(s)
- Liangyu Li
- Jilin Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- People's Republic of China
| | - Jingbo Liu
- Jilin Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- People's Republic of China
| | - Shaoping Nie
- State Key Laboratory Food Science & Technology
- Nanchang University
- Nanchang 330047
- People's Republic of China
| | - Long Ding
- Jilin Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- People's Republic of China
| | - Liying Wang
- Jilin Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- People's Republic of China
| | - Jiyun Liu
- Jilin Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- People's Republic of China
| | - Wenchao Liu
- Jilin Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- People's Republic of China
| | - Ting Zhang
- Jilin Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- People's Republic of China
| |
Collapse
|
15
|
Ciemny MP, Debinski A, Paczkowska M, Kolinski A, Kurcinski M, Kmiecik S. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Sci Rep 2016; 6:37532. [PMID: 27905468 PMCID: PMC5131342 DOI: 10.1038/srep37532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Protein-peptide interactions are often associated with large-scale conformational changes that are difficult to study either by classical molecular modeling or by experiment. Recently, we have developed the CABS-dock method for flexible protein-peptide docking that enables large-scale rearrangements of the protein chain. In this study, we use CABS-dock to investigate the binding of the p53-MDM2 complex, an element of the cell cycle regulation system crucial for anti-cancer drug design. Experimental data suggest that p53-MDM2 binding is affected by significant rearrangements of a lid region - the N-terminal highly flexible MDM2 fragment; however, the details are not clear. The large size of the highly flexible MDM2 fragments makes p53-MDM2 intractable for exhaustive binding dynamics studies using atomistic models. We performed extensive dynamics simulations using the CABS-dock method, including large-scale structural rearrangements of MDM2 flexible regions. Without a priori knowledge of the p53 peptide structure or its binding site, we obtained near-native models of the p53-MDM2 complex. The simulation results match well the experimental data and provide new insights into the possible role of the lid fragment in p53 binding. The presented case study demonstrates that CABS-dock methodology opens up new opportunities for protein-peptide docking with large-scale changes of the protein receptor structure.
Collapse
Affiliation(s)
- Maciej Pawel Ciemny
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
- University of Warsaw, Faculty of Physics, Warsaw, 02-093, Poland
| | | | - Marta Paczkowska
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
| | - Andrzej Kolinski
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
| | | | | |
Collapse
|
16
|
Bueren-Calabuig JA, Michel J. Impact of Ser17 Phosphorylation on the Conformational Dynamics of the Oncoprotein MDM2. Biochemistry 2016; 55:2500-9. [PMID: 27050388 DOI: 10.1021/acs.biochem.6b00127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MDM2 is an important oncoprotein that downregulates the activity of the tumor suppressor protein p53 via binding of its N-terminal domain to the p53 transactivation domain. The first 24 residues of the MDM2 N-terminal domain form an intrinsically disordered "lid" region that interconverts on a millisecond time scale between "open" and "closed" states in unliganded MDM2. While the former conformational state is expected to facilitate p53 binding, the latter competes in a pseudo-substrate manner with p53 for its binding site. Phosphorylation of serine 17 in the MDM2 lid region is thought to modulate the equilibrium between "open" and "closed" lid states, but contradictory findings on the favored lid conformational state upon phosphorylation have been reported. Here, the nature of the conformational states of MDM2 pSer17 and Ser17Asp variants was addressed by means of enhanced sampling molecular dynamics simulations. Detailed analyses of the computed lid conformational ensembles indicate that both lid variants stabilize a "closed" state, with respect to wild type. Nevertheless, the nature of the closed-state conformational ensembles differs significantly between the pSer17 and Ser17Asp variants. Thus, care should be applied in the interpretation of biochemical experiments that use phosphomimetic variants to model the effects of phosphorylation on the structure and dynamics of this disordered protein region.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- EaStCHEM School of Chemistry, The University of Edinburgh , Edinburgh, EH9 3FJ, United Kingdom
- Computational Biology, School of Life Sciences, School of Science and Engineering, University of Dundee , Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, The University of Edinburgh , Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
17
|
Structural basis of how stress-induced MDMX phosphorylation activates p53. Oncogene 2016; 35:1919-25. [PMID: 26148237 PMCID: PMC5470632 DOI: 10.1038/onc.2015.255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 02/06/2023]
Abstract
The tumor-suppressor protein p53 is tightly controlled in normal cells by its two negative regulators--the E3 ubiquitin ligase MDM2 and its homolog MDMX. Under stressed conditions such as DNA damage, p53 escapes MDM2- and MDMX-mediated functional inhibition and degradation, acting to prevent damaged cells from proliferating through induction of cell cycle arrest, DNA repair, senescence or apoptosis. Ample evidence suggests that stress signals induce phosphorylation of MDM2 and MDMX, leading to p53 activation. However, the structural basis of stress-induced p53 activation remains poorly understood because of the paucity of technical means to produce site-specifically phosphorylated MDM2 and MDMX proteins for biochemical and biophysical studies. Herein, we report total chemical synthesis, via native chemical ligation, and functional characterization of (24-108)MDMX and its Tyr99-phosphorylated analog with respect to their ability to interact with a panel of p53-derived peptide ligands and PMI, a p53-mimicking but more potent peptide antagonist of MDMX, using FP and surface plasmon resonance techniques. Phosphorylation of MDMX at Tyr99 weakens peptide binding by approximately two orders of magnitude. Comparative X-ray crystallographic analyses of MDMX and of pTyr99 MDMX in complex with PMI as well as modeling studies reveal that the phosphate group of pTyr99 imposes extensive steric clashes with the C-terminus of PMI or p53 peptide and induces a significant lateral shift of the peptide ligand, contributing to the dramatic decrease in the binding affinity of MDMX for p53. Because DNA damage activates c-Abl tyrosine kinase that phosphorylates MDMX at Tyr99, our findings afford a rare glimpse at the structural level of how stress-induced MDMX phosphorylation dislodges p53 from the inhibitory complex and activates it in response to DNA damage.
Collapse
|
18
|
The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα. Oncogene 2016; 35:4358-67. [DOI: 10.1038/onc.2015.503] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022]
|
19
|
Chen X, Lu W. Functional Interrogation of the N-Terminal Lid of MDMX in p53 Binding via Native Chemical Ligation. Chem Pharm Bull (Tokyo) 2016; 64:1004-8. [DOI: 10.1248/cpb.c15-00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xishan Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education
| |
Collapse
|
20
|
Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev 2015; 90:101-18. [PMID: 25959429 DOI: 10.1016/j.addr.2015.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, PR China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
21
|
Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE. Chemical Protein Synthesis Using a Second-Generation N-Acylurea Linker for the Preparation of Peptide-Thioester Precursors. J Am Chem Soc 2015; 137:7197-209. [DOI: 10.1021/jacs.5b03504] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Brunello Nardone
- Departments
of Chemistry and Biology, University of Salerno, Via Giovanni
Paolo II 132, Fisciano 84084, Italy
| | - Fernando Albericio
- Department
of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain
| | - Philip E. Dawson
- Department
of Chemistry, The Scripps Research Institute (TSRI), 10550 N. Torrey
Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Guan X, Drake MR, Tan Z. Total Synthesis of Human Galanin-Like Peptide through an Aspartic Acid Ligation. Org Lett 2013; 15:6128-31. [DOI: 10.1021/ol402984r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Matthew R. Drake
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
23
|
Bista M, Wolf S, Khoury K, Kowalska K, Huang Y, Wrona E, Arciniega M, Popowicz GM, Holak TA, Dömling A. Transient protein states in designing inhibitors of the MDM2-p53 interaction. Structure 2013; 21:2143-51. [PMID: 24207125 DOI: 10.1016/j.str.2013.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022]
Abstract
Reactivation of p53 by release of the functional protein from its inhibition by MDM2 provides an efficient, nongenotoxic approach to a wide variety of cancers. We present the cocrystal structures of two complexes of MDM2 with inhibitors based on 6-chloroindole scaffolds. Both molecules bound to a distinct conformational state of MDM2 with nM-μM affinities. In contrast to other structurally characterized antagonists, which mimic three amino acids of p53 (Phe19, Trp23, and Leu26), the compounds induced an additional hydrophobic pocket on the MDM2 surface and unveiled a four-point binding mode. The enlarged interaction interface of the inhibitors resulted in extension of small molecules binding toward the "lid" segment of MDM2 (residues 19-23)--a nascent element that interferes with p53 binding. As supported by protein engineering and molecular dynamics studies, employing these unstable elements of MDM2 provides an efficient and yet unexplored alternative in development of MDM2-p53 association inhibitors.
Collapse
Affiliation(s)
- Michal Bista
- Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Avasarala S, Van Scoyk M, Wang J, Sechler M, Vandervest K, Brzezinski C, Weekes C, Edwards MG, Arcaroli J, Davis RE, Bikkavilli RK, Winn RA. hsa-miR29b, a critical downstream target of non-canonical Wnt signaling, plays an anti-proliferative role in non-small cell lung cancer cells via targeting MDM2 expression. Biol Open 2013; 2:675-85. [PMID: 23862015 PMCID: PMC3711035 DOI: 10.1242/bio.20134507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/08/2013] [Indexed: 01/13/2023] Open
Abstract
In non-small cell lung cancer cell lines, activation of β-catenin independent signaling, via Wnt7a/Frizzled9 signaling, leads to reversal of cellular transformation, reduced anchorage-independent growth and induction of epithelial differentiation. miRNA expression profiling on a human lung adenocarcinoma cell line (A549) identified hsa-miR29b as an important downstream target of Wnt7a/Frizzled9 signaling. We show herein that hsa-miR29b expression is lost in non-small cell lung cancer (NSCLC) cell lines and stimulation of β-catenin independent signaling, via Wnt7a expression, in NSCLC cell lines results in increased expression of hsa-miR29b. Surprisingly, we also identify specific regulation of hsa-miR29b by Wnt7a but not by Wnt3, a ligand for β-catenin-dependent signaling. Interestingly, knockdown of hsa-miR29b was enough to abrogate the tumor suppressive effects of Wnt7a/Frizzled9 signaling in NSCLC cells, suggesting that hsa-miR29b is an important mediator of β-catenin independent signaling. Finally, we show for the first time that hsa-miR29b plays an important role as a tumor suppressor in lung cancer by targeting murine double mutant 2 (MDM2), revealing novel nodes for Wnt7a/Frizzled9-mediated regulation of NSCLC cell proliferation.
Collapse
Affiliation(s)
- Sreedevi Avasarala
- Division of Pulmonary and Critical Care Sciences, School of Medicine, University of Colorado, Anschutz Medical Campus , Aurora, CO 80045 , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Noguchi T, Oishi S, Honda K, Kondoh Y, Saito T, Kubo T, Kaneda M, Ohno H, Osada H, Fujii N. Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: identification of novel peptidic inhibitors. Bioorg Med Chem Lett 2013; 23:3802-5. [PMID: 23726030 DOI: 10.1016/j.bmcl.2013.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein-protein interactions (PPIs) of MDM2-p53 and MDMX-p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2-p53 and MDMX-p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been established. A number of compounds from an in-house compound library, which were immobilized onto a chemical array, were screened for interaction with fluorescence-labeled MDM2 and MDMX proteins. The subsequent fluorescent polarization assay identified several compounds that inhibited MDM2-p53 and MDMX-p53 interactions.
Collapse
Affiliation(s)
- Taro Noguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li C, Zhan C, Zhao L, Chen X, Lu WY, Lu W. Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53-MDM2 interaction. Bioorg Med Chem 2013; 21:4045-50. [PMID: 23660015 DOI: 10.1016/j.bmc.2013.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Peptide retro-inverso isomerization is thought to be functionally neutral and has been widely used as a tool for designing proteolytically stable d-isomers to recapitulate biological activities of their parent l-peptides. Despite success in a wide range of applications, exceptions amply exist that clearly defy this rule of thumb when parent l-peptides adopt an α-helical conformation in their bound state. The detrimental energetic effect of retro-inverso isomerization of an α-helical l-peptide on its target protein binding has been estimated to be 3.0-3.4kcal/mol. To better understand how the retro-inverso isomer of a structured protein works at the molecular level, we chemically synthesized and functionally characterized the retro-inverso isomer of a rationally designed miniature protein termed stingin of 18 amino acid residues, which adopts an N-terminal loop and a C-terminal α-helix stabilized by two intra-molecular disulfide bridges. Stingin emulated the transactivation peptide of the p53 tumor suppressor protein and bound with high affinity and via its C-terminal α-helix to MDM2 and MDMX-the two negative regulators of p53. We also prepared the retro isomer and d-enantiomer of stingin for comparative functional studies using fluorescence polarization and surface plasmon resonance techniques. We found that retro-inverso isomerization of l-stingin weakened its MDM2 binding by 720 fold (3.9kcal/mol); while enantiomerization of l-stingin drastically reduced its binding to MDM2 by three orders of magnitude, sequence reversal completely abolished it. Our findings demonstrate the limitation of peptide retro-inverso isomerization in molecular mimicry and reinforce the notion that the strategy works poorly with biologically active α-helical peptides due to inherent differences at the secondary and tertiary structural levels between an l-peptide and its retro-inverso isomer despite their similar side chain topologies at the primary structural level.(1.)
Collapse
Affiliation(s)
- Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Post-translational modifications of proteins can have dramatic effect on the function of proteins. Significant research effort has gone into understanding the effect of particular modifications on protein parameters. In the present paper, I review some of the recently developed tools for the synthesis of proteins modified with single post-translational modifications at specific sites in the protein, such as amber codon suppression technologies, tag and modify, and native chemical ligation.
Collapse
|
28
|
Michelsen K, Jordan JB, Lewis J, Long AM, Yang E, Rew Y, Zhou J, Yakowec P, Schnier PD, Huang X, Poppe L. Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J Am Chem Soc 2012; 134:17059-67. [PMID: 22991965 DOI: 10.1021/ja305839b] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Restoration of p53 function through the disruption of the MDM2-p53 protein complex is a promising strategy for the treatment of various types of cancer. Here, we present kinetic, thermodynamic, and structural rationale for the remarkable potency of a new class of MDM2 inhibitors, the piperidinones. While these compounds bind to the same site as previously reported for small molecule inhibitors, such as the Nutlins, data presented here demonstrate that the piperidinones also engage the N-terminal region (residues 10-16) of human MDM2, in particular, Val14 and Thr16. This portion of MDM2 is unstructured in both the apo form of the protein and in MDM2 complexes with p53 or Nutlin, but adopts a novel β-strand structure when complexed with the piperidinones. The ordering of the N-terminus upon binding of the piperidinones extends the current model of MDM2-p53 interaction and provides a new route to rational design of superior inhibitors.
Collapse
Affiliation(s)
- Klaus Michelsen
- Molecular Structure & Characterization, Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Verkhivker GM. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics. PLoS One 2012; 7:e40897. [PMID: 22815859 PMCID: PMC3397965 DOI: 10.1371/journal.pone.0040897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022] Open
Abstract
Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation would require further integration of computational and experimental studies and may help to guide drug design of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- School of Computational Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America.
| |
Collapse
|
30
|
Zhan C, Zhao L, Wei X, Wu X, Chen X, Yuan W, Lu WY, Pazgier M, Lu W. An ultrahigh affinity d-peptide antagonist Of MDM2. J Med Chem 2012; 55:6237-41. [PMID: 22694121 DOI: 10.1021/jm3005465] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oncoprotein MDM2 negatively regulates the activity and stability of the p53 tumor suppressor and is an important molecular target for anticancer therapy. Aided by mirror image phage display and native chemical ligation, we have previously discovered several proteolysis-resistant duodecimal d-peptide antagonists of MDM2, termed (D)PMI-α, β, γ. The prototypic d-peptide inhibitor (D)PMI-α binds ((25-109))MDM2 at an affinity of 220 nM and kills tumor cells in vitro and inhibits tumor growth in vivo by reactivating the p53 pathway. Herein, we report the design of a superactive d-peptide antagonist of MDM2, termed (D)PMI-δ, of which the binding affinity for ((25-109))MDM2 has been improved over (D)PMI-α by 3 orders of magnitude (K(d) = 220 pM). X-ray crystallographic studies validate (D)PMI-δ as an exceedingly potent inhibitor of the p53-MDM2 interaction, promising to be a highly attractive lead drug candidate for anticancer therapeutic development.
Collapse
Affiliation(s)
- Changyou Zhan
- Institute of Human Virology & Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Monbaliu JCM, Katritzky AR. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun (Camb) 2012; 48:11601-22. [DOI: 10.1039/c2cc34434c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|