1
|
Mardyukov A, Hernández FJ, Song L, Crespo-Otero R, Schreiner PR. Experimentally Delineating the Catalytic Effect of a Single Water Molecule in the Photochemical Rearrangement of the Phenylperoxy Radical to the Oxepin-2(5 H)-one-5-yl Radical. J Am Chem Soc 2024; 146:19070-19076. [PMID: 38968610 DOI: 10.1021/jacs.4c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Catalysis plays a pivotal role in both chemistry and biology, primarily attributed to its ability to stabilize transition states and lower activation free energies, thereby accelerating reaction rates. While computational studies have contributed valuable mechanistic insights, there remains a scarcity of experimental investigations into transition states. In this work, we embark on an experimental exploration of the catalytic energy lowering associated with transition states in the photorearrangement of the phenylperoxy radical-water complex to the oxepin-2(5H)-one-5-yl radical. Employing matrix isolation spectroscopy, density functional theory, and post-HF computations, we scrutinize the (photo)catalytic impact of a single water molecule on the rearrangement. Our computations indicate that the barrier heights for the water-assisted unimolecular isomerization steps are approximately 2-3 kcal mol-1 lower compared to the uncatalyzed steps. This decrease directly coincides with the energy difference in the required wavelength during the transformation (Δλ = λ546 nm - λ579 nm ≡ 52.4-49.4 = 3.0 kcal mol-1), allowing us to elucidate the differential transition state energy in the photochemical rearrangement of the phenylperoxy radical catalyzed by a single water molecule. Our work highlights the important role of water catalysis and has, among others, implications for understanding the mechanism of organic reactions under atmospheric conditions.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | | | - Lijuan Song
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Rachel Crespo-Otero
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
2
|
Xue J, Shao X, Li J, Li J, Trabelsi T, Francisco JS, Zeng X. Observation of the Water-HNSO 2 Complex. J Am Chem Soc 2024; 146:5455-5460. [PMID: 38359146 DOI: 10.1021/jacs.3c13127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Sulfamic acid (NH2SO3H, SFA) is supposed to play an important role in aerosol new particle formation (NPF) in the atmosphere, and its formation mainly arises from the SO3-NH3 reaction system in which weakly bonded donor-acceptor complexes such as SO3···NH3 and isomeric HNSO2···H2O have been proposed as the key intermediates. In this study, we reveal the first spectroscopic observation of HNSO2···H2O in two forms in a solid Ar matrix at 10 K. The major form consists of two intermolecular H bonds by forming a six-membered ring structure with a calculated dissociation energy of 7.6 kcal mol-1 at the CCSD(T)-F12a/aug-cc-pVTZ level of theory. The less stable form resembles SO3···H2O in containing a pure chalcogen bond (S···O) with a dissociation energy of 7.2 kcal mol-1. The characterization of HNSO2···H2O with matrix-isolation IR spectroscopy is supported by D- and 18O-isotope labeling and quantum chemical calculations.
Collapse
Affiliation(s)
- Junfei Xue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xin Shao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jia Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph S Francisco
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Brás EM, Zimmermann C, Fausto R, Suhm MA. Benchmarking the anisotropy of nitroxyl radical solvation with IR spectroscopy. Phys Chem Chem Phys 2024; 26:5822-5829. [PMID: 38314587 DOI: 10.1039/d3cp05668f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Two simple nitroxyl radicals, di-tert-butyl nitroxyl (DTBN) and 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) are solvated by one or two water, methanol, tert-butyl alcohol or phenol molecules. The resulting low temperature IR spectra of the vacuum-isolated microsolvates in the OH stretching range are assigned based on harmonic DFT predictions for closed shell solvent dimers and trimers and their offset from experiment, to minimise theory-guided assignment bias. Systematic conformational preferences for the first and second solvent molecule are observed, depending on the conformational rigidity of the radical. These assignments are collected into an experimental benchmark data set and used to assess the spectral predicting power of different DFT approaches. The goal is to find inexpensive computational methods which provide reliable spectral predictions for this poorly explored class of microsolvates.
Collapse
Affiliation(s)
- Elisa M Brás
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Charlotte Zimmermann
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University, Ataköy Campus, Bakirköy 34156, Istanbul, Turkey
| | - Martin A Suhm
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Zhao Z, Liu M, Zhou K, Guo L, Shen Y, Lu D, Hong X, Bao Z, Yang Q, Ren Q, Schreiner PR, Zhang Z. Visible-Light-Induced Phenoxyl Radical-based Metal-Organic Framework for Selective Photooxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6982-6989. [PMID: 36715584 DOI: 10.1021/acsami.2c21304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phenoxyl radicals originating from phenols through oxidation or photoinduction are relatively stable and exhibit mild oxidative activity, which endows them with the potential for photocatalysis. Herein, a stable and recyclable metal-organic framework Zr-MOF-OH constructed of a binaphthol derivative ligand has been synthesized and functions as an efficient heterogeneous photocatalyst. Zr-MOF-OH shows fairly good catalytic activity and substrate compatibility toward the selective oxidation of sulfides to sulfoxides under visible light irradiation. Such irradiation of Zr-MOF-OH converts the phenolic hydroxyl groups of the binaphthol derivative ligand to phenoxyl radicals through excited state intramolecular proton transfer, and the excited state photocatalyst triggers the single-electron oxidation of the sulfide. No reactive oxygen species are produced in the photocatalytic process, and triplet O2 directly participates in the reaction, endowing Zr-MOF-OH with wide substrate compatibility and high selectivity, which also proposes a promising pathway for the direct activation of substrates via phenoxyl radicals.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yajing Shen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Dan Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
5
|
Li X, Lu B, Jiang J, Wang L, Trabelsi T, Francisco JS, Fang W, Zhou M, Zeng X. Water Complex of Imidogen. J Am Chem Soc 2023; 145:1982-1987. [PMID: 36633923 DOI: 10.1021/jacs.2c12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Imidogen (NH) is the simplest nitrogen hydride that plays an important role in combustion and interstellar chemistry, and its combination with H2O is the prototypical amidation reaction of O-H bonds involving a nitrene intermediate. Herein, we report the observation of the elusive water complex of NH, a prereaction complex associated with the amidation reaction in a solid N2 matrix at 10 K. The hydrogen-bonded structure of NH···OH2 (versus HN···HOH) is confirmed via IR spectroscopy with comprehensive isotope labeling (D, 18O, and 15N) and quantum chemical calculations at the UCCSD(T)/aug-cc-pVQZ level of theory. In line with the observed absorption at 350 nm, irradiation of the complex at 365 nm leads to O-H bond insertion, yielding hydroxylamine NH2OH.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph S Francisco
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Wei Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| |
Collapse
|
6
|
Fernholz C, Bodi A, Hemberger P. Threshold Photoelectron Spectrum of the Phenoxy Radical. J Phys Chem A 2022; 126:9022-9030. [DOI: 10.1021/acs.jpca.2c06670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christin Fernholz
- Laboratory for Synchtrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232Villigen, Switzerland
| | - Andras Bodi
- Laboratory for Synchtrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchtrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232Villigen, Switzerland
| |
Collapse
|
7
|
Unraveling sulfur chemistry in interstellar carbon oxide ices. Nat Commun 2022; 13:7150. [DOI: 10.1038/s41467-022-34949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractFormyl radical (HCO•) and hydroxycarbonyl radical (HOCO•) are versatile building blocks in the formation of biorelevant complex organic molecules (COMs) in interstellar medium. Understanding the chemical pathways for the formation of HCO• and HOCO• starting with primordial substances (e.g., CO and CO2) is of vital importance in building the complex network of prebiotic chemistry. Here, we report the efficient formation of HCO• and HOCO• in the photochemistry of hydroxidooxidosulfur radical (HOSO•)–a key intermediate in SO2 photochemistry–in interstellar analogous ices of CO and CO2 at 16 K through hydrogen atom transfer (HAT) reactions. Specifically, 266 nm laser photolysis of HOSO• embedded in solid CO ice yields the elusive hydrogen‑bonded complexes HCO•···SO2 and HOCO•···SO, and the latter undergoes subsequent HAT to furnish CO2···HOS• under the irradiation conditions. Similar photo-induced HAT of HOSO• in solid CO2 ice leads to the formation of HOCO•···SO2. The HAT reactions of HOSO• in astronomical CO and CO2 ices by forming reactive acyl radicals may contribute to understanding the interplay between the sulfur and carbon ice-grain chemistry in cold molecular clouds and also in the planetary atmospheric chemistry.
Collapse
|
8
|
Plenert AC, Mendez-Vega E, Sander W. Micro- vs Macrosolvation in Reichardt's Dyes. J Am Chem Soc 2021; 143:13156-13166. [PMID: 34387472 DOI: 10.1021/jacs.1c04680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solvation is a complex phenomenon involving electrostatic and van der Waals forces as well as chemically more specific effects such as hydrogen bonding. To disentangle global solvent effects (macrosolvation) from local solvent effects (microsolvation), we studied the UV-vis and IR spectra of a solvatochromic pyridinium-N-phenolate dye (a derivative of Reichardt's dye) in rare gas matrices, in mixtures of argon and water, and in water ice. The π-π* transition of the betaine dye in the visible region and its C-O stretching vibration in the IR region are highly sensitive to solvent effects. By annealing argon matrices of the betaine dye doped with low concentrations of water, we were able to synthesize 1:1 water-dye complexes. Formation of hydrogen-bonded complexes leads to small shifts of the π-π* transition only, as long as the global polarity of the matrix environment does not change. In contrast, changes of the global polarity result in large spectral band shifts. Hydrogen-bonded complexes of the betaine dye are more sensitive to global polarity changes than the dye itself, explaining why ET values determined with Reichardt's dyes are very different for protic and nonprotic solvents, even if the relative permittivities of these solvents are similar.
Collapse
Affiliation(s)
- Adam C Plenert
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
9
|
Computing Proton-Coupled Redox Potentials of Fluorotyrosines in a Protein Environment. J Phys Chem B 2020; 125:128-136. [PMID: 33378205 DOI: 10.1021/acs.jpcb.0c09974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of tyrosine to form the neutral tyrosine radical via proton-coupled electron transfer is essential for a wide range of biological processes. The precise measurement of the proton-coupled redox potentials of tyrosine (Y) in complex protein environments is challenging mainly because of the highly oxidizing and reactive nature of the radical state. Herein, a computational strategy is presented for predicting proton-coupled redox potentials in a protein environment. In this strategy, both the reduced Y-OH and oxidized Y-O• forms of tyrosine are sampled with molecular dynamics using a molecular mechanical force field. For a large number of conformations, a quantum mechanical/molecular mechanical (QM/MM) electrostatic embedding scheme is used to compute the free-energy differences between the reduced and oxidized forms, including the zero-point energy and entropic contributions as well as the impact of the protein electrostatic environment. This strategy is applied to a series of fluorinated tyrosine derivatives embedded in a de novo α-helical protein denoted as α3Y. The force fields for both the reduced and oxidized forms of these noncanonical fluorinated tyrosine residues are parameterized for general use. The calculated relative proton-coupled redox potentials agree with experimentally measured values with a mean unsigned error of 24 mV. Analysis of the simulations illustrates that hydrogen-bonding interactions between tyrosine and water increase the redox potentials by ∼100-250 mV, with significant variations because of the fluctuating protein environment. This QM/MM approach enables the calculation of proton-coupled redox potentials of tyrosine and other residues such as tryptophan in a variety of protein systems.
Collapse
|
10
|
Wu Z, Chen C, Liu J, Lu Y, Xu J, Liu X, Cui G, Trabelsi T, Francisco JS, Mardyukov A, Eckhardt AK, Schreiner PR, Zeng X. Caged Nitric Oxide-Thiyl Radical Pairs. J Am Chem Soc 2019; 141:3361-3365. [PMID: 30758958 DOI: 10.1021/jacs.8b12746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
S-Nitrosothiols (RSNO) are exogenous and endogenous sources of nitric oxide in biological systems due to facile homolytic cleavage of the S-N bonds. By following the photolytic decomposition of prototypical RSNO (R = Me and Et) in Ne, Ar, and N2 matrixes (<10 K), elusive caged radical pairs consisting of nitric oxide (NO•) and thiyl radicals (RS•), bridged by O···S and H···N connections, were identified with IR and UV/vis spectroscopy. Upon red-light irradiation, both caged radical pairs (RS•···•ON) vanish and reform RSNO. According to the calculation at the CASPT2(10,8)/cc-pVDZ level (298.15 K), the dissociation energy of MeS•···•ON amounts to 4.7 kcal mol-1.
Collapse
Affiliation(s)
- Zhuang Wu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Changyun Chen
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yan Lu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Jian Xu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Xiangyang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Tarek Trabelsi
- Department of Earth and Environmental Science and Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Artur Mardyukov
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
11
|
Lu N, Chung WC, Ley RM, Lin KY, Francisco JS, Negishi EI. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond. J Phys Chem A 2016; 120:1307-15. [PMID: 26855203 DOI: 10.1021/acs.jpca.6b00144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.
Collapse
Affiliation(s)
- Norman Lu
- Department of Chemistry, Purdue University , 1393 Brown Building, West Lafayette, Indiana 47907-1393, United States.,Institute of Organic and Polymeric Materials, National Taipei University of Technology , Taipei 106, Taiwan
| | - Wei-Cheng Chung
- Institute of Organic and Polymeric Materials, National Taipei University of Technology , Taipei 106, Taiwan
| | - Rebecca M Ley
- Department of Chemistry, Purdue University , 1393 Brown Building, West Lafayette, Indiana 47907-1393, United States
| | - Kwan-Yu Lin
- Institute of Organic and Polymeric Materials, National Taipei University of Technology , Taipei 106, Taiwan
| | - Joseph S Francisco
- Department of Chemistry, Purdue University , 1393 Brown Building, West Lafayette, Indiana 47907-1393, United States.,Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Ei-Ichi Negishi
- Department of Chemistry, Purdue University , 1393 Brown Building, West Lafayette, Indiana 47907-1393, United States
| |
Collapse
|
12
|
Morgenstern K, Marx D, Havenith M, Muhler M. Editorial of the PCCP themed issue on "Solvation Science". Phys Chem Chem Phys 2015; 17:8295-6. [PMID: 25660560 DOI: 10.1039/c5cp90022k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present special issue presents exciting experimental and theoretical results in the topic of "Solvation Science", a topic that emerges from physical, theoretical, and industrial chemistry, and is also of interest to a multitude of neighboring fields, such as inorganic and organic chemistry, biochemistry, physics and engineering. We hope that the articles will be highly useful for researchers who would like to enter this newly emerging area, and that it is a valuable source for the nucleation of new ideas and collaborations to better understand the active role of the solvent in reactions.
Collapse
Affiliation(s)
- Karina Morgenstern
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | | | | | | |
Collapse
|
13
|
Costa P, Trosien I, Fernandez-Oliva M, Sanchez-Garcia E, Sander W. The Fluorenyl Cation. Angew Chem Int Ed Engl 2015; 54:2656-60. [DOI: 10.1002/anie.201411234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/10/2022]
|
14
|
Costa P, Trosien I, Fernandez-Oliva M, Sanchez-Garcia E, Sander W. The Fluorenyl Cation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Li QZ, Li HB. Hydrogen Bonds Involving Radical Species. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-14163-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Parker DSN, Kaiser RI, Troy TP, Kostko O, Ahmed M, Mebel AM. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems. J Phys Chem A 2014; 119:7145-54. [DOI: 10.1021/jp509170x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dorian S. N. Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tyler P. Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander M. Mebel
- Department of Chemistry and
Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
17
|
Costa P, Fernandez-Oliva M, Sanchez-Garcia E, Sander W. The highly reactive benzhydryl cation isolated and stabilized in water ice. J Am Chem Soc 2014; 136:15625-30. [PMID: 25236711 DOI: 10.1021/ja507894x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diphenylcarbene (DPC) shows a triplet ground-state lying approximately 3 kcal/mol below the lowest singlet state. Under the conditions of matrix isolation at 25 K, DPC reacts with single water molecules embedded in solid argon and switches its ground state from triplet to singlet by forming a strong hydrogen bond. The complex between DPC and water is only metastable, and even at 3 K the carbene center slowly inserts into the OH bond of water to form benzhydryl alcohol via quantum chemical tunneling. Surprisingly, if DPC is generated in amorphous water ice at 3 K, it is protonated instantaneously to give the benzhydryl cation. Under these conditions, the benzhydryl cation is stable, and warming to temperatures above 50 K is required to produce benzhydryl alcohol. Thus, for the first time, a highly electrophilic and extremely reactive secondary carbenium ion can be isolated in a neutral, nucleophilic environment avoiding superacidic conditions.
Collapse
Affiliation(s)
- Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | | | | | | |
Collapse
|
18
|
Sander W, Roy S, Bravo-Rodriguez K, Grote D, Sanchez-Garcia E. The Benzylperoxyl Radical as a Source of Hydroxyl and Phenyl Radicals. Chemistry 2014; 20:12917-23. [DOI: 10.1002/chem.201402459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 11/10/2022]
|
19
|
Henkel S, Ertelt M, Sander W. Deuterium and Hydrogen Tunneling in the Hydrogenation of 4‐Oxocyclohexa‐2,5‐dienylidene. Chemistry 2014; 20:7585-8. [DOI: 10.1002/chem.201402064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr‐Universität Bochum, 44781 Bochum (Germany)
| | - Melanie Ertelt
- Lehrstuhl für Organische Chemie II, Ruhr‐Universität Bochum, 44781 Bochum (Germany)
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr‐Universität Bochum, 44781 Bochum (Germany)
| |
Collapse
|
20
|
Cao Q, Gor GY, Krogh-Jespersen K, Khriachtchev L. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes. J Chem Phys 2014; 140:144304. [DOI: 10.1063/1.4870516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Silverstein DW, Govind N, van Dam HJJ, Jensen L. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory. J Chem Theory Comput 2013; 9:5490-503. [DOI: 10.1021/ct4007772] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel W. Silverstein
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Niranjan Govind
- William
R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Hubertus J. J. van Dam
- William
R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Lasse Jensen
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Sajid M, Lawzer A, Dong W, Rosorius C, Sander W, Schirmer B, Grimme S, Daniliuc CG, Kehr G, Erker G. Carbonylation reactions of intramolecular vicinal frustrated phosphane/borane Lewis pairs. J Am Chem Soc 2013; 135:18567-74. [PMID: 24147963 DOI: 10.1021/ja408815k] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intramolecular frustrated Lewis pair (FLP) Mes2PCH2CH2B(C6F5)2 4 adds cooperatively to carbon monoxide to form the five-membered heterocyclic carbonyl compound 5. The intramolecular FLP 7 contains an exo-3-B(C6F5)2 Lewis acid and an endo-2-PMes2 Lewis base functionality coordinated at the norbornane framework. This noninteracting FLP adds carbon monoxide in solution at -35 °C cooperatively to yield a five-membered heterocyclic FLP-carbonyl compound 8. In contrast, FLP 7 is carbonylated in a CO-doped argon matrix at 25 K to selectively form a borane carbonyl 9 without involvement of the adjacent phosphanyl moiety. The free FLP 7 was generated in the gas phase from its FLPH2 product 10. A DFT study has shown that the phosphonium hydrido borate zwitterion 10 is formed exergonically in solution but tends to lose H2 when brought into the gas phase.
Collapse
Affiliation(s)
- Muhammad Sajid
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität , Corrensstraße 40, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tentscher PR, Arey JS. On the Nature of Interactions of Radicals with Polar Molecules. J Phys Chem A 2013; 117:12560-8. [DOI: 10.1021/jp407041e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter R. Tentscher
- Environmental
Chemistry Modeling Laboratory, Swiss Federal Institute of Technology Lausanne
, 1015
Lausanne, Switzerland
| | - J. Samuel Arey
- Environmental
Chemistry Modeling Laboratory, Swiss Federal Institute of Technology Lausanne
, 1015
Lausanne, Switzerland
- Department
of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology
, 8600
Dübendorf, Switzerland
| |
Collapse
|
24
|
Abstract
How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.
Collapse
Affiliation(s)
- Gautam R Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
25
|
Cao Q, Berski S, Räsänen M, Latajka Z, Khriachtchev L. Spectroscopic and Computational Characterization of the HCO···H2O Complex. J Phys Chem A 2013; 117:4385-93. [DOI: 10.1021/jp4009477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Cao
- Department of Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland
| | - Slawomir Berski
- Faculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Str., 50-383 Wroclaw, Poland
| | - Markku Räsänen
- Department of Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland
| | - Zdzislaw Latajka
- Faculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Str., 50-383 Wroclaw, Poland
| | - Leonid Khriachtchev
- Department of Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland
| |
Collapse
|
26
|
Tentscher PR, Arey JS. Binding in Radical-Solvent Binary Complexes: Benchmark Energies and Performance of Approximate Methods. J Chem Theory Comput 2013; 9:1568-79. [DOI: 10.1021/ct300846m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter R. Tentscher
- Environmental
Chemistry Modeling
Laboratory, EPFL, Lausanne, Switzerland
| | - J. Samuel Arey
- Environmental
Chemistry Modeling
Laboratory, EPFL, Lausanne, Switzerland
- Swiss Federal Institute of Aquatic
Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
27
|
|
28
|
Merten C, Xu Y. Matrix Isolation-Vibrational Circular Dichroism Spectroscopy of 3-Butyn-2-ol and its Binary Aggregates. Chemphyschem 2012; 14:213-9. [DOI: 10.1002/cphc.201200758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Indexed: 11/10/2022]
|
29
|
Boeckx B, Maes G. Simulating the Interaction between Amino Acids and DNA: A Combined Matrix-Isolation FT-IR and Theoretical Study of the 1-Methyluracil·Glycine H-Bond Complexes Using a Dual Sublimation Furnace. J Phys Chem B 2012; 116:11890-8. [DOI: 10.1021/jp307388e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bram Boeckx
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, Leuven, Belgium
| | - Guido Maes
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, Leuven, Belgium
| |
Collapse
|