1
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Krause KD, Rees K, Darwish GH, Bernal-Escalante J, Algar WR. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity. ACS NANO 2024; 18:17018-17030. [PMID: 38845136 DOI: 10.1021/acsnano.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The advantageous optical properties of quantum dots (QDs) motivate their use in a wide variety of applications related to imaging and bioanalysis, including the detection of proteases and their activity. Recent studies have shown that surface chemistry on QDs is able to modulate protease activity, but only nonspecifically. Here, we present a strategy to selectively accelerate the activity of a particular target protease by as much as two orders of magnitude. Exosite-binding "bait" peptides were derived from proteins that span a range of biological roles─substrate, receptor, and inhibitor─and were used to increase the affinity of the QD-peptide conjugates for either thrombin or factor Xa, resulting in increased rates of proteolysis for coconjugated substrates. Unlike effects from QD surface chemistry, the acceleration was specific to the target protease with negligible acceleration of other proteases. Benefits of this "bait and cleave" sensing approach included detection limits that improved by more than an order of magnitude, reenabled detection of target protease against an overwhelming background of nontarget proteolysis, and mitigation of the action of inhibitors. The cumulative results point to a generalizable strategy, where the mechanism of acceleration, considerations for the design of bait peptides and conjugates, and routes to expanding the scope of this approach are discussed. Overall, this research represents a major step forward in the rational design of nanoparticle-based enzyme sensors that enhance sensitivity and selectivity.
Collapse
Affiliation(s)
- Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| |
Collapse
|
3
|
Liu Y, Yan M, Wang M, Luo S, Wang S, Luo Y, Xu Z, Ma W, Wen L, Li T. Stereoconvergent and Chemoenzymatic Synthesis of Tumor-Associated Glycolipid Disialosyl Globopentaosylceramide for Probing the Binding Affinity of Siglec-7. ACS CENTRAL SCIENCE 2024; 10:417-425. [PMID: 38435515 PMCID: PMC10906248 DOI: 10.1021/acscentsci.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is a tumor-associated complex glycosphingolipid. However, the accessibility of structurally well-defined DSGb5 for precise biological functional studies remains challenging. Herein, we describe the first total synthesis of DSGb5 glycolipid by an efficient chemoenzymatic approach. A Gb5 pentasaccharide-sphingosine was chemically synthesized by a convergent and stereocontrolled [2 + 3] method using an oxazoline disaccharide donor to exclusively form β-anomeric linkage. After investigating the substrate specificity of different sialyltransferases, regio- and stereoselective installment of two sialic acids was achieved by two sequential enzyme-catalyzed reactions using α2,3-sialyltransferase Cst-I and α2,6-sialyltransferase ST6GalNAc5. A unique aspect of the approach is that methyl-β-cyclodextrin-assisted enzymatic α2,6-sialylation of glycolipid substrate enables installment of the challenging internal α2,6-linked sialoside to synthesize DSGb5 glycosphingolipid. Surface plasmon resonance studies indicate that DSGb5 glycolipid exhibits better binding affinity for Siglec-7 than the oligosaccharide moiety of DSGb5. The binding results suggest that the ceramide moiety of DSGb5 facilitates its binding by presenting multivalent interactions of glycan epitope for the recognition of Siglec-7.
Collapse
Affiliation(s)
- Yating Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Mengkun Yan
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiwei Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Shasha Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yawen Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojia Xu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Wen
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Enzymatic Glyco-Modification of Synthetic Membrane Systems. Biomolecules 2023; 13:biom13020335. [PMID: 36830704 PMCID: PMC9952996 DOI: 10.3390/biom13020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The present report assesses the capability of a soluble glycosyltransferase to modify glycolipids organized in two synthetic membrane systems that are attractive models to mimic cell membranes: giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs). The objective was to synthesize the Gb3 antigen (Galα1,4Galβ1,4Glcβ-Cer), a cancer biomarker, at the surface of these membrane models. A soluble form of LgtC that adds a galactose residue from UDP-Gal to lactose-containing acceptors was selected. Although less efficient than with lactose, the ability of LgtC to utilize lactosyl-ceramide as an acceptor was demonstrated on GUVs and SLBs. The reaction was monitored using the B-subunit of Shiga toxin as Gb3-binding lectin. Quartz crystal microbalance with dissipation analysis showed that transient binding of LgtC at the membrane surface was sufficient for a productive conversion of LacCer to Gb3. Molecular dynamics simulations provided structural elements to help rationalize experimental data.
Collapse
|
5
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
6
|
Xia N, Sun T, Liu L, Tian L, Sun Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta 2022; 237:122949. [PMID: 34736675 DOI: 10.1016/j.talanta.2021.122949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
Heterogeneous analysis has great application prospects in the detection of post-translational modification (PTM) enzymes with the advantages of signal enhancement, less sample demand, and high sensitivity and selectivity. Nevertheless, once the substrate was fixed on a solid interface, the steric hindrance might limit the approaching of catalytic center to the substrate, thus reducing the efficiency of PTM. Herein, we suggested that the avidin-modified interface could be used to develop heterogeneous sensing platforms with biotin-labeled substrates as the probes, in which the enzymatic PTM was performed in solution and the heterogeneous assay was conducted on a solid surface. The sensing strategy integrates the advantages but overcomes the defects of both homogeneous and heterogeneous assays. Protein kinase A (PKA) and histone acetyltransferase (HAT) were determined as the examples by using sequence-specific peptide substrates. The signal changes were monitored by HRP-based colorimetric assay and antibody-amplified surface plasmon resonance (SPR). The methods were used for analysis of cell lysates and evaluation of inhibition efficiency with satisfactory results. The strategy can be used for the detection of a variety of biological enzymes and provide a new idea for the design of various heterogeneous biosensors. Thus, this work should be of great significance to the popularization and practical application of biosensors.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Ting Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China; School of Chemistry and Materials Science, Guizhou Education University, GaoXin Road 115, Wudang District, Guizhou, 550000, PR China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China.
| | - Linxu Tian
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Zhifang Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
7
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid–Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yuka Anegawa
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Hikaru Watanabe
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yutaro Tajima
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Masanao Kinoshita
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuaki Matsumori
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Masaaki Nakamura
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masaaki Ohba
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
8
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid-Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021; 60:13603-13608. [PMID: 33723910 DOI: 10.1002/anie.202102774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/08/2022]
Abstract
We demonstrate a fluid-fluid phase separation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes using a metal complex lipid of type [Mn(L1)] (1; HL1=1-(2-hydroxybenzamide)-2-(2-hydroxy-3-formyl-5-hexadecyloxybenzylideneamino)ethane). Small amount of 1 produces two separated domains in DMPC, whose phase transition temperatures of lipids (Tc ) are both lower than that of the pristine DMPC. Variable temperature fluorescent microscopy for giant-unilamellar vesicles of DMPC/1 hybrids demonstrates that visible phase separations remain in fluid phases up to 37 °C, which is clearly over the Tc of DMPC. This provides a new dimension for the application of metal complex lipids toward controlling lipid distributions in fluid membranes.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuka Anegawa
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hikaru Watanabe
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yutaro Tajima
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
9
|
Ohtani R, Kawano K, Kinoshita M, Yanaka S, Watanabe H, Hirai K, Futaki S, Matsumori N, Uji-I H, Ohba M, Kato K, Hayami S. Pseudo-Membrane Jackets: Two-Dimensional Coordination Polymers Achieving Visible Phase Separation in Cell Membrane. Angew Chem Int Ed Engl 2020; 59:17931-17937. [PMID: 32608036 DOI: 10.1002/anie.202006600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/29/2020] [Indexed: 11/09/2022]
Abstract
Cell membranes contain lateral systems that consist of various lipid compositions and actin cytoskeleton, providing two-dimensional (2D) platforms for chemical reactions. However, such complex 2D environments have not yet been used as a synthetic platform for artificial 2D nanomaterials. Herein, we demonstrate the direct synthesis of 2D coordination polymers (CPs) at the liquid-cell interface of the plasma membrane of living cells. The coordination-driven self-assembly of networking metal complex lipids produces cyanide-bridged CP layers with metal ions, enabling "pseudo-membrane jackets" that produce long-lived micro-domains with a size of 1-5 μm. The resultant artificial and visible phase separation systems remain stable even in the absence of actin skeletons in cells. Moreover, we show the cell application of the jackets by demonstrating the enhancement of cellular calcium response to ATP.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hikaru Watanabe
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Hirai
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita-Ward Sapporo, Hokkaido, 001-0020, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroshi Uji-I
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita-Ward Sapporo, Hokkaido, 001-0020, Japan.,Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
10
|
Ohtani R, Kawano K, Kinoshita M, Yanaka S, Watanabe H, Hirai K, Futaki S, Matsumori N, Uji‐i H, Ohba M, Kato K, Hayami S. Pseudo‐Membrane Jackets: Two‐Dimensional Coordination Polymers Achieving Visible Phase Separation in Cell Membrane. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Masanao Kinoshita
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Hikaru Watanabe
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenji Hirai
- Research Institute for Electronic Science Hokkaido University N20W10 Kita-Ward Sapporo Hokkaido 001-0020 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Nobuaki Matsumori
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroshi Uji‐i
- Research Institute for Electronic Science Hokkaido University N20W10 Kita-Ward Sapporo Hokkaido 001-0020 Japan
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Masaaki Ohba
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science and Technology and Institute of Pulsed Power Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
11
|
Muraoka T. Biofunctional Molecules Inspired by Protein Mimicry and Manipulation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Li R, Muraoka T, Kinbara K. Thermo-driven self-assembly of a PEG-containing amphiphile in a bilayer membrane. RSC Adv 2020; 10:25758-25762. [PMID: 35518572 PMCID: PMC9055338 DOI: 10.1039/d0ra03920a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Self-assembly of lipid molecules in a plasma membrane, namely lipid raft formation, is involved in various dynamic functions of cells. Inspired by the raft formation observed in the cells, here we studied thermally induced self-assembly of a synthetic amphiphile, bola-AkDPA, in a bilayer membrane. The synthetic amphiphile consists of a hydrophobic unit including fluorescent aromatic and aliphatic components and hydrophilic tetraethylene glycol chains attached at both ends of the hydrophobic unit. In a polar solvent, bola-AkDPA formed aggregates to show excimer emission. In a lipid bilayer membrane, bola-AkDPA showed intensified excimer emission upon increase of its concentration or elevation of the temperature; bola-type amphiphiles containing oligoethylene glycol chains likely tend to form self-assemblies in a bilayer membrane triggered by thermal stimuli. A synthetic multi-block amphiphile containing oligoethylene glycol chains formed a self-assembly in a bilayer membrane triggered by thermal stimuli.![]()
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
| | - Takahiro Muraoka
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
- Department of Life Science and Technology
| |
Collapse
|
13
|
Fallows TW, McGrath AJ, Silva J, McAdams SG, Marchesi A, Tuna F, Flitsch SL, Tilley RD, Webb SJ. High-throughput chemical and chemoenzymatic approaches to saccharide-coated magnetic nanoparticles for MRI. NANOSCALE ADVANCES 2019; 1:3597-3606. [PMID: 36133529 PMCID: PMC9417132 DOI: 10.1039/c9na00376b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
There is a need for biofunctionalised magnetic nanoparticles for many biomedical applications, including MRI contrast agents that have a range of surface properties and functional groups. A library of eleven adducts, each formed by condensing a reducing sugar with a catechol hydrazide, for nanoparticle functionalisation has been created using a high-throughput chemical synthesis methodology. The enzymatic transformation of an N-acetylglucosamine (GlcNAc) adduct into an N-acetyllactosamine adduct by β-1,4-galactosyltransferase illustrates how chemoenzymatic methods could provide adducts bearing complex and expensive glycans. Superparamagnetic iron oxide nanoparticles (8 nm diameter, characterised by TEM, DLS and SQUID) were coated with these adducts and the magnetic resonance imaging (MRI) properties of GlcNAc-labelled nanoparticles were determined. This straightforward approach can produce a range of MRI contrast agents with a variety of biofunctionalised surfaces.
Collapse
Affiliation(s)
- Thomas W Fallows
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161 306 4524
- Manchester Institute of Biotechnology, University of Manchester 131 Princess St Manchester M1 7DN UK
| | - Andrew J McGrath
- School of Chemistry, University of New South Wales Australia
- Australian Centre for NanoMedicine, University of New South Wales Australia
| | - Joana Silva
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161 306 4524
- Manchester Institute of Biotechnology, University of Manchester 131 Princess St Manchester M1 7DN UK
| | - Simon G McAdams
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161 306 4524
- School of Materials, University of Manchester Oxford Road Manchester UK
| | - Andrea Marchesi
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161 306 4524
- Manchester Institute of Biotechnology, University of Manchester 131 Princess St Manchester M1 7DN UK
| | - Floriana Tuna
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161 306 4524
- Photon Science Institute, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sabine L Flitsch
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161 306 4524
- Manchester Institute of Biotechnology, University of Manchester 131 Princess St Manchester M1 7DN UK
| | - Richard D Tilley
- School of Chemistry, University of New South Wales Australia
- Australian Centre for NanoMedicine, University of New South Wales Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Australia
| | - Simon J Webb
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161 306 4524
- Manchester Institute of Biotechnology, University of Manchester 131 Princess St Manchester M1 7DN UK
| |
Collapse
|
14
|
Comparative Analysis of Radical Adduct Formation (RAF) Products and Antioxidant Pathways between Myricetin-3- O-Galactoside and Myricetin Aglycone. Molecules 2019; 24:molecules24152769. [PMID: 31366105 PMCID: PMC6696482 DOI: 10.3390/molecules24152769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022] Open
Abstract
The biological process, 3-O-galactosylation, is important in plant cells. To understand the mechanism of the reduction of flavonol antioxidative activity by 3-O-galactosylation, myricetin-3-O-galactoside (M3OGa) and myricetin aglycone were each incubated with 2 mol α,α-diphenyl-β-picrylhydrazyl radical (DPPH•) and subsequently comparatively analyzed for radical adduct formation (RAF) products using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS) technology. The analyses revealed that M3OGa afforded an M3OGa–DPPH adduct (m/z 873.1573) and an M3OGa–M3OGa dimer (m/z 958.1620). Similarly, myricetin yielded a myricetin–DPPH adduct (m/z 711.1039) and a myricetin–myricetin dimer (m/z 634.0544). Subsequently, M3OGa and myricetin were compared using three redox-dependent antioxidant analyses, including DPPH•-trapping analysis, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping analysis, and •O2 inhibition analysis. In the three analyses, M3OGa always possessed higher IC50 values than those of myricetin. Conclusively, M3OGa and its myricetin aglycone could trap the free radical via a chain reaction comprising of a propagation step and a termination step. At the propagation step, both M3OGa and myricetin could trap radicals through redox-dependent antioxidant pathways. The 3-O-galactosylation process, however, could limit these pathways; thus, M3OGa is an inferior antioxidant compared to its myricetin aglycone. Nevertheless, 3-O-galactosylation has a negligible effect on the termination step. This 3-O-galactosylation effect has provided novel evidence that the difference in the antioxidative activities of phytophenols exists at the propagation step rather than the termination step.
Collapse
|
15
|
Peters AD, McCallion C, Booth A, Adams JA, Rees-Unwin K, Pluen A, Burthem J, Webb SJ. Synthesis and biological activity of a CXCR4-targeting bis(cyclam) lipid. Org Biomol Chem 2019; 16:6479-6490. [PMID: 30155533 DOI: 10.1039/c8ob01439f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A bis(cyclam)-capped cholesterol lipid designed to bind C-X-C chemokine receptor type 4 (CXCR4) was synthesised in good overall yield from 4-methoxyphenol through a seven step synthetic route, which also provided a bis(cyclam) intermediate bearing an octaethyleneglycol-primary amine that can be easily derivatised. This bis(cyclam)-capped cholesterol lipid was water soluble and self-assembled into micellar and non-micellar aggregates in water at concentrations above 8 μM. The bioactivity of the bis(cyclam)-capped cholesterol lipid was assessed using primary chronic lymphocytic leukaemia (CLL) cells, first with a competition binding assay then with a chemotaxis assay along a C-X-C motif chemokine ligand 12 (CXCL12) concentration gradient. At 20 μM, the bis(cyclam)-capped cholesterol lipid was as effective as the commercial drug AMD3100 for preventing the migration of CLL cells, despite a lower affinity for CXCR4 than AMD3100.
Collapse
Affiliation(s)
- Anna D Peters
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brissonnet Y, Compain G, Renoux B, Krammer EM, Daligault F, Deniaud D, Papot S, Gouin SG. Monitoring glycosidase activity for clustered sugar substrates, a study on β-glucuronidase. RSC Adv 2019; 9:40263-40267. [PMID: 35542663 PMCID: PMC9076263 DOI: 10.1039/c9ra08847d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Enzymatically-triggered probes to determine glucuronidase hydrolysis kinetics for clustered substrates.
Collapse
Affiliation(s)
- Yoan Brissonnet
- Université de Nantes
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
- 44322 Nantes Cedex 3
| | - Guillaume Compain
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- IC2MP
- Université de Poitiers
- UMR-CNRS 7285
- 86022 Poitiers
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- IC2MP
- Université de Poitiers
- UMR-CNRS 7285
- 86022 Poitiers
| | - Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques
- Université Libre de Bruxelles (ULB)
- Brussels
- Belgium
| | - Franck Daligault
- Université de Nantes
- UFIP
- UMR CNRS 6286
- UFR des Sciences et des Techniques
- France
| | - David Deniaud
- Université de Nantes
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
- 44322 Nantes Cedex 3
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers
- IC2MP
- Université de Poitiers
- UMR-CNRS 7285
- 86022 Poitiers
| | - Sébastien G. Gouin
- Université de Nantes
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
- 44322 Nantes Cedex 3
| |
Collapse
|
17
|
Lister FGA, Eccles N, Pike SJ, Brown RA, Whitehead GFS, Raftery J, Webb SJ, Clayden J. Bis-pyrene probes of foldamer conformation in solution and in phospholipid bilayers. Chem Sci 2018; 9:6860-6870. [PMID: 30310619 PMCID: PMC6114994 DOI: 10.1039/c8sc02532k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
Exploring the detailed structural features of synthetic molecules in the membrane phase requires sensitive probes of conformation. Here we describe the design, synthesis and characterization of bis(pyrene) probes that report conformational changes in membrane-active dynamic foldamers. The probes were designed to distinguish between left-handed (M) and right-handed (P) screw-sense conformers of 310-helical α-aminoisobutyric acid (Aib) peptide foldamers, both in solution and in bilayer membranes. Several different bis(pyrene) probes were synthesized and ligated to the C-terminus of Aib tetramers that had different chiral residues at the N-terminus, residues that favored either an M or a P screw-sense in the 310-helix. The readily synthesized and conveniently incorporated N-acetyl-1,2-bis(pyren-1'-yl)ethylenediamine probe proved to have the best properties. In solution, changes in foldamer screw-sense induced substantial changes in the ratio of excimer/monomer fluorescence emission (E/M) for this reporter of conformation, with X-ray crystallography revealing that opposite screw-senses produce very different interpyrene distances in the reporter. In bilayers, this convenient and sensitive fluorescent reporter allowed, for the first time, an investigation of how the chirality of natural phospholipids affects foldamer conformation.
Collapse
Affiliation(s)
- Francis G A Lister
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - Natasha Eccles
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK . .,Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Sarah J Pike
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK . .,Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK.,Faculty of Life Sciences , University of Bradford , Bradford , West Yorkshire BD7 1DP , UK
| | - Robert A Brown
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - George F S Whitehead
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - James Raftery
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - Simon J Webb
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK . .,Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| |
Collapse
|
18
|
Vranish JN, Ancona MG, Walper SA, Medintz IL. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2901-2925. [PMID: 29115133 DOI: 10.1021/acs.langmuir.7b02588] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The growing emphasis on green chemistry, renewable resources, synthetic biology, regio-/stereospecific chemical transformations, and nanotechnology for providing new biological products and therapeutics is reinvigorating research into enzymatic catalysis. Although the promise is profound, many complex issues remain to be addressed before this effort will have a significant impact. Prime among these is to combat the degradation of enzymes frequently seen in ex vivo formats following immobilization to stabilize the enzymes for long-term application and to find ways of enhancing their activity. One promising avenue for progress on these issues is via nanoparticle (NP) display, which has been found in a number of cases to enhance enzyme activity while also improving long-term stability. In this feature article, we discuss the phenomenon of enhanced enzymatic activity at NP interfaces with an emphasis on our own work in this area. Important factors such as NP surface chemistry, bioconjugation approaches, and assay formats are first discussed because they can critically affect the observed enhancement. Examples are given of improved performance for enzymes such as phosphotriesterase, alkaline phosphatase, trypsin, horseradish peroxidase, and β-galactosidase and in configurations with either the enzyme or the substrate attached to the NP. The putative mechanisms that give rise to the performance boost are discussed along with how detailed kinetic modeling can contribute to their understanding. Given the importance of biosensing, we also highlight how this configuration is already making a significant contribution to NP-based enzymatic sensors. Finally, a perspective is provided on how this field may develop and how NP-based enzymatic enhancement can be extended to coupled systems and multienzyme cascades.
Collapse
|
19
|
Craven FL, Silva J, Segarra-Maset MD, Huang K, Both P, Gough JE, Flitsch SL, Webb SJ. ‘One-pot’ sequential enzymatic modification of synthetic glycolipids in vesicle membranes. Chem Commun (Camb) 2018; 54:1347-1350. [DOI: 10.1039/c7cc09148f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To create vesicles with cell-targeting coatings, two soluble enzymes were used to directly glycosylate vesicle surfaces in a ‘one-pot’ procedure.
Collapse
Affiliation(s)
- Faye L. Craven
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Manchester Institute of Biotechnology
| | - Joana Silva
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Manchester Institute of Biotechnology
| | - Maria D. Segarra-Maset
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Manchester Institute of Biotechnology
| | - Kun Huang
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Manchester Institute of Biotechnology
| | - Peter Both
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Manchester Institute of Biotechnology
| | - Julie E. Gough
- School of Materials
- University of Manchester
- MSS Tower
- Manchester M13 9PL
- UK
| | - Sabine L. Flitsch
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Manchester Institute of Biotechnology
| | - Simon J. Webb
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Manchester Institute of Biotechnology
| |
Collapse
|
20
|
Li R, Muraoka T, Kinbara K. Thermally-induced lateral assembly of a PEG-containing amphiphile triggering vesicle budding. Chem Commun (Camb) 2017; 53:11662-11665. [PMID: 29018844 DOI: 10.1039/c7cc06489f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A macrocyclic amphiphile consisting of a thermo-responsive octaethylene glycol chain with hydrophobic aromatic and aliphatic units undergoes lateral self-assembly in a liquid-disordered-state phospholipid bilayer membrane upon heating, which further leads to vesicle budding.
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | |
Collapse
|
21
|
Li W, McManus D, Liu H, Casiraghi C, Webb SJ. Aqueous dispersions of nanostructures formed through the self-assembly of iminolipids with exchangeable hydrophobic termini. Phys Chem Chem Phys 2017. [PMID: 28642943 DOI: 10.1039/c7cp02868g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of amines to an aldehyde surfactant, which was designed to be analogous to didodecyldimethylammonium bromide, gave exchangeable "iminolipids" that self-assembled to give stable aqueous dispersions of nano-sized vesicles. For example, sonication of suspensions of the n-hexylamine-derived iminolipid gave vesicles 50 to 200 nm in diameter that could encapsulate a water-soluble dye. The iminolipids could undergo dynamic exchange with added amines, and the resulting equilibrium constants (Krel) were quantified by 1H NMR spectroscopy. In the absence of lipid self-assembly, in CDCl3, the assayed primary amines gave very similar Krel values. However in D2O the value of Krel generally increased with increasing amine hydrophobicity, consistent with partitioning into a self-assembled bilayer. Amines with aromatic groups showed significantly higher values of Krel in D2O compared to similarly hydrophobic alkylamines, suggesting that π-π interactions favor lipid self-assembly. Given this synergistic relationship, π-rich pyrenyliminolipids were created and used to exfoliate graphite, leading to aqueous dispersions of graphene flakes that were stable over several months.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | | | | |
Collapse
|
22
|
Hollas MA, Webb SJ, Flitsch SL, Fielding AJ. A Bifunctional Spin Label for Ligand Recognition on Surfaces. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael A. Hollas
- Department of Chemistry; Photon Science Institute; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Simon J. Webb
- Department of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Sabine L. Flitsch
- Department of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Alistair J. Fielding
- Department of Chemistry; Photon Science Institute; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Hollas MA, Webb SJ, Flitsch SL, Fielding AJ. A Bifunctional Spin Label for Ligand Recognition on Surfaces. Angew Chem Int Ed Engl 2017; 56:9449-9453. [PMID: 28570782 PMCID: PMC5577508 DOI: 10.1002/anie.201703929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/22/2017] [Indexed: 01/21/2023]
Abstract
In situ monitoring of biomolecular recognition, especially at surfaces, still presents a significant technical challenge. Electron paramagnetic resonance (EPR) of biomolecules spin-labeled with nitroxides can offer uniquely sensitive and selective insights into these processes, but new spin-labeling strategies are needed. The synthesis and study of a bromoacrylaldehyde spin label (BASL), which features two attachment points with orthogonal reactivity is reported. The first examples of mannose and biotin ligands coupled to aqueous carboxy-functionalized gold nanoparticles through a spin label are presented. EPR spectra were obtained for the spin-labeled ligands both free in solution and attached to nanoparticles. The labels were recognized by the mannose-binding lectin, Con A, and the biotin-binding protein avidin-peroxidase. Binding gave quantifiable changes in the EPR spectra from which binding profiles could be obtained that reflect the strength of binding in each case.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Chemistry, Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Alistair J Fielding
- Department of Chemistry, Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
24
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
25
|
Thomas B, Lu X, Birmingham WR, Huang K, Both P, Reyes Martinez JE, Young RJ, Davie CP, Flitsch SL. Application of Biocatalysis to on-DNA Carbohydrate Library Synthesis. Chembiochem 2017; 18:858-863. [PMID: 28127867 DOI: 10.1002/cbic.201600678] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/14/2023]
Abstract
DNA-encoded libraries are increasingly used for the discovery of bioactive lead compounds in high-throughput screening programs against specific biological targets. Although a number of libraries are now available, they cover limited chemical space due to bias in ease of synthesis and the lack of chemical reactions that are compatible with DNA tagging. For example, compound libraries rarely contain complex biomolecules such as carbohydrates with high levels of functionality, stereochemistry, and hydrophilicity. By using biocatalysis in combination with chemical methods, we aimed to significantly expand chemical space and generate generic libraries with potentially better biocompatibility. For DNA-encoded libraries, biocatalysis is particularly advantageous, as it is highly selective and can be performed in aqueous environments, which is an essential feature for this split-and-mix library technology. In this work, we demonstrated the application of biocatalysis for the on-DNA synthesis of carbohydrate-based libraries by using enzymatic oxidation and glycosylation in combination with traditional organic chemistry.
Collapse
Affiliation(s)
- Baptiste Thomas
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Xiaojie Lu
- Encoded Library Technologies, NCE Molecular Discovery, R&D, Platform Technology & Science, GlaxoSmithKline, 830 Winter Street, Waltham, MA, 02451, USA
| | - William R Birmingham
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kun Huang
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Peter Both
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Juana Elizabeth Reyes Martinez
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Robert J Young
- Medicinal Chemistry, NCE Molecular Discovery, R&D, Platform Technology and Science, GlaxoSmithKline, GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Christopher P Davie
- Encoded Library Technologies, NCE Molecular Discovery, R&D, Platform Technology & Science, GlaxoSmithKline, 830 Winter Street, Waltham, MA, 02451, USA
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology and, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
26
|
Formisano N, Bhalla N, Heeran M, Reyes Martinez J, Sarkar A, Laabei M, Jolly P, Bowen CR, Taylor JT, Flitsch S, Estrela P. Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosens Bioelectron 2016; 85:103-109. [DOI: 10.1016/j.bios.2016.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 01/24/2023]
|
27
|
Müller C, Despras G, Lindhorst TK. Organizing multivalency in carbohydrate recognition. Chem Soc Rev 2016; 45:3275-302. [DOI: 10.1039/c6cs00165c] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Breger JC, Ancona MG, Walper SA, Oh E, Susumu K, Stewart MH, Deschamps JR, Medintz IL. Understanding How Nanoparticle Attachment Enhances Phosphotriesterase Kinetic Efficiency. ACS NANO 2015; 9:8491-503. [PMID: 26230391 DOI: 10.1021/acsnano.5b03459] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As a specific example of the enhancement of enzymatic activity that can be induced by nanoparticles, we investigate the hydrolysis of the organophosphate paraoxon by phosphotriesterase (PTE) when the latter is displayed on semiconductor quantum dots (QDs). PTE conjugation to QDs underwent extensive characterization including structural simulations, electrophoretic mobility shift assays, and dynamic light scattering to confirm orientational and ratiometric control over enzyme display which appears to be necessary for enhancement. PTE hydrolytic activity was then examined when attached to ca. 4 and 9 nm diameter QDs in comparison to controls of freely diffusing enzyme alone. The results confirm that the activity of the QD conjugates significantly exceeded that of freely diffusing PTE in both initial rate (∼4-fold) and enzymatic efficiency (∼2-fold). To probe kinetic acceleration, various modified assays including those with increased temperature, presence of a competitive inhibitor, and increased viscosity were undertaken to measure the activation energy and dissociation rates. Cumulatively, the data indicate that the higher activity is due to an acceleration in enzyme-product dissociation that is presumably driven by the markedly different microenvironment of the PTE-QD bioconjugate's hydration layer. This report highlights how a specific change in an enzymatic mechanism can be both identified and directly linked to its enhanced activity when displayed on a nanoparticle. Moreover, the generality of the mechanism suggests that it could well be responsible for other examples of nanoparticle-enhanced catalysis.
Collapse
Affiliation(s)
- Joyce C Breger
- American Society for Engineering Education , Washington, DC 20036, United States
| | | | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc. 7230 Lee DeForest Drive, Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc. 7230 Lee DeForest Drive, Columbia, Maryland 21046, United States
| | | | | | | |
Collapse
|
29
|
Siriwardena A, Khanal M, Barras A, Bande O, Mena-Barragán T, Mellet CO, Garcia Fernández JM, Boukherroub R, Szunerits S. Unprecedented inhibition of glycosidase-catalyzed substrate hydrolysis by nanodiamond-grafted O-glycosides. RSC Adv 2015. [DOI: 10.1039/c5ra21390h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Carbohydrate-coated nanodiamond particles with lectin recognition capabilities are not only stable towards the hydrolytic action of glycosidases, but also are endowed with the ability to inhibit them.
Collapse
Affiliation(s)
- Aloysius Siriwardena
- Laboratoire de Glycochimie des Antimicrobiennes et Bioresources
- FRE-CNRS 3517
- Université de Picardie Jules Verne
- 80039 Amiens
- France
| | - Manakamana Khanal
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| | - Alexandre Barras
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| | - Omprakash Bande
- Laboratoire de Glycochimie des Antimicrobiennes et Bioresources
- FRE-CNRS 3517
- Université de Picardie Jules Verne
- 80039 Amiens
- France
| | | | | | | | - Rabah Boukherroub
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| | - Sabine Szunerits
- Institute of Electronics
- Microelectronics and Nanotechnology (IEMN)
- UMR-CNRS 8520
- Lille1 University
- Avenue Poincaré-BP 60069
| |
Collapse
|
30
|
Gouin SG. Multivalent Inhibitors for Carbohydrate-Processing Enzymes: Beyond the “Lock-and-Key” Concept. Chemistry 2014; 20:11616-28. [DOI: 10.1002/chem.201402537] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Development of new synthetic and analytical tools in glycobiotechnology. N Biotechnol 2014. [DOI: 10.1016/j.nbt.2014.05.1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Gray CJ, Weissenborn MJ, Eyers CE, Flitsch SL. Enzymatic reactions on immobilised substrates. Chem Soc Rev 2014; 42:6378-405. [PMID: 23579870 DOI: 10.1039/c3cs60018a] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Road, Manchester, M1 7DN, UK
| | | | | | | |
Collapse
|
33
|
Noble GT, Craven FL, Segarra-Maset MD, Martínez JER, Šardzík R, Flitsch SL, Webb SJ. Sialylation of lactosyl lipids in membrane microdomains byT. cruzi trans-sialidase. Org Biomol Chem 2014; 12:9272-8. [DOI: 10.1039/c4ob01852d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SolubleT. cruzi trans-sialidase transformed a synthetic lactosyl glycolipid in microdomains more slowly than the same substrate dispersed across the bilayer surface, producing phospholipid vesicles with a Neu5Ac(α2-3)Gal(β1-4)Glc “glycocalyx”.
Collapse
Affiliation(s)
- Gavin T. Noble
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Faye L. Craven
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | | | | | - Robert Šardzík
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Simon J. Webb
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| |
Collapse
|
34
|
Grochmal A, Ferrero E, Milanesi L, Tomas S. Modulation of in-membrane receptor clustering upon binding of multivalent ligands. J Am Chem Soc 2013; 135:10172-7. [PMID: 23763669 DOI: 10.1021/ja404428u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In living cells and biomimetic systems alike, multivalent ligands in solution can induce clustering of membrane receptors. The link between the receptor clustering and the ligand binding remains, however, poorly defined. Using minimalist divalent ligands, we develop a model that allows quantifying the modulation of receptor clustering by binding of ligands with any number of binding sites. The ligands, with weak binding affinity for the receptor and with binding sites held together by flexible linkers, lead to nearly quantitative clustering upon binding in a wide range of experimental conditions, showing that efficient modulation of receptor clustering does not require pre-organization or large binding affinities per binding site. Simulations show that, in the presence of ligands with five or more binding sites, an on/off clustering response follows a very small change in receptor density in the membrane, which is consistent with the highly cooperative behavior of multivalent biomolecular systems.
Collapse
Affiliation(s)
- Anna Grochmal
- Institute of Structural and Molecular Biology and Department of Biological Sciences, School of Science, Birkbeck University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | |
Collapse
|
35
|
Christie MP, Simerska P, Jen FEC, Jennings MP, Toth I. Liposomes for Improved Enzymatic Glycosylation of Lipid-Modified Lactose Enkephalin. Chempluschem 2013; 78:793-796. [PMID: 31986686 DOI: 10.1002/cplu.201300115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/04/2013] [Indexed: 01/17/2023]
Abstract
Liposomes and enzymes: Liposome formulations improved solubility of a lipid-modified lactose enkephalin and, when used in enzymatic transformation, led to a twofold increase in glycosylation in comparison to substrate solubilised in 5 % dimethyl sulfoxide (DMSO; see figure).
Collapse
Affiliation(s)
- Michelle P Christie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia, QLD 4072 (Australia), Fax: (+61) 7-33654273
| | - Pavla Simerska
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia, QLD 4072 (Australia), Fax: (+61) 7-33654273
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4125 (Australia)
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4125 (Australia)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia, QLD 4072 (Australia), Fax: (+61) 7-33654273.,School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Cornwall Street, Woolloongabba, QLD 4102 (Australia)
| |
Collapse
|
36
|
Wydro P, Flasiński M, Broniatowski M. Does cholesterol preferentially pack in lipid domains with saturated sphingomyelin over phosphatidylcholine? A comprehensive monolayer study combined with grazing incidence X-ray diffraction and Brewster angle microscopy experiments. J Colloid Interface Sci 2013; 397:122-30. [DOI: 10.1016/j.jcis.2013.01.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/03/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|
37
|
|
38
|
|