1
|
Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem Rev 2020; 120:5878-5909. [PMID: 32239929 DOI: 10.1021/acs.chemrev.9b00496] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew K MacLeod
- Workday, 4900 Pearl Circle East, Suite 100, Boulder, Colorado 80301, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Quantum Simulation Technologies, Inc., 625 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
2
|
Sapunar M, Domcke W, Došlić N. UV absorption spectra of DNA bases in the 350-190 nm range: assignment and state specific analysis of solvation effects. Phys Chem Chem Phys 2019; 21:22782-22793. [PMID: 31595896 DOI: 10.1039/c9cp04662c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The theoretical assignment of electronic spectra of polyatomic molecules is a challenging problem that requires the specification of the character of a large number of electronic states. We propose a procedure for automatically determining the character of electronic transitions and apply it to the study of UV spectra of DNA bases in the gas phase and in the aqueous environment. The procedure is based on the computation of electronic wave function overlaps and accounts for an extensive sampling of nuclear geometries. Novelties of this work are the theoretical assignment of the electronic spectra of DNA bases up to 190 nm and a state specific analysis of solvation effects. By accounting for different effects contributing to the total solvent shift we obtained a good agreement between the computed and experimental spectra. Effects of vibrational averaging, temperature and solvent-induced structural changes shift excitation energies to lower values. Solvent-solute electrostatic interactions are state specific and strongly destabilize nRyd states, and to lesser extent nπ* and πRyd states. Altogether, this results in the stabilization of ππ* states and destabilization of nπ*, πRyd and nRyd states in solution.
Collapse
Affiliation(s)
- Marin Sapunar
- Department of Physical Chemistry, Ruder Bošković Institute, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
3
|
Ingle RA, Roberts GM, Röttger K, Marroux HJ, Sönnichsen FD, Yang M, Szyc Ł, Harabuchi Y, Maeda S, Temps F, Orr-Ewing AJ. Resolving the excited state relaxation dynamics of guanosine monomers and hydrogen-bonded homodimers in chloroform solution. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
5
|
Nogueira JJ, Roßbach S, Ochsenfeld C, González L. Effect of DNA Environment on Electronically Excited States of Methylene Blue Evaluated by a Three-Layered QM/QM/MM ONIOM Scheme. J Chem Theory Comput 2018; 14:4298-4308. [DOI: 10.1021/acs.jctc.8b00185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan J. Nogueira
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, A-1090 Wien, Austria
| | - Sven Roßbach
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstrasse 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstrasse 7, D-81377 Munich, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, A-1090 Wien, Austria
| |
Collapse
|
6
|
Zhang Y, Huang Z, Wang L, Wang C, Zhang C, Wiese T, Wang G, Riley K, Wang Z. Point-of-Care Determination of Acetaminophen Levels with Multi-Hydrogen Bond Manipulated Single-Molecule Recognition (eMuHSiR). Anal Chem 2018; 90:4733-4740. [PMID: 29543434 PMCID: PMC6556375 DOI: 10.1021/acs.analchem.7b05361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work aims to face the challenge of monitoring small molecule drugs accurately and rapidly for point-of-care (POC) diagnosis in current clinical settings. Overdose of acetaminophen (AP), a commonly used over the counter (OTC) analgesic drug, has been determined to be a major cause of acute liver failure in the US and the UK. However, there is no rapid and accurate detection method available for this drug in the emergency room. The present study examined an AP sensing strategy that relies on a previously unexplored strong interaction between AP and the arginine (Arg) molecule. It was found that as many as 4 hydrogen bonds can be formed between one Arg molecule and one AP molecule. By taking advantages of this structural selectivity and high tenability of hydrogen bonds, Arg, immobilized on a graphene surface via electrostatic interactions, was utilized to structurally capture AP. Interestingly, bonded AP still remained the perfect electrochemical activities. The extent of Arg-AP bonds was quantified using a newly designed electrochemical (EC) sensor. To verify the feasibility of this novel assay, based on multihydrogen bond manipulated single-molecule recognition (eMuHSiR), both pharmaceutical and serum sample were examined. In commercial tablet measurement, no significant difference was seen between the results of eMuHSiR and other standard methods. For measuring AP concentration in the mice blood, the substances in serum, such as sugars and fats, would not bring any interference to the eMuHSiR in a wide concentration range. This eMuHSiR method opens the way for future development of small molecule detection for the POC testing.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry , Xavier University of Louisiana , New Orleans 70125 , United States
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Zhongyuan Huang
- Department of Chemistry , Xavier University of Louisiana , New Orleans 70125 , United States
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Letao Wang
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Chunming Wang
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Changde Zhang
- Department of Chemistry , Xavier University of Louisiana , New Orleans 70125 , United States
| | - Tomas Wiese
- College of Pharmacy , Xavier University of Louisiana , New Orleans 70125 , United States
| | - Guangdi Wang
- Department of Chemistry , Xavier University of Louisiana , New Orleans 70125 , United States
| | - Kevin Riley
- Department of Chemistry , Xavier University of Louisiana , New Orleans 70125 , United States
| | - Zhe Wang
- Department of Chemistry , Xavier University of Louisiana , New Orleans 70125 , United States
| |
Collapse
|
7
|
Freixas VM, Fernandez-Alberti S, Makhov DV, Tretiak S, Shalashilin D. An ab initio multiple cloning approach for the simulation of photoinduced dynamics in conjugated molecules. Phys Chem Chem Phys 2018; 20:17762-17772. [DOI: 10.1039/c8cp02321b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidimensional wave function: a superposition of Gaussian coherent states guided by Ehrenfest trajectories suited to clone and swap their electronic amplitudes.
Collapse
Affiliation(s)
| | | | - Dmitry V. Makhov
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- School of Mathematics
| | - Sergei Tretiak
- Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT)
- Los Alamos National Laboratory
- Los Alamos
- USA
| | | |
Collapse
|
8
|
Marquetand P, Nogueira JJ, Mai S, Plasser F, González L. Challenges in Simulating Light-Induced Processes in DNA. Molecules 2016. [PMCID: PMC6155660 DOI: 10.3390/molecules22010049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this contribution, we give a perspective on the main challenges in performing theoretical simulations of photoinduced phenomena within DNA and its molecular building blocks. We distinguish the different tasks that should be involved in the simulation of a complete DNA strand subject to UV irradiation: (i) stationary quantum chemical computations; (ii) the explicit description of the initial excitation of DNA with light; (iii) modeling the nonadiabatic excited state dynamics; (iv) simulation of the detected experimental observable; and (v) the subsequent analysis of the respective results. We succinctly describe the methods that are currently employed in each of these steps. While for each of them, there are different approaches with different degrees of accuracy, no feasible method exists to tackle all problems at once. Depending on the technique or combination of several ones, it can be problematic to describe the stacking of nucleobases, bond breaking and formation, quantum interferences and tunneling or even simply to characterize the involved wavefunctions. It is therefore argued that more method development and/or the combination of different techniques are urgently required. It is essential also to exercise these new developments in further studies on DNA and subsystems thereof, ideally comprising simulations of all of the different components that occur in the corresponding experiments.
Collapse
|
9
|
Spata VA, Matsika S. Photophysical deactivation pathways in adenine oligonucleotides. Phys Chem Chem Phys 2016; 17:31073-83. [PMID: 26536353 DOI: 10.1039/c5cp04254b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion.
Collapse
Affiliation(s)
- Vincent A Spata
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
10
|
Guo X, Yuan H, Zhu Q, An B, Zhang J. Ab initioinsights on photophysics of 9-methylhypoxanthine. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1164348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Li G, Liu X, An T, Wong PK, Zhao H. A novel method developed for estimating mineralization efficiencies and its application in PC and PEC degradations of large molecule biological compounds with unknown chemical formula. WATER RESEARCH 2016; 95:150-158. [PMID: 26994335 DOI: 10.1016/j.watres.2016.02.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
A new method to estimate the photocatalytic (PC) and photoelectrocatalytic (PEC) mineralization efficiencies of large molecule biological compounds with unknown chemical formula in water was firstly developed and experimentally validated. The method employed chemical oxidation under the standard dichromate chemical oxygen demand (COD) conditions to obtain QCOD values of model compounds with unknown chemical formula. The measured QCOD values were used as the reference to replace QCOD values of model compounds for calculation of the mineralization efficiencies (in %) by assuming the obtained QCOD values are the measure of the theoretical charge required for the complete mineralization of organic pollutants. Total organic carbon (TOC) was also employed as a reference to confirm the mineralization capacity of dichromate chemical oxidation. The developed method was applied to determine the degradation extent of model compounds, such as bovine serum albumin (BSA), lecithin and bacterial DNA, by PC and PEC. Incomplete PC mineralization of all large molecule biological compounds was observed, especially for BSA. But the introduction of electrochemical technique into a PC oxidation process could profoundly improve the mineralization efficiencies of model compounds. PEC mineralization efficiencies of bacterial DNA was the highest, while that of lecithin was the lowest. Overall, PEC degradation method was found to be much effective than PC method for all large molecule biological compounds investigated, with PEC/PC mineralization ratios followed an order of BSA > lecithin > DNA.
Collapse
Affiliation(s)
- Guiying Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Xiaolu Liu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Taicheng An
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
12
|
Guo X, Yuan H, An B, Zhu Q, Zhang J. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study. J Chem Phys 2016; 144:154306. [DOI: 10.1063/1.4946103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xugeng Guo
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Huijuan Yuan
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Beibei An
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Qiuling Zhu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jinglai Zhang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| |
Collapse
|
13
|
Dans PD, Walther J, Gómez H, Orozco M. Multiscale simulation of DNA. Curr Opin Struct Biol 2016; 37:29-45. [DOI: 10.1016/j.sbi.2015.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
|
14
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|
15
|
Xie BB, Xia SH, Chang XP, Cui G. Photophysics of Auramine-O: electronic structure calculations and nonadiabatic dynamics simulations. Phys Chem Chem Phys 2016; 18:403-413. [DOI: 10.1039/c5cp05312a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sequential vs. concerted S1 relaxation pathways.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Shu-Hua Xia
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Xue-Ping Chang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
16
|
Computational modeling of photoexcitation in DNA single and double strands. Top Curr Chem (Cham) 2015; 356:89-122. [PMID: 24647841 DOI: 10.1007/128_2014_533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The photoexcitation of DNA strands triggers extremely complex photoinduced processes, which cannot be understood solely on the basis of the behavior of the nucleobase building blocks. Decisive factors in DNA oligomers and polymers include collective electronic effects, excitonic coupling, hydrogen-bonding interactions, local steric hindrance, charge transfer, and environmental and solvent effects. This chapter surveys recent theoretical and computational efforts to model real-world excited-state DNA strands using a variety of established and emerging theoretical methods. One central issue is the role of localized vs delocalized excitations and the extent to which they determine the nature and the temporal evolution of the initial photoexcitation in DNA strands.
Collapse
|
17
|
Spata VA, Matsika S. Role of excitonic coupling and charge-transfer states in the absorption and CD spectra of adenine-based oligonucleotides investigated through QM/MM simulations. J Phys Chem A 2014; 118:12021-30. [PMID: 25184994 DOI: 10.1021/jp507520c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this work, we study the photophysical properties of an adenine-based oligonucleotide using an ensemble of about 200 configurations obtained from molecular dynamics simulations. Specifically, a QM/MM approach is used to obtain the excited-state energies and properties of (dA)20(dT)20 with a dimer of π-stacked adenine bases included in the quantum region. The absorption and circular dichroism spectra are computed and analyzed using the algebraic diagrammatic construction through second order level of theory method (ADC(2)) combined with classical mechanics. We find that the experimentally observed red-shifted shoulder in the absorption spectrum is due to excitonic interactions, while charge-transfer states are present within the absorption band at the higher-energy end of the spectrum. More importantly, low-energy states with charge-transfer mixing exist, which could lead to excimers and bonded excimers. These observations suggest that mixing between charge-transfer and excitonic states plays an important role in the photophysics of oligonucleotides. They also highlight the importance of taking into account the conformational flexibility of the oligonucleotide when investigating photophysical properties.
Collapse
Affiliation(s)
- Vincent A Spata
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | |
Collapse
|
18
|
Han S, You HS, Kim SY, Kim SK. Dynamic Role of the Intramolecular Hydrogen Bonding in Nonadiabatic Chemistry Revealed in the UV Photodissociation Reactions of 2-Fluorothiophenol and 2-Chlorothiophenol. J Phys Chem A 2014; 118:6940-9. [DOI: 10.1021/jp505699w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Songhee Han
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Hyun Sik You
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - So-Yeon Kim
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| |
Collapse
|
19
|
Plasser F, Lischka H. Electronic excitation and structural relaxation of the adenine dinucleotide in gas phase and solution. Photochem Photobiol Sci 2014; 12:1440-52. [PMID: 23737069 DOI: 10.1039/c3pp50032b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The excited states and potential surfaces of the adenine dinucleotide are analyzed in gas phase and in solution using a correlated ab initio methodology in a QM/MM framework. In agreement with previous studies, a rather flat S1 surface with a number of minima of different character is found. Specifically, our results suggest that exciplexes with remarkably short intermolecular separation down to ~2.0 Å are formed. A detailed analysis shows that due to strong orbital interactions their character differs significantly from any states present in the Franck-Condon region. The lowest S1 energy minimum is a ππ* exciplex with only a small amount of charge transfer. It possesses appreciable oscillator strength with a polarization almost perpendicular to the planes of the two adenine molecules.
Collapse
Affiliation(s)
- Felix Plasser
- Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria.
| | | |
Collapse
|
20
|
Fang Q, Shen L, Fang WH. Synchronous concerted multiple-body photodissociation of oxalyl chloride explored by ab initio-based dynamics simulations. J Chem Phys 2014; 139:024310. [PMID: 23862946 DOI: 10.1063/1.4812783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Photo-induced multiple body dissociation is of fundamental interest in chemistry and physics. A description of the mechanism associated with n-body (n ≥ 3) photodissociation has proven to be an intriguing and yet challenging issue in the field of chemical dynamics. Oxalyl chloride, (ClCO)2, is the sole molecule reported up to date that can undergo four-body dissociation following absorption of a single UV photon, with a rich history of mechanistic debate. In the present work, the combined electronic structure calculations and dynamics simulations have been performed at the advanced level, which provides convincing evidence for resolving the mechanistic debate. More importantly, synchronous and asynchronous concertedness were explored for the first time for the (ClCO)2 photodissociation, which is based on the simulated time constants for the C-C and C-Cl bond fissions. Upon photoexcitation of (ClCO)2 to the S1 state, the adiabatic C-C or C-Cl fission takes place with little possibility. The four-body dissociation to 2Cl((2)P) and 2CO((1)Σ) was determined to a dominant channel with its branch of ∼0.7, while the three-body dissociation to ClCO((2)A(')) + CO((1)Σ) + Cl((2)P) was predicted to play a minor role in the (ClCO)2 photodissociation at 193 nm. Both the four-body and three-body dissociations are non-adiabatic processes, which proceed in a synchronous concerted way as a result of the S1 → S0 internal conversion. There is a little possibility for two-body dissociation to occur in the S0 and S1 states.
Collapse
Affiliation(s)
- Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | | |
Collapse
|
21
|
Zhang X, Herbert JM. Excited-State Deactivation Pathways in Uracil versus Hydrated Uracil: Solvatochromatic Shift in the 1nπ* State is the Key. J Phys Chem B 2014; 118:7806-17. [DOI: 10.1021/jp412092f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Zhang
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Guo X, Zhao Y, Cao Z. A QM/MM MD insight into photodynamics of hypoxanthine: distinct nonadiabatic decay behaviors between keto-N7H and keto-N9H tautomers in aqueous solution. Phys Chem Chem Phys 2014; 16:15381-8. [DOI: 10.1039/c4cp01928h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM MD simulations reveal different H-bonding networks around DNA base analogues, and the π-electron H-bond in the solvated keto-N7H may facilitate its S1 → S0 nonadiabatic decay.
Collapse
Affiliation(s)
- Xugeng Guo
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, P. R. China
| | - Yuan Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, P. R. China
| | - Zexing Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, P. R. China
| |
Collapse
|
23
|
Electronic Excitation Processes in Single-Strand and Double-Strand DNA: A Computational Approach. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:1-37. [DOI: 10.1007/128_2013_517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Chen J, Zhang Y, Kohler B. Excited States in DNA Strands Investigated by Ultrafast Laser Spectroscopy. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:39-87. [DOI: 10.1007/128_2014_570] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Chen J, Thazhathveetil AK, Lewis FD, Kohler B. Ultrafast Excited-State Dynamics in Hexaethyleneglycol-Linked DNA Homoduplexes Made of A·T Base Pairs. J Am Chem Soc 2013; 135:10290-3. [DOI: 10.1021/ja4049459] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jinquan Chen
- Department of Chemistry and
Biochemistry, Montana State University,
P.O. Box 173400, Bozeman, Montana 59717, United States
| | - Arun K. Thazhathveetil
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston,
Illinois 60208, United States
| | - Frederick D. Lewis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston,
Illinois 60208, United States
| | - Bern Kohler
- Department of Chemistry and
Biochemistry, Montana State University,
P.O. Box 173400, Bozeman, Montana 59717, United States
| |
Collapse
|
26
|
Röttger K, Sönnichsen FD, Temps F. Ultrafast electronic deactivation dynamics of the inosine dimer--a model case for H-bonded purine bases. Photochem Photobiol Sci 2013; 12:1466-73. [PMID: 23788062 DOI: 10.1039/c3pp50093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The structural properties and ultrafast electronic deactivation dynamics of the inosine dimer in CHCl3 have been investigated by two-dimensional (1)H NMR and static FTIR spectroscopy and by femtosecond time-resolved transient absorption spectroscopy, respectively. The (1)H NMR and IR spectra show the formation of a well-defined, symmetric dimer with an association equilibrium constant of KI·I = 690 ± 100 M(-1). The excited-state dynamics after photoexcitation at λpump = 260 nm monitored by ultrafast absorption spectroscopy show great similarity with those of the monomer inosine in an aqueous solution and are governed by a decay time of τ = 90 ± 10 fs, which is one of the shortest electronic lifetimes of all nucleobases and nucleobase dimers studied so far. On the basis of these observations, the inosine dimer is expected to follow a similar relaxation pathway as the monomer, involving an out-of-plane deformation of the six-membered ring. The importance of the C(2) position for the electronic deactivation of hypoxanthine and guanine is discussed. The obtained well-determined structure and straightforward dynamics qualify the inosine dimer as an excellent reference case for more complicated systems such as the G·G dimer and the G·C and A·T Watson-Crick pairs.
Collapse
Affiliation(s)
- Katharina Röttger
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | |
Collapse
|
27
|
Ruckenbauer M, Barbatti M, Müller T, Lischka H. Nonadiabatic photodynamics of a retinal model in polar and nonpolar environment. J Phys Chem A 2013; 117:2790-9. [PMID: 23470211 PMCID: PMC3619535 DOI: 10.1021/jp400401f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The nonadiabatic photodynamics of
the all-trans-2,4-pentadiene-iminium cation (protonated
Schiff base 3, PSB3) and
the all-trans-3-methyl-2,4-pentadiene-iminium cation
(MePSB3) were investigated in the gas phase and in polar (aqueous)
and nonpolar (n-hexane) solutions by means of surface
hopping using a multireference configuration-interaction (MRCI) quantum
mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for
radiationless deactivation to the ground state, and structural and
electronic parameters are compared. A strong influence of the polar
solvent on the location of the crossing seam, in particular in the
bond length alternation (BLA) coordinate, is found. Additionally,
inclusion of the polar solvent changes the orientation of the intersection
cone from sloped in the gas phase to peaked, thus enhancing considerably
its efficiency for deactivation of the molecular system to the ground
state. These factors cause, especially for MePSB3, a substantial decrease
in the lifetime of the excited state despite the steric inhibition
by the solvent.
Collapse
Affiliation(s)
- Matthias Ruckenbauer
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Nakayama A, Harabuchi Y, Yamazaki S, Taketsugu T. Photophysics of cytosine tautomers: new insights into the nonradiative decay mechanisms from MS-CASPT2 potential energy calculations and excited-state molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:12322-39. [DOI: 10.1039/c3cp51617b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|