1
|
Ling F, Cao L, Wang Y, Wei J, Luo Z, Hu Z, Qiu J, Liu D, Wang P, Song X, Zhang S. Rydberg state dynamics and fragmentation mechanism of N,N,N',N'-tetramethylmethylenediamine. J Chem Phys 2023; 159:044301. [PMID: 37486051 DOI: 10.1063/5.0159559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
The non-adiabatic relaxation processes and the fragmentation dynamics of Rydberg-excited N,N,N',N'-tetramethylmethylenediamine (TMMDA) are investigated using femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. Excitation at 208 nm populates TMMDA in a charge-localized 3p state. Rapid internal conversion (IC) to 3s produces two charge-delocalized conformers with independent time constants and distinct population ratios. As the system explores the 3s potential surface, the structural evolution continues on a 1.55 ps timescale, followed by a slower (12.1 ps) relaxation to the ground state. A thorough comparison of the time-dependent mass and photoelectron spectra suggests that ionization out of the 3p state ends up with the parent ion, the vibrational energy of which is insufficient for the bond cleavage. On the contrary, by virtue of the additional energy acquired by IC from 3p, the internal energy deposited in 3s is available to break the C-N bond, leading to the fragment ion. The fragmentation is found to occur on the ion surface instead of the Rydberg surface.
Collapse
Affiliation(s)
- Fengzi Ling
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ling Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Luo
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhe Hu
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiyun Qiu
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dejun Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pengfei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Xinli Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wei J, Cao L, Li Z, Wang Y, Jin B, Zhang S. Investigation on the ultrafast relaxation dynamics of the S1 state of 3,4-difluoroaniline. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Radiationless deactivation pathways versus H-atom elimination from the N-H bond photodissociation in PhNH 2-(Py) n (n = 1,2) complexes. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:33-45. [PMID: 36071272 DOI: 10.1007/s43630-022-00295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023]
Abstract
Minimum energy structures of the ground and lowest excited states of aniline (PhNH2) solvated by pyridine (Py) show that the clusters formed are stabilized by hydrogen bonds in which only one or both hydrogen atoms of the NH2 group take part. Two different N-H bonds photodissociation in PhNH2-(Py)n (n = 1,2) complexes, free and hydrogen bonded have been studied by analyzing excited state potential energy surfaces. In the first one, only N-H bonds engaged in hydrogen bonding in these complexes are considered. RICC2 calculations of potential energy (PE) profiles indicate that all photochemical reaction paths along N-H stretching occur mainly via the proton-coupled electron transfer (PCET) mechanism. The repulsive charge transfer 1ππ*(CT) state dominates the PE profiles, leading to low-lying 1ππ*(CT)/S0 conical intersections and thus provide channels for ultrafast radiationless deactivation of the electronic excitation or stabilization to biradical complexes. The second photoreaction consists of a direct dissociation along the free N-H bond of the NH2 group. It has been shown that this process is played by excited singlet states of 1πσ* character having repulsive potential energy profiles with respect to the stretching of N-H bond, which dissociates over an exit barrier about 0.5 eV giving rise to the formation of a 1πσ*/S0 conical intersection. This may cause an internal conversion to the ground state or may lead to H-atom elimination. This photophysical process is the same in both planar and T-shaped conformers of the PhNH2-Py monomer complex. Our findings reveal that there is no single dominating path in the photodissociation of N-H bonds in PhNH2-(Py)n complexes, but rather a variety of paths involving H-atom elimination and several quenching mechanisms.
Collapse
|
4
|
Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Lin SY, Chou SL, Tseng CM, Wu YJ. IR absorption spectra of aniline cation, anilino radical, and phenylnitrene isolated in solid argon. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121233. [PMID: 35405375 DOI: 10.1016/j.saa.2022.121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Electron bombardment of aniline (PhNH2) in an Ar matrix mainly generated the aniline cation (PhNH2+), anilino (PhNH) and phenyl (Ph) radicals, and phenylnitrene (PhN). Further irradiation of the electron-bombarded matrix sample at 365 nm depleted PhNH2+ and PhN, and resulted in the formation of PhNH2, PhNH, and Ph. In separate experiments, irradiation of the PhNH2/Ar matrix samples at 265 or 160 nm mainly generated PhNH and Ph radicals, but without the formation of PhNH2+ and PhN. According to the observed photochemical behaviors, quantum-chemically predicted harmonic vibrational wavenumbers of each species, and the information reported in previous photodissociation studies, we unambiguously characterized the IR features of the aromatic species. The information of the vibrational fundamentals of PhNH is new and the formation mechanism is discussed.
Collapse
Affiliation(s)
- Shu-Yu Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Sheng-Lung Chou
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Chien-Ming Tseng
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Jong Wu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan.
| |
Collapse
|
6
|
Rap DB, van Boxtel TJHH, Redlich B, Brünken S. Spectroscopic Detection of Cyano-Cyclopentadiene Ions as Dissociation Products upon Ionization of Aniline. J Phys Chem A 2022; 126:2989-2997. [PMID: 35512055 PMCID: PMC9125686 DOI: 10.1021/acs.jpca.2c01429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The H-loss products
(C6H6N+) from
the dissociative ionization of aniline (C6H7N) have been studied by infrared predissociation spectroscopy in
a cryogenic ion trap instrument at the free electron laser for infrared
experiments (FELIX) laboratory. Broadband and narrow line width vibrational
spectra in the spectral fingerprint region of 550–1800 cm–1 have been recorded. The comparison to calculated
spectra of the potential isomeric structures of the fragment ions
reveals that the dominant fragments are five-membered cyano-cyclopentadiene
ions. Computed C6H7N•+ potential
energy surfaces suggest that the dissociation path leading to H loss
starts with an isomerization process, following a similar trajectory
as the one leading to HNC loss. The possible presence of cyano-cyclopentadiene
ions and related five-membered ring species in Titan’s atmosphere
and the interstellar medium are discussed.
Collapse
Affiliation(s)
- Daniël B Rap
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Tom J H H van Boxtel
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Britta Redlich
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Sandra Brünken
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
7
|
Lykhin AO, Truhlar DG, Gagliardi L. Role of Triplet States in the Photodynamics of Aniline. J Am Chem Soc 2021; 143:5878-5889. [PMID: 33843225 DOI: 10.1021/jacs.1c00989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of excited heteroaromatic molecules is a key to understanding the photoprotective properties of many biologically relevant chromophores that dissipate their excitation energy nonreactively and thereby prevent the detrimental effects of ultraviolet radiation. Despite their structural variability, most substituted aromatic compounds share a common feature of a repulsive 1πσ* potential energy surface. This surface can lead to photoproducts, and it can also facilitate the population transfer back to the ground electronic state by means of a 1πσ*/S0 conical intersection. Here, we explore a hidden relaxation route involving the triplet electronic state of aniline, which has recently been discovered by means of time-selected photofragment translational spectroscopy [J. Chem. Phys. 2019, 151, 141101]. By using the recently available analytical gradients for multiconfiguration pair-density functional theory, it is now possible to locate the minimum-energy crossing points between states of different spin and therefore compute the intersystem crossing rates with a multireference method, rather than with the less reliable single-reference methods. Using such calculations, we demonstrate that the population loss of aniline in the T1(3ππ*) state is dominated by C6H5NH2 → C6H5NH· + H· dissociation, and we explain the long nonradiative lifetimes of the T1(3ππ*) state at the excitation wavelengths of 294-264 nm.
Collapse
Affiliation(s)
- Aleksandr O Lykhin
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Vallance C, Heathcote D, Lee JWL. Covariance-Map Imaging: A Powerful Tool for Chemical Dynamics Studies. J Phys Chem A 2021; 125:1117-1133. [DOI: 10.1021/acs.jpca.0c10038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
9
|
Kotsina N, Townsend D. Improved insights in time-resolved photoelectron imaging. Phys Chem Chem Phys 2021; 23:10736-10755. [DOI: 10.1039/d1cp00933h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review new light source developments and data analysis considerations relevant to the time-resolved photoelectron imaging technique. Case studies illustrate how these themes may enhance understanding in studies of excited state molecular dynamics.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
10
|
Ray J, Ramesh SG. N-H photodissociation dynamics of electronically excited aniline: a three dimensional time-dependent quantum wavepacket study. Phys Chem Chem Phys 2021; 23:15727-15748. [PMID: 34280953 DOI: 10.1039/d1cp01990b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have simulated the dynamics of 1πσ* state-mediated nonadiabatic N-H bond dissociation in photo-excited aniline (C6H5NH2). A three electronic state diabatic model potential, involving the ground, 1ππ*, and 1πσ* diabatic states, and focussing on the NH2 degrees of freedom alone is constructed using XMS-CASPT2 energies. Using a kinetic energy operator in the polyspherical framework, wavepacket dynamics in three vibrational modes, viz. NH stretch, NH2 out-of-plane wag and torsion, is carried out using the Chebyshev propagation scheme. For optically bright 1ππ* excitation, the wavepacket can access the 1πσ*/1ππ* and 1ππ/1πσ* conical intersections that lie en route to dissociation. For both intersections, NH2 out-of-plane wag and torsional motions are the most dominant coupling coordinates. Carrying out dynamics with initial wavepackets varying in excitation in the three degrees of freedom, we probe their roles in the evolution of the state populations, probability densities, and product branching for the NH dissociation process.
Collapse
Affiliation(s)
- Jyotirmoy Ray
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sai G Ramesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
Abe K, Nakada A, Matsumoto T, Uchijyo D, Mori H, Chang HC. Functional Group-Directed Photochemical Reactions of Aromatic Alcohols, Amines, and Thiols Triggered by Excited-State Hydrogen Detachment: Additive-free Oligomerization, Disulfidation, and C(sp 2)-H Carboxylation with CO 2. J Org Chem 2021; 86:959-969. [PMID: 33211498 DOI: 10.1021/acs.joc.0c02456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploring new types of photochemical reactions is of great interest in the field of synthetic chemistry. Although excited-state hydrogen detachment (ESHD) represents a promising prospective template for additive-free photochemical reactions, applications of ESHD in a synthetic context remains scarce. Herein, we demonstrate the expansion of this photochemical reaction toward oligomerization, disulfidation, and regioselective C(sp2)-H carboxylation of aromatic alcohols, thiols, and amines. In the absence of any radical initiators in tetrahydrofuran upon irradiation with UV light (λ = 280 or 300 nm) under an atmosphere of N2 or CO2, thiols and catechol afforded disulfides and oligomers, respectively, as main products. Especially, the photochemical disulfidation proceeded highly selectively with the NMR and quantum yields of up to 69 and 0.46%, respectively. In stark contrast, the photolysis of phenylenediamines and aminophenols results in photocarboxylation in the presence of CO2 (1 atm). p-Aminophenol was quantitatively carboxylated by photolysis for 17 h with a quantum yield of 0.45%. Furthermore, the photocarboxylation of phenylenediamines and aminophenols proceeds in a highly selective fashion on the aromatic C(sp2)-H bond next to a functional group, which is directed by the site-selective ESHD of the functional groups for the formation of aminyl and hydroxyl radicals.
Collapse
Affiliation(s)
- Kanae Abe
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Akinobu Nakada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Daiki Uchijyo
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hirotoshi Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
12
|
Nakada A, Koike T, Matsumoto T, Chang HC. Excited-state hydrogen detachment from a tris-(o-phenylenediamine) iron(ii) complex in THF at room temperature. Chem Commun (Camb) 2020; 56:15414-15417. [PMID: 33284915 DOI: 10.1039/d0cc06219g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported that a tris-(o-phenylenediamine) iron(ii) complex promotes photochemical H2 generation and C-H carboxylation of o-phenylenediamine without any additives under N2 and CO2 atmospheres, respectively, in tetrahydrofuran at room temperature. Herein, the key mechanistic process, namely, excited-state hydrogen detachment from the o-phenylendiamine moiety, is demonstrated under an N2 atmosphere.
Collapse
Affiliation(s)
- Akinobu Nakada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | | | | | |
Collapse
|
13
|
Paterson MJ, Townsend D. Rydberg-to-valence evolution in excited state molecular dynamics. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1815389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Dave Townsend
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
14
|
Domcke W, Sobolewski AL, Schlenker CW. Photooxidation of water with heptazine-based molecular photocatalysts: Insights from spectroscopy and computational chemistry. J Chem Phys 2020; 153:100902. [PMID: 32933269 DOI: 10.1063/5.0019984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a conspectus of recent joint spectroscopic and computational studies that provided novel insight into the photochemistry of hydrogen-bonded complexes of the heptazine (Hz) chromophore with hydroxylic substrate molecules (water and phenol). It was found that a functionalized derivative of Hz, tri-anisole-heptazine (TAHz), can photooxidize water and phenol in a homogeneous photochemical reaction. This allows the exploration of the basic mechanisms of the proton-coupled electron-transfer (PCET) process involved in the water photooxidation reaction in well-defined complexes of chemically tunable molecular chromophores with chemically tunable substrate molecules. The unique properties of the excited electronic states of the Hz molecule and derivatives thereof are highlighted. The potential energy landscape relevant for the PCET reaction has been characterized by judicious computational studies. These data provided the basis for the demonstration of rational laser control of PCET reactions in TAHz-phenol complexes by pump-push-probe spectroscopy, which sheds light on the branching mechanisms occurring by the interaction of nonreactive locally excited states of the chromophore with reactive intermolecular charge-transfer states. Extrapolating from these results, we propose a general scenario that unravels the complex photoinduced water-splitting reaction into simple sequential light-driven one-electron redox reactions followed by simple dark radical-radical recombination reactions.
Collapse
Affiliation(s)
- Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | | - Cody W Schlenker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
15
|
Tran LN, Neuscamman E. Improving Excited-State Potential Energy Surfaces via Optimal Orbital Shapes. J Phys Chem A 2020; 124:8273-8279. [DOI: 10.1021/acs.jpca.0c07593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lan Nguyen Tran
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Ho Chi Minh City Institute of Physics, VAST, Ho Chi Minh City 700000, Vietnam
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Matsumoto T, Yamamoto R, Wakizaka M, Nakada A, Chang HC. Molecular Insights into the Ligand-Based Six-Proton- and Six-Electron-Transfer Processes Between Tris-ortho-Phenylenediamines and Tris-ortho-Benzoquinodiimines. Chemistry 2020; 26:9609-9619. [PMID: 32483884 DOI: 10.1002/chem.202001873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/10/2022]
Abstract
The global demand for energy and the concerns over climate issues renders the development of alternative renewable energy sources such as hydrogen (H2 ) important. A high-spin (hs) FeII complex with o-phenylenediamine (opda) ligands, [FeII (opda)3 ]2+ (hs-[6R]2+ ), was reported showing photochemical H2 evolution. In addition, a low-spin (ls) [FeII (bqdi)3 ]2+ (bqdi: o-benzoquinodiimine) (ls-[0R]2+ ) formation by O2 oxidation of hs-[6R]2+ , accompanied by ligand-based six-proton and six-electron transfer, revealed the potential of the complex with redox-active ligands as a novel multiple-proton and -electron storage material, albeit that the mechanism has not yet been understood. This paper reports that the oxidized ls-[0R][PF6 ]2 can be reduced by hydrazine giving ls-[FeII (opda)(bqdi)2 ][PF6 ]2 (ls-[2R][PF6 ]2 ) and ls-[FeII (opda)2 (bqdi)][PF6 ]2 (ls-[4R][PF6 ]2 ) with localized ligand-based proton-coupled mixed-valence (LPMV) states. The first isolation and characterization of the key intermediates with LPMV states offer unprecedented molecular insights into the design of photoresponsive molecule-based hydrogen-storage materials.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Risa Yamamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masanori Wakizaka
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Akinobu Nakada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
17
|
|
18
|
Gutsev GL, López Peña HA, McPherson SL, Boateng DA, Ramachandran BR, Gutsev LG, Tibbetts KM. From Neutral Aniline to Aniline Trication: A Computational and Experimental Study. J Phys Chem A 2020; 124:3120-3134. [PMID: 32233368 DOI: 10.1021/acs.jpca.0c00686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report density functional theory computations and photoionization mass spectrometry measurements of aniline and its positively charged ions. The geometrical structures and properties of the neutral and singly, doubly, and triply positively charged aniline are computed using density functional theory with the generalized gradient approximation. At each charge, there are multiple isomers closely spaced in total energy. Whereas the lowest energy states of both neutral and cation have the same topology C6H5-NH2, the dication and trication have the C5NH5-CH2 topology with the nitrogen atom in the meta- and para-positions, respectively. We compute the dissociation pathways of all four charge states to NH or NH+ and NH2 or NH2+, depending on the initial charge of the aniline precursor. Dissociation leading to the formation of NH (from the neutral and cation) and NH+ (from the dication and trication) proceeds through multiple transition states. On the contrary, the dissociation of NH2 (from the neutral and cation) and NH2+ (from the dication and trication) is found to proceed without an activation energy barrier. The trication was found to be stable toward abstraction on NH+ and NH2+ by 0.96 and 0.18 eV, respectively, whereas the proton affinity of the trication is substantially higher, 1.98 eV. The mass spectra of aniline were recorded with 1300 nm, 20 fs pulses over the peak intensity range of 1 × 1013 to 3 × 1014 W cm-2. The analysis of the mass spectra suggests high stability of both dication and trication to fragmentation. The formation of the fragment NH+ and NH2+ ions is found to proceed via Coulomb explosion.
Collapse
Affiliation(s)
- G L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - H A López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - S L McPherson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - D Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - B R Ramachandran
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - L G Gutsev
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States.,Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Moscow District 142432, Russia
| | - K M Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
19
|
West CW, Nishitani J, Higashimura C, Suzuki T. Extreme ultraviolet time-resolved photoelectron spectroscopy of aqueous aniline solution: enhanced surface concentration and pump-induced space charge effect. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1748240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher W. West
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Chika Higashimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Liu X, Zhang W, Liu W, Song Y, Wang Z, Zhang W. Vibrational energy redistribution and vibrational dynamics of methanol mixed with Rhodamine 101 dye. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1708490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaosong Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, People’s Republic of China
| | - Wei Zhang
- Tianjin Institute of Power Sources, Tianjin, People’s Republic of China
| | - Weilong Liu
- Department of Physics, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Yunfei Song
- Department of Physics, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Zhuo Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, People’s Republic of China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
21
|
Lim JS, You HS, Kim SY, Kim J, Park YC, Kim SK. Vibronic structure and predissociation dynamics of 2-methoxythiophenol (S 1): The effect of intramolecular hydrogen bonding on nonadiabatic dynamics. J Chem Phys 2019; 151:244305. [PMID: 31893886 DOI: 10.1063/1.5134519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vibronic spectroscopy and the S-H bond predissociation dynamics of 2-methoxythiophenol (2-MTP) in the S1 (ππ*) state have been investigated for the first time. Resonant two-photon ionization and slow-electron velocity map imaging (SEVI) spectroscopies have revealed that the S1-S0 transition of 2-MTP is accompanied with the planar to the pseudoplanar structural change along the out-of-plane ring distortion and the tilt of the methoxy moiety. The S1 vibronic bands up to their internal energy of ∼1000 cm-1 are assigned from the SEVI spectra taken via various S1 vibronic intermediate states with the aid of ab initio calculations. Intriguingly, Fermi resonances have been identified for some vibronic bands. The S-H bond breakage of 2-MTP occurs via tunneling through an adiabatic barrier under the S1/S2 conical intersection seam, and it is followed by the bifurcation into either the adiabatic or nonadiabatic channel at the S0/S2 conical intersection where the diabatic S2 state (πσ*) is unbound with respect to the S-H bond elongation coordinate, giving the excited (Ã) or ground (X̃) state of the 2-methoxythiophenoxy radical, respectively. Surprisingly, the nonadiabatic transition probability at the S0/S2 conical intersection, estimated from the velocity map ion images of the nascent D fragment from 2-MTP-d1 (2-CH3O-C6H4SD) at the S1 zero-point energy level, is found to be exceptionally high to give the X̃/Ã product branching ratio of 2.03 ± 0.20, which is much higher than the value of ∼0.8 estimated for the bare thiophenol at the S1 origin. It even increases to 2.33 ± 0.17 at the ν45 2 mode (101 cm-1) before it rapidly decays to 0.69 ± 0.05 at the S1 internal energy of about 2200 cm-1. This suggests that the strong intramolecular hydrogen bonding of S⋯D⋯OCH3 in 2-MTP at least in the low S1 internal energy region should play a significant role in localizing the reactive flux onto the conical intersection seam. The minimum energy pathway calculations (second-order coupled-cluster resolution of the identity or time-dependent-density functional theory) of the adiabatic S1 state suggest that the intimate dynamic interplay between the S-H bond cleavage and intramolecular hydrogen bonding could be crucial in the nonadiabatic surface hopping dynamics taking place at the conical intersection.
Collapse
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Hyun Sik You
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - So-Yeon Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Junggil Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | | | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| |
Collapse
|
22
|
Neville SP, Mirmiran A, Worth GA, Schuurman MS. Electron transfer in photoexcited pyrrole dimers. J Chem Phys 2019; 151:164304. [PMID: 31675891 DOI: 10.1063/1.5120006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Following on from previous experimental and theoretical work [Neville et al., Nat. Commun. 7, 11357 (2016)], we report the results of a combined electronic structure theory and quantum dynamics study of the excited state dynamics of the pyrrole dimer following excitation to its first two excited states. Employing an exciton-based analysis of the Ã(π3s/σ*) and B̃(π3s/3p/σ*) states, we identify an excited-state electron transfer pathway involving the coupling of the Ã(π3s/σ*) and B̃(π3s/3p/σ*) states and driven by N-H dissociation in the B̃(π3s/3p/σ*) state. This electron transfer mechanism is found to be mediated by vibronic coupling of the B̃ state, which has a mixed π3s/3p Rydberg character at the Franck-Condon point, to a high-lying charge transfer state of the πσ* character by the N-H stretch coordinate. Motivated by these results, quantum dynamics simulations of the excited-state dynamics of the pyrrole dimer are performed using the multiconfigurational time-dependent Hartree method and a newly developed model Hamiltonian. It is predicted that the newly identified electron transfer pathway will be open following excitation to both the Ã(π3s/σ*) and B̃(π3s/3p/σ*) states and may be the dominant relaxation pathway in the latter case.
Collapse
Affiliation(s)
- Simon P Neville
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Adam Mirmiran
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
23
|
Jhang WR, Lai HY, Lin YC, Lee C, Lee SH, Lee YY, Ni CK, Tseng CM. Triplet vs πσ* state mediated N–H dissociation of aniline. J Chem Phys 2019; 151:141101. [DOI: 10.1063/1.5121350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Wan Ru Jhang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsin Ying Lai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yen-Cheng Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chin Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Huang Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yin-Yu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Ming Tseng
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
24
|
Montero R, Lamas I, León I, Fernández JA, Longarte A. Excited state dynamics of aniline homoclusters. Phys Chem Chem Phys 2019; 21:3098-3105. [PMID: 30672912 DOI: 10.1039/c8cp06416d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the relaxation, following excitation in the 290-235 nm region, of neutral aniline homoclusters (An)n formed in a supersonic expansion by femtosecond time resolved ionization. The applied method permits isolation of the dynamics of the dimer from that originated in bigger species of the generated distribution. Interestingly, and differently from the monomer and (An)n≥3 clusters, the dimer does not present a N-H dissociative 1πσ* channel. This fact can be explained in terms of the symmetric structure adopted, in which each molecule establishes two N-Hπ interactions, destabilizing the H dissociation channel. The observations permit relating the photophysics to the interactions established by the aniline units and confirming previous observations and theoretical predictions on the structure of aniline aggregates.
Collapse
Affiliation(s)
- Raúl Montero
- SGIker Laser Facility, UPV/EHU, Sarriena, s/n, Leioa 48940, Spain
| | | | | | | | | |
Collapse
|
25
|
Zhang B. Unraveling vibrational wavepacket dynamics using femtosecond ion yield spectroscopy and photoelectron imaging. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1811252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
26
|
Cole-Filipiak NC, Stavros VG. New insights into the dissociation dynamics of methylated anilines. Phys Chem Chem Phys 2019; 21:14394-14406. [DOI: 10.1039/c8cp07061j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined time-resolved photoelectron spectroscopy and photofragment imaging supports a possible valence-to-Rydberg decay mechanism in methylated anilines.
Collapse
|
27
|
Ray J, Ramesh SG. Conical intersections involving the lowest 1πσ∗ state in aniline: Role of the NH2 group. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Domcke W, Ehrmaier J, Sobolewski AL. Solar Energy Harvesting with Carbon Nitrides and N-Heterocyclic Frameworks: Do We Understand the Mechanism? CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wolfgang Domcke
- Department of Chemistry; Technical University of Munich; 85747 Garching Germany
| | - Johannes Ehrmaier
- Department of Chemistry; Technical University of Munich; 85747 Garching Germany
| | | |
Collapse
|
29
|
Affiliation(s)
- Helen H. Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
30
|
Lin YC, Lee C, Lee SH, Lee YY, Lee YT, Tseng CM, Ni CK. Excited-state dissociation dynamics of phenol studied by a new time-resolved technique. J Chem Phys 2018; 148:074306. [PMID: 29471658 DOI: 10.1063/1.5016059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.
Collapse
Affiliation(s)
- Yen-Cheng Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chin Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Huang Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yin-Yu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yuan T Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chien-Ming Tseng
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
31
|
Ling F, Li S, Wei J, Liu K, Wang Y, Zhang B. Unraveling the electronic relaxation dynamics in photoexcited 2,4-difluoroaniline via femtosecond time-resolved photoelectron imaging. J Chem Phys 2018; 148:144311. [DOI: 10.1063/1.5024255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Fengzi Ling
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Fielding HH, Worth GA. Using time-resolved photoelectron spectroscopy to unravel the electronic relaxation dynamics of photoexcited molecules. Chem Soc Rev 2018; 47:309-321. [PMID: 29168864 DOI: 10.1039/c7cs00627f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved photoelectron spectroscopy measurements combined with quantum chemistry and dynamics calculations allow unprecedented insight into the electronic relaxation mechanisms of photoexcited molecules in the gas-phase. In this Tutorial Review, we explain the essential concepts linking photoelectron spectroscopy measurements with electronic structure and how key features on the potential energy landscape are identified using quantum chemistry and quantum dynamics calculations. We illustrate how time-resolved photoelectron spectroscopy and theory work together using examples ranging in complexity from the prototypical organic molecule benzene to a pyrrole dimer bound by a weak N-Hπ interaction and the green fluorescent protein chromophore.
Collapse
Affiliation(s)
- Helen H Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
33
|
Bazzi S, Welsch R, Vendrell O, Santra R. Challenges in XUV Photochemistry Simulations: A Case Study on Ultrafast Fragmentation Dynamics of the Benzene Radical Cation. J Phys Chem A 2018; 122:1004-1010. [PMID: 29298485 DOI: 10.1021/acs.jpca.7b11543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The challenges of simulating extreme ultraviolet (XUV)-induced dissociation dynamics of organic molecules on a multitude of coupled potential energy surfaces are discussed for the prototypical photoionization of benzene. The prospects of Koopmans' theorem-based electronic structure calculations in combination with classical trajectories and Tully's fewest switches surface hopping are explored. It is found that a Koopmans' theorem-based approach overestimates the CH dissociation barrier and thus underestimates the fragmentation yield. However, the nonadiabatic population dynamics are in good agreement with previous approaches, indicating that the Koopmans' theorem based potentials are well described around the Franck-Condon point. This is explicitly tested for the ground state potential of the benzene cation employing CASPT2 calculations, for which very good agreement is found. This work highlights the need for efficient electronic structure approaches that can treat medium-sized organic molecules with a multitude of coupled excited states and several dissociation channels.
Collapse
Affiliation(s)
- Sophia Bazzi
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany.,Department of Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| | - Ralph Welsch
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - Oriol Vendrell
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany.,Department of Physics and Astronomy, Aarhus University , Ny Munkegade 120, 8000 Aarhus C, Denmark.,The Hamburg Centre for Ultrafast Imaging , Luruper Chausee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany.,Department of Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging , Luruper Chausee 149, 22761 Hamburg, Germany.,Department of Physics, University of Hamburg , Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
34
|
Rodrigues N, Cole-Filipiak N, Horbury M, Staniforth M, Karsili T, Peperstraete Y, Stavros V. Photophysics of the sunscreen ingredient menthyl anthranilate and its precursor methyl anthranilate: A bottom-up approach to photoprotection. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Ehrmaier J, Janicki MJ, Sobolewski AL, Domcke W. Mechanism of photocatalytic water splitting with triazine-based carbon nitrides: insights from ab initio calculations for the triazine–water complex. Phys Chem Chem Phys 2018; 20:14420-14430. [DOI: 10.1039/c8cp01998c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Valuable theoretical insights into the mechanism of photocatalytic water-splitting using triazine as a model system for carbon-nitride materials.
Collapse
Affiliation(s)
- Johannes Ehrmaier
- Department of Chemistry
- Technical University of Munich
- D-85747 Garching
- Germany
| | - Mikołaj J. Janicki
- Department of Chemistry
- Technical University of Munich
- D-85747 Garching
- Germany
| | | | - Wolfgang Domcke
- Department of Chemistry
- Technical University of Munich
- D-85747 Garching
- Germany
| |
Collapse
|
36
|
Corrochano P, Nachtigallová D, Klán P. Photooxidation of Aniline Derivatives Can Be Activated by Freezing Their Aqueous Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13763-13770. [PMID: 29148724 DOI: 10.1021/acs.est.7b04510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A combined experimental and computational approach was used to investigate the spectroscopic properties of three different aniline derivatives (aniline, N,N-dimethylaniline, and N,N-diethylaniline) in aqueous solutions and at the air-ice interface in the temperature range of 243-298 K. The absorption and diffuse reflectance spectra of ice samples prepared by different techniques, such as slow or shock freezing of the aqueous solutions or vapor deposition on ice grains, exhibited unequivocal bathochromic shifts of 10-15 nm of the absorption maxima of anilines in frozen samples compared to those in liquid aqueous solutions. DFT and SCS-ADC(2) calculations showed that contaminant-contaminant and contaminant-ice interactions are responsible for these shifts. Finally, we demonstrate that irradiation of anilines in the presence of a hydrogen peroxide/O2 system by wavelengths that overlap only with the red-shifted absorption tails of anilines in frozen samples (while having a marginal overlap with their spectra in liquid solutions) can almost exclusively trigger a photochemical oxidation process. Mechanistic and environmental considerations are discussed.
Collapse
Affiliation(s)
- Pablo Corrochano
- RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Petr Klán
- RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
37
|
Woo KC, Kang DH, Kim SK. Real-Time Observation of Nonadiabatic Bifurcation Dynamics at a Conical Intersection. J Am Chem Soc 2017; 139:17152-17158. [DOI: 10.1021/jacs.7b09677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
38
|
Yao HH, Chung MR, Huang C, Lin SMH, Chen CH, Luh TY, Chen IC. Charge and Energy Transfer Dynamics in Dimethylsilylene-Spaced Aminostyrene Stilbene Monomer Using Time-Resolved Techniques. J Phys Chem A 2017; 121:7079-7088. [DOI: 10.1021/acs.jpca.7b07282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hsuan-Hsiao Yao
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Meng-Ru Chung
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Chiling Huang
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Sandra Meng-Hsuan Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Chih-Hsien Chen
- Department
of Chemical Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung, Taiwan 40724, Republic of China
| | - Tien-Yau Luh
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| | - I-Chia Chen
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| |
Collapse
|
39
|
Zhang H, Jiang X, Wu W, Mo Y. Electron conjugation versus π-π repulsion in substituted benzenes: why the carbon-nitrogen bond in nitrobenzene is longer than in aniline. Phys Chem Chem Phys 2017; 18:11821-8. [PMID: 26852720 DOI: 10.1039/c6cp00471g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gas-phase electron diffraction experiments show that the C-N bond in aniline (1.407 Å) is significantly shorter than in nitrobenzene (1.486 Å). It is known that the amino group is electron-donating and the nitro group is electron-withdrawing, and both substitution groups can effectively conjugate with benzene. Thus, it is puzzling why the C-N bond in nitrobenzene is even longer than the single C-N bond in methylamine (1.472 Å). In this work, we performed computations by strictly localizing the π electrons with the block-localized wavefunction (BLW) method, which is a variant of ab initio valence bond theory. Geometry optimizations of electron-localized states, where the conjugation over the C-N bond is quenched, show that the conjugation in nitrobenzene is only half of the conjugation in aniline. But even in optimal electron-localized states, the C-N bond in nitrobenzene is still 0.074 Å longer than in aniline. As a consequence, it is indeed not the π conjugation which is responsible for the disparity of the C-N bond distances in these systems. Instead, we demonstrated that the π-π repulsion, which is contributed by both Pauli exchange and electrostatic interaction, plays the key role in this "abnormal" behavior. Notably, the π resonance within the nitro group generates a considerable dipole, which repels the π electrons in the benzene ring. The deactivation of the resonance within the nitro group significantly shortens the C-N bond by 0.06 Å. The unfavorable π-π electrostatic repulsion is further exemplified by N2O4. In fact, the destabilizing π-π repulsion is ubiquitous but largely neglected in conjugated systems where only the stabilizing conjugation is the focus. Experimental phenomena such as the C-N bond distances in aniline and nitrobenzene result from the balance of both stabilizing and destabilizing forces.
Collapse
Affiliation(s)
- Huaiyu Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA.
| | - Xiaoyu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA.
| |
Collapse
|
40
|
Qu Z, Qin Z, Zheng X, Wang H, Yao G, Zhang X, Cui Z. Slow-electron velocity-map imaging study of aniline via resonance-enhanced two-photon ionization method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:432-438. [PMID: 27705848 DOI: 10.1016/j.saa.2016.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/31/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Slow electron velocity-map imaging (SEVI) of aniline has been investigated via two-color resonant-enhanced two-photo (1+1') ionization (2C-R2PI) method. A number of vibrational frequencies in the first excited state of neutral (S1) and 2B1 ground electronic state of cation (D0) have been accurately determined. In addition, photoelectron angular distributions (PADs) in the two-step transitions are presented and reveal a near threshold shape resonance in the ionization of aniline. The SEVI spectra taken via various S1 intermediate states provide the detailed vibrational structures of D0 state and directly deduce the accurate adiabatic ionization potential (IP) of 62,271±6cm-1. Ab initio calculations excellently reproduce the experimental IP value (Theo. 62,242cm-1). For most vibrational modes, good agreement between theoretical and experimental frequencies in the S0 and D0 states of aniline is obtained to aid us to clearly assign vibrational modes. Especially, the vibrational frequencies calculated at the CASSCF level are much better consistent with experimental data than that obtained using the TDDFT and CIS methods.
Collapse
Affiliation(s)
- Zehua Qu
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhengbo Qin
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Xianfeng Zheng
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Hui Wang
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Guanxin Yao
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xianyi Zhang
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhifeng Cui
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
41
|
Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts. Nat Commun 2016; 7:12333. [PMID: 27457731 PMCID: PMC4963534 DOI: 10.1038/ncomms12333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Dehydrogenation of anhydrous methanol is of great importance, given its ubiquity as an intermediate for the production of a large number of industrial chemicals. Since dehydrogenation of methanol is an endothermic reaction, heterogeneous or homogeneous precious-metal-based catalysts and high temperatures are usually required for this reaction to proceed. Here we report the photochemical dehydrogenation of anhydrous methanol at room temperature catalysed by o-aminophenol (apH2), o-aminophenolate (apH(-)) and the non-precious metal complex trans-[Fe(II)(apH)2(MeOH)2]. Under excitation at 289±10 nm and in the absence of additional photosensitizers, these photocatalysts generate hydrogen and formaldehyde from anhydrous methanol with external quantum yields of 2.9±0.15%, 3.7±0.19% and 4.8±0.24%, respectively, which are the highest values reported so far to the best of our knowledge. Mechanistic investigations reveal that the photo-induced formation of hydrogen radicals triggers the reaction.
Collapse
|
42
|
Hüter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F. Long-lived coherence in pentafluorobenzene as a probe of ππ* – πσ* vibronic coupling. J Chem Phys 2016; 145:014302. [DOI: 10.1063/1.4954705] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. Hüter
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - M. Sala
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - H. Neumann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - S. Zhang
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - H. Studzinski
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - D. Egorova
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - F. Temps
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
43
|
Ethynyl substitution effect on the electronic excitation spectra of aniline. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Stavros VG, Verlet JRR. Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics. Annu Rev Phys Chem 2016; 67:211-32. [PMID: 26980306 DOI: 10.1146/annurev-physchem-040215-112428] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach.
Collapse
Affiliation(s)
- Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, University of Durham, Durham, DH1 3LE, United Kingdom;
| |
Collapse
|
45
|
Wu X, Karsili TNV, Domcke W. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study. Chemphyschem 2016; 17:1298-304. [DOI: 10.1002/cphc.201501154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuxiu Wu
- Department of Chemistry; Technische Universität München; 85747 Garching Germany
| | - Tolga N. V. Karsili
- Department of Chemistry; Technische Universität München; 85747 Garching Germany
| | - Wolfgang Domcke
- Department of Chemistry; Technische Universität München; 85747 Garching Germany
| |
Collapse
|
46
|
Zawadzki MM, Candelaresi M, Saalbach L, Crane SW, Paterson MJ, Townsend D. Observation of multi-channel non-adiabatic dynamics in aniline derivatives using time-resolved photoelectron imaging. Faraday Discuss 2016; 194:185-208. [DOI: 10.1039/c6fd00092d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present results from a recent time-resolved photoelectron imaging (TRPEI) study investigating the non-adiabatic relaxation dynamics of N,N-dimethylaniline (N,N-DMA) and 3,5-dimethylaniline (3,5-DMA) following excitation at 240 nm. Analysis of the experimental data is supported by ab initio coupled-cluster calculations evaluating excited state energies and the evolution of several excited state physical properties as a function of N–H/N–CH3 bond extension – a critical reaction coordinate. The use of site-selective methylation brings considerable new insight to the existing body of literature concerning photochemical dynamics in the related system aniline at similar excitation wavelengths. The present work also builds on our own previous investigations in the same species at 250 nm. The TRPEI method provides highly differential energy- and angle-resolved data and, in particular, the temporal evolution of the photoelectron angular distributions afforded by the imaging approach offers much of the new dynamical information. In particular, we see no clear evidence of the second excited 2ππ* state non-adiabatically coupling to the lower-lying S1(ππ*) state or the mixed Rydberg/valence S2(3s/πσ*) state. This, in turn, potentially raises some unresolved questions about the overall nature of the dynamics operating in these systems, especially in regard to the 2ππ* state's ultimate fate. More generally, the findings for the aromatic systems N,N-DMA and 3,5-DMA, taken along with our recent TRPEI results for several aliphatic amine species, highlight interesting questions about the nature of electronic character evolution in mixed Rydberg-valence states as a function of certain key bond extensions and the extent of system conjugation. We begin exploring these ideas computationally for a systematically varied series of tertiary amines.
Collapse
Affiliation(s)
| | - Marco Candelaresi
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Lisa Saalbach
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Stuart W. Crane
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | | | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
47
|
Yoshida M, Ueno S, Okano Y, Usui A, Kobayashi A, Kato M. Photochemical hydrogen production from 3d transition-metal complexes bearing o-phenylenediamine ligands. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
You HS, Han S, Yoon JH, Lim JS, Lee J, Kim SY, Ahn DS, Lim JS, Kim SK. Structure and dynamic role of conical intersections in the πσ*-mediated photodissociation reactions. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1072364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Thompson JOF, Saalbach L, Crane SW, Paterson MJ, Townsend D. Ultraviolet relaxation dynamics of aniline,N,N-dimethylaniline and 3,5-dimethylaniline at 250 nm. J Chem Phys 2015; 142:114309. [PMID: 25796251 DOI: 10.1063/1.4914330] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Time-resolved photoelectron imaging was used to investigate the electronic relaxation dynamics of gas-phase aniline, N, N-dimethylaniline, and 3,5-dimethylaniline following ultraviolet excitation at 250 nm. Our analysis was supported by ab initio coupled-cluster calculations evaluating excited state energies and (in aniline) the evolution of a range of excited state physical properties as a function of N-H bond extension. Due to a lack of consistency between several earlier studies undertaken in aniline, the specific aim of this present work was to gain new insight into the previously proposed non-adiabatic coupling interaction between the two lowest lying singlet excited states S1(ππ(∗)) and S2(3s/πσ(∗)). The methyl-substituted systems N, N-dimethylaniline and 3,5-dimethylaniline were included in order to obtain more detailed dynamical information about the key internal molecular coordinates that drive the S1(ππ(∗))/S2(3s/πσ(∗)) coupling mechanism. Our findings suggest that in all three systems, both electronic states are directly populated during the initial excitation, with the S2(3s/πσ(∗)) state then potentially decaying via either direct dissociation along the N-X stretching coordinate (X = H or CH3) or internal conversion to the S1(ππ(∗)) state. In aniline and N, N-dimethylaniline, both pathways most likely compete in the depletion of S2(3s/πσ(∗)) state population. However, in 3,5-dimethylaniline, only the direct dissociation mechanism appears to be active. This is rationalized in terms of changes in the relative rates of the two decay pathways upon methylation of the aromatic ring system.
Collapse
Affiliation(s)
- James O. F. Thompson
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Lisa Saalbach
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stuart W. Crane
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Martin J. Paterson
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dave Townsend
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
50
|
Poterya V, Nachtigallová D, Lengyel J, Fárník M. Photodissociation of aniline N–H bonds in clusters of different nature. Phys Chem Chem Phys 2015; 17:25004-13. [DOI: 10.1039/c5cp04485e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvent effects on the photodissociation of aniline in cluster environments have been investigated by H-photofragment velocity map imaging at 243 nm, mass spectrometry after electron ionization, and ab initio calculations.
Collapse
Affiliation(s)
- Viktoriya Poterya
- J. Heyrovský Institute of Physical Chemistry v.v.i
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i
- Czech Academy of Sciences
- 16610 Prague 6
- Czech Republic
| | - Jozef Lengyel
- J. Heyrovský Institute of Physical Chemistry v.v.i
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i
- Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| |
Collapse
|