1
|
Wang S, Lei H, Mi Y, Ma P, Fan D. Chitosan and hyaluronic acid based injectable dual network hydrogels - Mediating antimicrobial and inflammatory modulation to promote healing of infected bone defects. Int J Biol Macromol 2024; 274:133124. [PMID: 38897505 DOI: 10.1016/j.ijbiomac.2024.133124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In bone defects, infections lead to excessive inflammation, increased bacterial, and bone lysis, resulting in irregular wounds that hinder new bone regeneration. Injectable bioactive materials with adequate antimicrobial activity and strong osteogenic potential are urgently required to remedy irregular defects, eradicate bacteria, and facilitate the generation of new bone tissue. In this research, injectable dual-network composite hydrogels consisting of sulfated chitosan, oxidized hyaluronic acid, β-sodium glycerophosphate, and CuSr doped mesoporous bioactive glass loaded with bone morphogenetic protein (CuSrMBGBMP-2) were utilized for the first time to treat infectious bone defects. Initially, the hydrogel was injected into the wound at 37 °C with minimal invasion to establish a stable state and prevent hydrogel loss. Subsequently, sulfated chitosan eliminated bacteria at the wound site and facilitated cell proliferation with oxidized hyaluronic acid. Additionally, CuSrMBGBMP-2 strengthened antibacterial properties, regulated inflammatory reactions, promoted angiogenesis and osteogenic differentiation, addressing the deficiency in late-stage osteogenesis. Specifically, the injectable dual-network hydrogel based on chitosan and hyaluronic acid is minimally invasive, offering antibacterial, anti-inflammatory, pro-angiogenic, and bone regeneration properties. Therefore, this hydrogel with injectable dual network properties holds great promise for the treatment of bone infections in the future.
Collapse
Affiliation(s)
- Shang Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Yu Mi
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Pei Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Holmes ST, Schönzart J, Philips AB, Kimball JJ, Termos S, Altenhof AR, Xu Y, O'Keefe CA, Autschbach J, Schurko RW. Structure and bonding in rhodium coordination compounds: a 103Rh solid-state NMR and relativistic DFT study. Chem Sci 2024; 15:2181-2196. [PMID: 38332836 PMCID: PMC10848688 DOI: 10.1039/d3sc06026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Jasmin Schönzart
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - James J Kimball
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Sara Termos
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Yijue Xu
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Christopher A O'Keefe
- Department of Chemistry & Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
3
|
Holmes ST, Vojvodin CS, Veinberg N, Iacobelli EM, Hirsh DA, Schurko RW. Hydrates of active pharmaceutical ingredients: A 35Cl and 2H solid-state NMR and DFT study. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101837. [PMID: 36434925 DOI: 10.1016/j.ssnmr.2022.101837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
This study uses 35Cl and 2H solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations to characterize the molecular-level structures and dynamics of hydrates of active pharmaceutical ingredients (APIs). We use 35Cl SSNMR to measure the EFG tensors of the chloride ions to characterize hydrated forms of hydrochloride salts of APIs, along with two corresponding anhydrous forms. DFT calculations are used to refine the crystal structures of the APIs and determine relationships between the 35Cl EFG tensors and the spatial arrangements of proximate hydrogen bonds, which are particularly influenced by interactions with water molecules. We find that the relationship between 35Cl EFG tensors and local hydrogen bonding geometries is complex, but meaningful structure/property relationships can be garnered through use of DFT calculations. Specifically, for every case in which such a comparison could be made, we find that the hydrate has a smaller magnitude of CQ than the corresponding anhydrous form, indicating a chloride ion environment with a ground-state electron density of higher spherical symmetry in the former. Finally, variable-temperature 35Cl and 2H SSNMR experiments on a deuterium-exchanged sample of the API cimetidine hydrochloride monohydrate are used to monitor temperature-dependent influences on the spectra that may arise from motional influences on the 35Cl and 2H EFG tensors. From the 2H SSNMR spectra, we determine that the motions of water molecules are characterized by jump-like motions about their C2 rotational axes that occur on timescales that are unlikely to influence the 35Cl central-transition (+1/2 ↔︎ -1/2) powder patterns (this is confirmed by 35Cl SSNMR). Together, these methods show great promise for the future study of APIs in their bulk and dosage forms, especially variable hydrates in which crystallographic water content varies with external conditions such as humidity.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Cameron S Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Natan Veinberg
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Emilia M Iacobelli
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - David A Hirsh
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
| |
Collapse
|
4
|
Vojvodin CS, Holmes ST, Watanabe LK, Rawson JM, Schurko R. Multi-Component Crystals Containing Urea: Mechanochemical Synthesis and Characterization by 35Cl Solid-State NMR Spectroscopy and DFT Calculations. CrystEngComm 2022. [DOI: 10.1039/d1ce01610e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanochemical synthesis provides new pathways for the rational design of multi-component crystals (MCCs) involving anionic or cationic components, which offer molecular-level architectures unavailable to MCCs comprised of strictly neutral components....
Collapse
|
5
|
Wang H, Fu X, Shi J, Li L, Sun J, Zhang X, Han Q, Deng Y, Gan X. Nutrient Element Decorated Polyetheretherketone Implants Steer Mitochondrial Dynamics for Boosted Diabetic Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101778. [PMID: 34396715 PMCID: PMC8529468 DOI: 10.1002/advs.202101778] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Indexed: 02/05/2023]
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) creates a hyperglycemic micromilieu around implants, resulting inthe high complication and failure rate of implantation because of mitochondrial dysfunction in hyperglycemia. To address the daunting issue, the authors innovatively devised and developed mitochondria-targeted orthopedic implants consisted of nutrient element coatings and polyetheretherketone (PEEK). Dual nutrient elements, in the modality of ZnO and Sr(OH)2 , are assembled onto the sulfonated PEEK surface (Zn&Sr-SPEEK). The results indicate the synergistic liberation of Zn2+ and Sr2+ from coating massacres pathogenic bacteria and dramatically facilitates cyto-activity of osteoblasts upon the hyperglycemic niche. Intriguingly, Zn&Sr-SPEEK implants are demonstrated to have a robust ability to recuperate hyperglycemia-induced mitochondrial dynamic disequilibrium and dysfunction by means of Dynamin-related protein 1 (Drp1) gene down-regulation, mitochondrial membrane potential (MMP) resurgence, and reactive oxygen species (ROS) elimination, ultimately enhancing osteogenicity of osteoblasts. In vivo evaluations utilizing diabetic rat femoral/tibia defect model at 4 and 8 weeks further confirm that nutrient element coatings substantially augment bone remodeling and osseointegration. Altogether, this study not only reveals the importance of Zn2+ and Sr2+ modulation on mitochondrial dynamics that contributes to bone formation and osseointegration, but also provides a novel orthopedic implant for diabetic patients with mitochondrial modulation capability.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xinliang Fu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jiacheng Shi
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Limei Li
- Science and Technology Achievement Incubation CenterKunming Medical UniversityKunming650500China
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qiuyang Han
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yi Deng
- School of Chemical EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SARChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
6
|
Laurencin D, Li Y, Duer MJ, Iuga D, Gervais C, Bonhomme C. A 43 Ca nuclear magnetic resonance perspective on octacalcium phosphate and its hybrid derivatives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1048-1061. [PMID: 33729624 DOI: 10.1002/mrc.5149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
43 Ca nuclear magnetic resonance (NMR) spectroscopy has been extensively applied to the detailed study of octacalcium phosphate (OCP), Ca8 (HPO4 )2 (PO4 )4 .5H2 O, and hybrid derivatives involving intercalated metabolic acids (viz., citrate, succinate, formate, and adipate). Such phases are of importance in the development of a better understanding of bone structure. High-resolution 43 Ca magic angle spinning (MAS) experiments, including double-rotation (DOR) 43 Ca NMR, as well as 43 Ca{1 H} rotational echo DOR (REDOR) and 31 P{43 Ca} REAPDOR NMR spectra, were recorded on a 43 Ca-labeled OCP phase at very high magnetic field (20 T), and complemented by ab initio calculations of NMR parameters using the Gauge-Including Projector Augmented Wave-density functional theory (GIPAW-DFT) method. This enabled a partial assignment of the eight inequivalent Ca2+ sites of OCP. Natural-abundance 43 Ca MAS NMR spectra were then recorded for the hybrid organic-inorganic derivatives, revealing changes in the 43 Ca lineshape. In the case of the citrate derivative, these could be interpreted on the basis of computational models of the structure. Overall, this study highlights the advantages of combining high-resolution 43 Ca NMR experiments and computational modeling for studying complex hybrid biomaterials.
Collapse
Affiliation(s)
| | - Yang Li
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Melinda J Duer
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - Christel Gervais
- LCMCP-Chemistry of Condensed Matter Laboratory of Paris, Sorbonne University, Paris, France
| | - Christian Bonhomme
- LCMCP-Chemistry of Condensed Matter Laboratory of Paris, Sorbonne University, Paris, France
| |
Collapse
|
7
|
Smith ME. Recent progress in solid-state nuclear magnetic resonance of half-integer spin low-γ quadrupolar nuclei applied to inorganic materials. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:864-907. [PMID: 33207003 DOI: 10.1002/mrc.5116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
An overview is presented of recent progress in the solid-state nuclear magnetic resonance (NMR) observation of low-γ nuclei, with a focus on applications to inorganic materials. The technological and methodological advances in the last 20 years, which have underpinned the increased accessibility of low-γ nuclei for study by solid-state NMR techniques, are summarised, including improvements in hardware, pulse sequences and associated computational methods (e.g., first principles calculations and spectral simulation). Some of the key initial observations from inorganic materials of these nuclei are highlighted along with some recent (most within the last 10 years) illustrations of their application to such materials. A summary of other recent reviews of the study of low-γ nuclei by solid-state NMR is provided so that a comprehensive understanding of what has been achieved to date is available.
Collapse
Affiliation(s)
- Mark E Smith
- Vice-Chancellor and President's Office and Department of Chemistry, University of Southampton, Southampton, UK
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, UK
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
8
|
Zhao J, Xu X, Li P, Li X, Chen D, Qiao X, Du J, Qian G, Fan X. Structural Origins of RF3/NaRF4 Nanocrystal Precipitation from Phase-Separated SiO2–Al2O3–RF3–NaF Glasses: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:3024-3032. [DOI: 10.1021/acs.jpcb.9b01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junjie Zhao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Xiuxia Xu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Pengcheng Li
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyue Li
- College of Materials and Environmental Engineering, HangZhou Dianzi University, Hangzhou 310018, China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Guodong Qian
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xianping Fan
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Saouli I, Landron S, Peric B, Boutarfaia A, Kouvatas C, Le Pollès L, Cuny J, Gautier R. Computing of 93Nb NMR Parameters of Solid-State Niobates. The Geometry Matters. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619030090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
11
|
Durgalakshmi D, Ajay Rakkesh R, Kesavan M, Ganapathy S, Ajithkumar TG, Karthikeyan S, Balakumar S. Highly reactive crystalline-phase-embedded strontium-bioactive nanorods for multimodal bioactive applications. Biomater Sci 2018; 6:1764-1776. [PMID: 29808842 DOI: 10.1039/c8bm00362a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present work, a crystallization-induced strontium-bioactive material, with a composition similar to Bioglass 45S5 system, was obtained using a sol-gel-assisted microwave method with nanorod morphologies of 30-80 nm in size. The effect of crystallization induced in the glass network, and its influence on the bioactivity and mechanical properties of bone and dentin regeneration, were the main novel findings of this work. Rietveld analysis of X-ray diffraction spectra showed the best fit with sodium (combeite, Na2Ca2Si3O9) and calcium (clinophosinaite, Ca2Na6O14P2Si2; calcium strontium silicate, Ca1.5O4SiSr0.5; and calcium carbonate, CaCO3) enriched crystal systems. Multinuclear solid-state NMR studies provided detailed atomistic insight into the presence of crystalline mineral phases in the bioactive material. The dentin matrix and antibacterial studies showed good results for 5% strontium-substituted calcium compared with basic 45S5 composition due to its smaller particle size (30 nm), which suggested applications to dentin regeneration. Simulation studies have been demonstrated with clinophosinaite crystal data from the XRD spectra, with the glycoprotein salivary metabolites also showing that 5% strontium-substituted calcium has a higher binding affinity for the salivary compound, which is suitable for dentin regeneration applications. In vitro apatite formation studies showed that this material is suitable for bone regeneration applications.
Collapse
Affiliation(s)
- D Durgalakshmi
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India.
| | | | | | | | | | | | | |
Collapse
|
12
|
Charpentier T, Okhotnikov K, Novikov AN, Hennet L, Fischer HE, Neuville DR, Florian P. Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies. J Phys Chem B 2018; 122:9567-9583. [PMID: 30222349 DOI: 10.1021/acs.jpcb.8b05721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of strontium glasses with the composition (SiO2)1-2 x(Al2O3) x(SrO) x ( R = [SrO]/[Al2O3] = 1) and (SiO2)1-4 x(Al2O3) x(SrO)3 x ( R = 3) has been explored experimentally over both short- and intermediate-length scales using neutron diffraction, 27Al and 29Si nuclear magnetic resonance, and classical molecular dynamics simulations in model systems containing around 10 000 atoms. We aim at understanding the structural role of aluminum and strontium as a function of the chemical composition of these glasses. The short- and medium-range structure such as aluminum coordination, bond angle distribution, Q( n) distribution, and oxygen speciation have been systematically studied. Two potential forms of the repulsive short-range interactions have been investigated, namely, the Buckingham and Morse forms. The comparison of these forms allows us to derive general trends independent of the particular choice of the potential form. In both cases, it is found that aluminum ions are mainly fourfold coordinated and mix with the silicon network favoring the Al/Si mixing in terms of Al-O-Si linkages. For the R = 1 glass series, despite the full charge compensation ([SrO] = [Al2O3]), a small fraction of fivefold aluminum is observed both experimentally and in MD simulations, whereas the concentration of sixfold aluminum is negligible. MD shows that the fivefold aluminum units AlO5 preferentially adopt a small ring configuration and link to tricoordinated oxygen atoms whose population increases with the aluminum content and are mainly found in OAl3 and OAl2Si configurations. The modeled Sr speciation mainly involves SrO7 and SrO8 polyhedra, giving a range of average Sr2+ coordination numbers between 7 and 8 slightly dependent on the short-range repulsive potential form. A detailed statistical analysis of T-O-T' (T, T' = Al,Si), accounting for the population of the various oxygen speciations, reveals that both potentials predict a nearly identical Al/Si mixing.
Collapse
Affiliation(s)
- Thibault Charpentier
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Kirill Okhotnikov
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | | | - Louis Hennet
- CEMHTI UPR3079 CNRS, Univ. Orléans , F-45071 Orléans , France
| | | | - Daniel R Neuville
- IPGP UMR7154 CNRS, Géomatériaux, Paris Sorbonne Cité , 75005 Paris , France
| | - Pierre Florian
- CEMHTI UPR3079 CNRS, Univ. Orléans , F-45071 Orléans , France
| |
Collapse
|
13
|
Youngman R. NMR Spectroscopy in Glass Science: A Review of the Elements. MATERIALS 2018; 11:ma11040476. [PMID: 29565328 PMCID: PMC5951322 DOI: 10.3390/ma11040476] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/30/2023]
Abstract
The study of inorganic glass structure is critically important for basic glass science and especially the commercial development of glasses for a variety of technological uses. One of the best means by which to achieve this understanding is through application of solid-state nuclear magnetic resonance (NMR) spectroscopy, which has a long and interesting history. This technique is element specific, but highly complex, and thus, one of the many inquiries made by non-NMR specialists working in glass science is what type of information and which elements can be studied by this method. This review presents a summary of the different elements that are amenable to the study of glasses by NMR spectroscopy and provides examples of the type of atomic level structural information that can be achieved. It serves to inform the non-specialist working in glass science and technology about some of the benefits and challenges involved in the study of inorganic glass structure using modern, readily-available NMR methods.
Collapse
Affiliation(s)
- Randall Youngman
- Science & Technology Division, Corning Incorporated, SP-AR-02-4, Corning, NY 14831, USA.
| |
Collapse
|
14
|
Lu X, Deng L, Huntley C, Ren M, Kuo PH, Thomas T, Chen J, Du J. Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. J Phys Chem B 2018; 122:2564-2577. [DOI: 10.1021/acs.jpcb.7b12127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaonan Lu
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Lu Deng
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Caitlin Huntley
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Mengguo Ren
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Po-Hsuen Kuo
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Ty Thomas
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Jonathan Chen
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
15
|
Gervais C, Jones C, Bonhomme C, Laurencin D. Insight into the local environment of magnesium and calcium in low-coordination-number organo-complexes using 25Mg and 43Ca solid-state NMR: a DFT study. Acta Crystallogr C 2017; 73:208-218. [PMID: 28257015 DOI: 10.1107/s205322961601929x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
With the increasing number of organocalcium and organomagnesium complexes under development, there is a real need to be able to characterize in detail their local environment in order to fully rationalize their reactivity. For crystalline structures, in cases when diffraction techniques are insufficient, additional local spectroscopies like 25Mg and 43Ca solid-state NMR may provide valuable information to help fully establish the local environment of the metal ions. In this current work, a prospective DFT investigation on crystalline magnesium and calcium complexes involving low-coordination numbers and N-bearing organic ligands was carried out, in which the 25Mg and 43Ca NMR parameters [isotropic chemical shift, chemical shift anisotropy (CSA) and quadrupolar parameters] were calculated for each structure. The analysis of the calculated parameters in relation to the local environment of the metal ions revealed that they are highly sensitive to very small changes in geometry/distances, and hence that they could be used to assist in the refinement of crystal structures. Moreover, such calculations provide a guideline as to how the NMR measurements will need to be performed, revealing that these will be very challenging.
Collapse
Affiliation(s)
- Christel Gervais
- Sorbonne Universités, UPMC - Paris 06, Collège de France, UMR CNRS 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Victoria 3800, Australia
| | - Christian Bonhomme
- Sorbonne Universités, UPMC - Paris 06, Collège de France, UMR CNRS 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM ENSCM, CC1701, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
16
|
Pecher O, Halat DM, Lee J, Liu Z, Griffith KJ, Braun M, Grey CP. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 275:127-136. [PMID: 28064071 DOI: 10.1016/j.jmr.2016.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g.7Li and 31P at 117 and 122MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7Li and 31P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) paramagnetic 17O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+δ; (3) broadband 93Nb static NMR of the Li-ion battery material BNb2O5; and (4) broadband static 127I NMR of a potential Li-air battery product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems.
Collapse
Affiliation(s)
- Oliver Pecher
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - David M Halat
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jeongjae Lee
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Zigeng Liu
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Kent J Griffith
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Marco Braun
- NMR Service GmbH, Blumenstr. 70, 99092 Erfurt, Germany
| | - Clare P Grey
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
17
|
Tilocca A. Dynamical descriptors of bioactivity: a correlation between chemical durability and ion migration in biodegradable glasses. Phys Chem Chem Phys 2017; 19:6334-6337. [DOI: 10.1039/c6cp07203h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations reveal the importance of using dynamical descriptors to rationalize and predict the behavior of biomedical glasses.
Collapse
Affiliation(s)
- Antonio Tilocca
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| |
Collapse
|
18
|
Dessombz A, Coulibaly G, Kirakoya B, Ouedraogo RW, Lengani A, Rouziere S, Weil R, Picaut L, Bonhomme C, Babonneau F, Bazin D, Daudon M. Structural elucidation of silica present in kidney stones coming from Burkina Faso. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Laurencin D, Ribot F, Gervais C, Wright AJ, Baker AR, Campayo L, Hanna JV, Iuga D, Smith ME, Nedelec JM, Renaudin G, Bonhomme C. 87Sr,119Sn,127I Single and {1H/19F}-Double Resonance Solid-State NMR Experiments: Application to Inorganic Materials and Nanobuilding Blocks. ChemistrySelect 2016. [DOI: 10.1002/slct.201600805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM; Université de Montpellier; Montpellier France
| | - François Ribot
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Christel Gervais
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Adrian J. Wright
- School of Chemistry; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Annabelle R. Baker
- Diamond Light Source; Harwell Science and Innovation Campus; Didcot OX11 0DE UK
| | - Lionel Campayo
- CEA, DEN, DTCD, SECM; Laboratoire d'Etude et de Développement de Matrices de Conditionnement, Centre de Marcoule; 30207 Bagnols sur Cèze France
| | - John V. Hanna
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
| | - Dinu Iuga
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
| | - Mark E. Smith
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
- Vice-Chancellor's Office, University House; Lancaster University; Lancaster LA1 4YW UK
| | - Jean-Marie Nedelec
- ICCF, CNRS UMR 6295, SIGMA Clermont; Université Clermont Auvergne, Campus des Céseaux; CS 20265 Aubière France
| | - Guillaume Renaudin
- ICCF, CNRS UMR 6295, SIGMA Clermont; Université Clermont Auvergne, Campus des Céseaux; CS 20265 Aubière France
| | - Christian Bonhomme
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| |
Collapse
|
20
|
|
21
|
Faucher A, Terskikh VV, Ye E, Bernard GM, Wasylishen RE. Solid-State 87Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength. J Phys Chem A 2015; 119:11847-61. [DOI: 10.1021/acs.jpca.5b09392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandra Faucher
- Department
of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Victor V. Terskikh
- Department
of Chemistry, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Eric Ye
- Department
of Chemistry, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Guy M. Bernard
- Department
of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Roderick E. Wasylishen
- Department
of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
22
|
Berthomieu D, Gervais C, Renaudin G, Reinholdt M, Sene S, Smith ME, Bonhomme C, Laurencin D. Coordination Polymers Based on Alkylboronate Ligands: Synthesis, Characterization, and Computational Modelling. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Man PP, Bonhomme C, Babonneau F. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing units. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 61-62:28-34. [PMID: 24880899 DOI: 10.1016/j.ssnmr.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
We present a post-processing method that decreases the NMR spectrum noise without line shape distortion. As a result the signal-to-noise (S/N) ratio of a spectrum increases. This method is called Cadzow enhancement procedure that is based on the singular-value decomposition of time-domain signal. We also provide software whose execution duration is a few seconds for typical data when it is executed in modern graphic-processing unit. We tested this procedure not only on low sensitive nucleus (29)Si in hybrid materials but also on low gyromagnetic ratio, quadrupole nucleus (87)Sr in reference sample Sr(NO3)2. Improving the spectrum S/N ratio facilitates the determination of T/Q ratio of hybrid materials. It is also applicable to simulated spectrum, resulting shorter simulation duration for powder averaging. An estimation of the number of singular values needed for denoising is also provided.
Collapse
Affiliation(s)
- Pascal P Man
- Sorbonne Universités, UPMC Univ Paris 06, FR 2482, Institut des matériaux de Paris-Centre, Collège de France, F-75005 Paris, France; CNRS, FR 2482, Institut des matériaux de Paris-Centre, Collège de France, F-75005 Paris, France.
| | - Christian Bonhomme
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, F-75005 Paris, France; CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, F-75005 Paris, France
| | - Florence Babonneau
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, F-75005 Paris, France; CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, F-75005 Paris, France
| |
Collapse
|
24
|
Kapoor S, Goel A, Tilocca A, Dhuna V, Bhatia G, Dhuna K, Ferreira JMF. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater 2014; 10:3264-78. [PMID: 24709542 DOI: 10.1016/j.actbio.2014.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 11/19/2022]
Abstract
We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed.
Collapse
Affiliation(s)
- Saurabh Kapoor
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - Ashutosh Goel
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065, USA.
| | - Antonio Tilocca
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Vikram Dhuna
- Department of Biotechnology, DAV College, Amritsar 143-001, Punjab, India
| | - Gaurav Bhatia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - Kshitija Dhuna
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Goobes G. Past and Future Solid-State NMR Spectroscopy Studies at the Convergence Point between Biology and Materials Research. Isr J Chem 2014. [DOI: 10.1002/ijch.201300113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:1-48. [PMID: 24411829 DOI: 10.1016/j.pnmrs.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM2 UM1 ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
27
|
Rossini AJ, Widdifield CM, Zagdoun A, Lelli M, Schwarzwälder M, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization enhanced NMR spectroscopy for pharmaceutical formulations. J Am Chem Soc 2014; 136:2324-34. [PMID: 24410528 DOI: 10.1021/ja4092038] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (ε) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional (13)C and (15)N solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API-excipient interactions were observed in high-sensitivity (1)H-(15)N correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of ε as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 μm with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 μm.
Collapse
Affiliation(s)
- Aaron J Rossini
- Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Berardo E, Corno M, Cormack AN, Ugliengo P, Tilocca A. Probing the fate of interstitial water in bulk bioactive glass by ab initio simulations. RSC Adv 2014. [DOI: 10.1039/c4ra05810k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism and effects of the interaction of a water molecule with different sites found in the bulk of 45S5 bioactive glass have been investigated through ab initio simulations.
Collapse
Affiliation(s)
- Enrico Berardo
- Department of Chemistry
- University College London
- London WC1H 0AJ, UK
| | - Marta Corno
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces)
- Universitá di Torino
- 10125 Torino, Italy
| | | | - Piero Ugliengo
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces)
- Universitá di Torino
- 10125 Torino, Italy
| | - Antonio Tilocca
- Department of Chemistry
- University College London
- London WC1H 0AJ, UK
| |
Collapse
|
29
|
Tilocca A. Current challenges in atomistic simulations of glasses for biomedical applications. Phys Chem Chem Phys 2014; 16:3874-80. [DOI: 10.1039/c3cp54913e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomic-scale simulations of bioglasses are being used to tackle several challenging aspects, such as new structural markers of bioactivity, ion migration and nanosized samples.
Collapse
Affiliation(s)
- Antonio Tilocca
- Department of Chemistry
- University College London
- London WC1H 0AJ, UK
| |
Collapse
|
30
|
Burgess KMN, Xu Y, Leclerc MC, Bryce DL. Alkaline-Earth Metal Carboxylates Characterized by 43Ca and 87Sr Solid-State NMR: Impact of Metal-Amine Bonding. Inorg Chem 2013; 53:552-61. [DOI: 10.1021/ic402658d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kevin M. N. Burgess
- Department
of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N
6N5
| | - Yang Xu
- Department
of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N
6N5
| | - Matthew C. Leclerc
- Department
of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N
6N5
| | - David L. Bryce
- Department
of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N
6N5
| |
Collapse
|
31
|
O'Dell LA. The WURST kind of pulses in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 55-56:28-41. [PMID: 24183812 DOI: 10.1016/j.ssnmr.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
WURST pulses (wideband, uniform rate, smooth truncation) were first introduced two decades ago by Kupče and Freeman as a means of achieving broadband adiabatic inversion of magnetisation for solution-state (13)C decoupling at high magnetic field strengths. In more recent years these pulses have found use in an increasingly diverse range of applications in solid-state NMR. This article reviews a number of recent developments that take advantage of WURST pulses, including broadband excitation, refocusing and cross polarisation for the acquisition of ultra-wideline powder patterns, signal enhancement for half-integer and integer spin quadrupolar nuclei, spectral editing, direct and indirectly observed (14)N overtone MAS, and symmetry-based homonuclear recoupling. Simple mathematical descriptions of WURST pulses and some brief theory behind their operation in the adiabatic and non-adiabatic regimes are provided, and various practical considerations for their use are also discussed.
Collapse
Affiliation(s)
- Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
32
|
Abstract
Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses.
Collapse
Affiliation(s)
- Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
33
|
Charpentier T, Menziani MC, Pedone A. Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. RSC Adv 2013. [DOI: 10.1039/c3ra40627j] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
34
|
Boronate Ligands in Materials: Determining Their Local Environment by Using a Combination of IR/Solid-State NMR Spectroscopies and DFT Calculations. Chemistry 2012; 19:880-91. [DOI: 10.1002/chem.201203560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 11/07/2022]
|
35
|
Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17465-17476. [PMID: 23171477 DOI: 10.1021/la303768b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.
Collapse
Affiliation(s)
- Bobo Yu
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|