1
|
Ding B, Hong XY, Yin H, Xu JY, Zhang XY, Zhou Q, Shen Y. Detection and Separation of DNA and Silver Nanoparticles Using a Solid-State Nanopore. ACS OMEGA 2023; 8:17682-17688. [PMID: 37251189 PMCID: PMC10210173 DOI: 10.1021/acsomega.3c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanopore sensors, a new generation of single-molecule sensors, are increasingly used to detect and analyze various analytes and have great potential for rapid gene sequencing. However, there are still some problems in the preparation of small diameter nanopores, such as imprecise pore size and porous defects, while the detection accuracy of large-diameter nanopores is relatively low. Therefore, how to achieve more precise detection of large diameter nanopore sensors is an urgent problem to be studied. Here, SiN nanopore sensors were used to detect DNA molecules and silver nanoparticles (NPs) separately and in combination. The experimental results show that large-size solid-state nanopore sensors can identify and discriminate between DNA molecules, NPs, and NP-bound DNA molecules clearly according to resistive pulses. In addition, the detection mechanism of using NPs to assist in identifying target DNA molecules in this study is different from previous reports. We find that silver NPs can simultaneously bind to multiple probes and target DNA molecules and generate a larger blocking current than free DNA molecules when passing through the nanopore. In conclusion, our research indicates that large-sized nanopores can distinguish the translocation events, thereby identifying the presence of the target DNA molecules in the sample. This nanopore-sensing platform can produce rapid and accurate nucleic acid detection. Its application in medical diagnosis, gene therapy, virus identification, and many other fields is highly significant.
Collapse
Affiliation(s)
- Bo Ding
- Department
of Obstetrics and Gynecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xin-Yi Hong
- Department
of Obstetrics and Gynecology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Han Yin
- Department
of Obstetrics and Gynecology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jing-Yun Xu
- Department
of Obstetrics and Gynecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiao-Yu Zhang
- Department
of Obstetrics and Gynecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qing Zhou
- Department
of Obstetrics and Gynecology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yang Shen
- Department
of Obstetrics and Gynecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
2
|
Zhang Y, Gu Z, Zhao J, Shao L, Kan Y. Sequence-Specific Detection of DNA Strands Using a Solid-State Nanopore Assisted by Microbeads. MICROMACHINES 2020; 11:mi11121097. [PMID: 33322605 PMCID: PMC7763196 DOI: 10.3390/mi11121097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023]
Abstract
Simple, rapid, and low-cost detection of DNA with specific sequence is crucial for molecular diagnosis and therapy applications. In this research, the target DNA molecules are bonded to the streptavidin-coated microbeads, after hybridizing with biotinylated probes. A nanopore with a diameter significantly smaller than the microbeads is used to detect DNA molecules through the ionic pulse signals. Because the DNA molecules attached on the microbead should dissociate from the beads before completely passing through the pore, the signal duration time for the target DNA is two orders of magnitude longer than free DNA. Moreover, the high local concentration of target DNA molecules on the surface of microbeads leads to multiple DNA molecules translocating through the pore simultaneously, which generates pulse signals with amplitude much larger than single free DNA translocation events. Therefore, the DNA molecules with specific sequence can be easily identified by a nanopore sensor assisted by microbeads according to the ionic pulse signals.
Collapse
|
3
|
Zhang Y, Kaynak A, Huang T, Esfandiari L. A rapid bioanalytical tool for detection of sequence-specific circular DNA and mitochondrial DNA point mutations. Anal Bioanal Chem 2019; 411:1935-1941. [PMID: 30810791 DOI: 10.1007/s00216-019-01683-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023]
Abstract
Mutations in mitochondrial DNA (mtDNA) have been an essential cause of numerous diseases, making their identification critically important. The majority of mtDNA screening techniques require polymerase chain reaction (PCR) amplification, enzymatic digestion, and denaturation procedures, which are laborious and costly. Herein, we developed a sensitive PCR-free electrokinetic-based sensor combined with a customized bis-peptide nucleic acid (bis-PNA) and gamma-PNA (γ-PNA) probes immobilized on beads, for the detection of mtDNA point mutations and sequence-specific supercoiled plasmid DNA at the picomolar range. The probes are capable of invading the double-stranded circular DNA and forming a stable triplex structure. Thus, this method can significantly reduce the sample preparation and omit the PCR amplification steps prior to sensing. Further, this bioanalytical tool can open up a new paradigm in clinical settings for the screening of double-stranded circular nucleic acids with a single-base mismatch specificity in a rapid and sensitive manner.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Taosheng Huang
- Department of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA. .,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
4
|
Koo B, Yorita AM, Schmidt JJ, Monbouquette HG. Amplification-free, sequence-specific 16S rRNA detection at 1 aM. LAB ON A CHIP 2018; 18:2291-2299. [PMID: 29987290 DOI: 10.1039/c8lc00452h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A nucleic acid amplification-free, optics-free platform has been demonstrated for sequence-specific detection of Escherichia coli (E. coli) 16S rRNA at 1 aM (10-18 M) against a 106-fold (1 pM) background of Pseudomonas putida (P. putida) RNA. This work was driven by the need for simple, rapid, and low cost means for species-specific bacterial detection at low concentration. Our simple, conductometric sensing device functioned by detecting blockage of a nanopore fabricated in a sub-micron-thick glass membrane. Upon sequence-specific binding of target 16S rRNA, otherwise charge-neutral, PNA oligonucleotide probe-polystyrene bead conjugates become electrophoretically mobile and are driven to the glass nanopore of lesser diameter, which is blocked, thereby generating a large, sustained and readily observable step decrease in ionic current. No false positive signals were observed with P. putida RNA when this device was configured to detect E. coli 16S rRNA. Also, when a universal PNA probe complementary to the 16S rRNA of both E. coli and P. putida was conjugated to beads, a positive response to rRNA of both bacterial species was observed. Finally, the device readily detected E. coli at 10 CFU mL-1 in a 1 mL sample, also against a million-fold background of viable P. putida. These results suggest that this new device may serve as the basis for small, portable, low power, and low-cost systems for rapid detection of specific bacterial species in clinical samples, food, and water.
Collapse
Affiliation(s)
- Bonhye Koo
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
5
|
Huang H, Qin J, Wang G, Guo Z, Yu X, Zhao Y, Wei J. Synthesis of spiny metal–phenolic coordination crystals as a sensing platform for sequence-specific detection of nucleic acids. CrystEngComm 2018. [DOI: 10.1039/c8ce01555d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal–phenolic coordination crystals with a spiny surface and tunable compositions are synthesized, and can be used as DNA sensors.
Collapse
Affiliation(s)
- Hengbo Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University Xi'an
- P. R. China
| | - Jing Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University Xi'an
- P. R. China
| | - Gen Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University Xi'an
- P. R. China
| | - Zehua Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University Xi'an
- P. R. China
| | - Xu Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University Xi'an
- P. R. China
| | - Yongxi Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University Xi'an
- P. R. China
| | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University Xi'an
- P. R. China
| |
Collapse
|
6
|
Zhang Y, Rana A, Stratton Y, Czyzyk-Krzeska MF, Esfandiari L. Sequence-Specific Detection of MicroRNAs Related to Clear Cell Renal Cell Carcinoma at fM Concentration by an Electroosmotically Driven Nanopore-Based Device. Anal Chem 2017; 89:9201-9208. [PMID: 28832110 DOI: 10.1021/acs.analchem.7b01944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that play a critical role in gene regulation. Recently, traces of cancer-related miRs have been identified in body fluids, which make them remarkable noninvasive biomarkers. In this study, a new nanopore-based detection scheme utilizing a borosilicate micropipette and an assay of complementary γ-peptide nucleic acid (γ-PNA) probes conjugated to polystyrene beads have been reported for the detection of miR-204 and miR-210 related to the clear cell Renal Cell Carcinoma (ccRCC). Electroosmotic flow (EOF) is induced as the driving force to transport PNA-beads harboring target miRs to the tip of the pore (sensing zone), which results in pore blockades with unique and easily distinguishable serrated shape electrical signals. The concentration detection limit is investigated to be 1 and 10 fM for miR-204 and miR-210, respectively. The EOF transport mechanism enables highly sensitive detection of molecules with low surface charge density with 97.6% detection accuracy compared to the conventional electrophoretically driven methods. Furthermore, resistive-pulse experiments are conducted to study the correlation of the particles' surface charge density with their translocation time and verify the detection principle.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Ankit Rana
- Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Yiwen Stratton
- Department of Cancer Biology, University of Cincinnati , Cincinnati, Ohio 45267, United States
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati , Cincinnati, Ohio 45267, United States.,Department of Veterans Affairs, VA Research Service , Cincinnati, Ohio 45220, United States
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, United States.,Department of Biomedical Chemical and Environmental Engineering, University of Cincinnati , Cincinnati, Ohio 45221, United States
| |
Collapse
|
7
|
Ghobadi M, Rana A, Esfahani ET, Esfandiari L. Quantitative estimation of electro-osmosis force on charged particles inside a borosilicate resistive-pulse sensor. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:4228-4231. [PMID: 28269215 DOI: 10.1109/embc.2016.7591660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nano and micron-scale pore sensors have been widely used for biomolecular sensing application due to its sensitive, label-free and potentially cost-effective criteria. Electrophoretic and electroosmosis are major forces which play significant roles on the sensor's performance. In this work, we have developed a mathematical model based on experimental and simulation results of negatively charged particles passing through a 2μm diameter solid-state borosilicate pore under a constant applied electric field. The mathematical model has estimated the ratio of electroosmosis force to electrophoretic force on particles to be 77.5%.
Collapse
|
8
|
Esfandiari L, Wang S, Wang S, Banda A, Lorenzini M, Kocharyan G, Monbouquette HG, Schmidt JJ. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor. BIOSENSORS-BASEL 2016; 6:bios6030037. [PMID: 27455337 PMCID: PMC5039656 DOI: 10.3390/bios6030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022]
Abstract
A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100-1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids.
Collapse
Affiliation(s)
- Leyla Esfandiari
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | - Siqing Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Siqi Wang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Anisha Banda
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | - Michael Lorenzini
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | - Gayane Kocharyan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | - Harold G Monbouquette
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Jacob J Schmidt
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Esfandiari L, Lorenzini M, Kocharyan G, Monbouquette HG, Schmidt JJ. Sequence-specific DNA detection at 10 fM by electromechanical signal transduction. Anal Chem 2014; 86:9638-43. [PMID: 25203740 PMCID: PMC4188267 DOI: 10.1021/ac5021408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Target DNA fragments at 10 fM concentration (approximately 6 × 10(5) molecules) were detected against a DNA background simulating the noncomplementary genomic DNA present in real samples using a simple, PCR-free, optics-free approach based on electromechanical signal transduction. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is highly desired for a range of diverse applications. We previously described a potentially low-cost device for sequence-specific nucleic acid detection based on conductance change measurement of a pore blocked by electrophoretically mobilized bead-(peptide nucleic acid probe) conjugates upon hybridization with target nucleic acid. Here, we demonstrate the operation of our device with longer DNA targets, and we describe the resulting improvement in the limit of detection (LOD). We investigated the detection of DNA oligomers of 110, 235, 419, and 1613 nucleotides at 1 pM to 1 fM and found that the LOD decreased as DNA length increased, with 419 and 1613 nucleotide oligomers detectable down to 10 fM. In addition, no false positive responses were obtained with noncomplementary, control DNA fragments of similar length. The 1613-base DNA oligomer is similar in size to 16S rRNA, which suggests that our device may be useful for detection of pathogenic bacteria at clinically relevant concentrations based on recognition of species-specific 16S rRNA sequences.
Collapse
Affiliation(s)
- Leyla Esfandiari
- Department of Bioengineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | | | | | | | | |
Collapse
|
10
|
Wang L, Han Y, Zhou S, Wang G, Guan X. Nanopore biosensor for label-free and real-time detection of anthrax lethal factor. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7334-7339. [PMID: 24806593 PMCID: PMC4039345 DOI: 10.1021/am500749p] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/07/2014] [Indexed: 05/29/2023]
Abstract
We report a label-free real-time nanopore sensing method for the detection of anthrax lethal factor, a component of the anthrax toxin, by using a complementary single-stranded DNA as a molecular probe. The method is rapid and sensitive: sub-nanomolar concentrations of the target anthrax lethal factor DNA could be detected in ∼1 min. Further, our method is selective, which can differentiate the target DNA from other single-stranded DNA molecules at the single-base resolution. This sequence-specific detection approach should find useful application in the development of nanopore sensors for the detection of other pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Xiyun Guan
- Tel: 01-312-567-8922. Fax: 01-312-567-3494. E-mail:
| |
Collapse
|
11
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|