1
|
Ali O, Okumura B, Shintani Y, Sugiura S, Shibata A, Higashi SL, Ikeda M. Oxidation-Responsive Supramolecular Hydrogels Based on Glucosamine Derivatives with an Aryl Sulfide Group. Chembiochem 2024; 25:e202400459. [PMID: 38924281 DOI: 10.1002/cbic.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular hydrogels can be obtained via self-assembly of small molecules in aqueous environments. In this study, we describe the development of oxidation-responsive supramolecular hydrogels comprising glucosamine derivatives with an aryl sulfide group. We demonstrate that hydrogen peroxide can induce a gel-sol transition through the oxidation of the sulfide group to the corresponding sulfoxide. Furthermore, we show that this oxidation responsiveness can be extended to photo-responsiveness with the aid of a photosensitizer.
Collapse
Affiliation(s)
- Onaza Ali
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Bioru Okumura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shintaro Sugiura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
2
|
Oka M, Kozako R, Teranishi Y, Yamada Y, Miyake K, Fujimura T, Sasai R, Ikeue T, Iida H. Chiral Supramolecular Organogel Constructed Using Riboflavin and Melamine: Its Application in Photo-Catalyzed Colorimetric Chiral Sensing and Enantioselective Adsorption. Chemistry 2024; 30:e202303353. [PMID: 38012829 DOI: 10.1002/chem.202303353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of a chiral supramolecular organogel via the hierarchical helical self-assembly of optically active riboflavin and melamine derivatives is described herein. Owing to the photocatalysis of riboflavin and the supramolecular chirality induced in the helically stacked riboflavin/melamine complex, the gel is observed to act as a light-stimulated chiral sensor of optically active alcohols by detecting the change in color from yellow to green. The gel also served as an efficient chiral adsorbent, enabling optical resolution of a racemic compound with high chiral recognition ability.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Kozako
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Teranishi
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Yamada
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuhiro Miyake
- Center for Material Research Platform, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujimura
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Sasai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
3
|
Chen J, Zhang W, Yang W, Xi F, He H, Liang M, Dong Q, Hou J, Wang M, Yu G, Zhou J. Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals. Nat Commun 2024; 15:1260. [PMID: 38341431 DOI: 10.1038/s41467-024-45592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The combination of macrocyclic chemistry with co-crystal engineering has promoted the development of materials with vapochromic behaviors in supramolecular science. Herein, we develop a macrocycle co-crystal based on hybrid[4]arene and 1,2,4,5-tetracyanobenzene that is able to construct vapochromic materials. After the capture of benzene and toluene vapors, activated hybrid[4]arene-based co-crystal forms new structures, accompanied by color changes from brown to yellow. However, when hybrid[4]arene-based co-crystal captures cyclohexane and pyridine, neither structures nor colors change. Interestingly, hybrid[4]arene-based co-crystal can separate benzene from a benzene/cyclohexane equal-volume mixture and allow toluene to be removed from a toluene/ pyridine equal-volume mixture with purities reaching 100%. In addition, the process of adsorptive separation can be visually monitored. The selectivity of benzene from a benzene/cyclohexane equal-volume mixture and toluene from a toluene/ pyridine equal-volume mixture is attributed to the different changes in the charge-transfer interaction between hybrid[4]arene and 1,2,4,5-tetracyanobenzene when hybrid[4]arene-based co-crystal captures different vapors. Moreover, hybrid[4]arene-based co-crystal can be reused without losing selectivity and performance. This work constructs a vapochromic material for hydrocarbon separation.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenjie Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Fengcheng Xi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Hongyi He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Qian Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jiawang Hou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Mengbin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
4
|
Arakawa Y, Sogabe Y, Minagawa K, Oshimura M, Hirano T, Ute K, Imada Y. Immobilization of a flavin molecule onto poly(methacrylic acid)s and its application in aerobic oxidation catalysis: effect of polymer stereoregularity. Org Biomol Chem 2023; 21:289-293. [PMID: 36503933 DOI: 10.1039/d2ob01834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The isoalloxazine ring system, called flavin, was successfully immobilized on poly(methacrylic acid)s, PMAAs, with different tacticity via post-polymerization modification under suitable conditions. The resulting flavin-containing polymers showed catalytic activity for aerobic oxidation reactions, in which the polymer stereoregularity clearly influenced their catalytic activity.
Collapse
Affiliation(s)
- Yukihiro Arakawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Yoshiko Sogabe
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Keiji Minagawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Miyuki Oshimura
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Tomohiro Hirano
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Koichi Ute
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Yasushi Imada
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| |
Collapse
|
5
|
Song X, Li YX, Zhou L, Liu N, Wu ZQ. Controlled Synthesis of One-Handed Helical Polymers Carrying Achiral Organoiodine Pendants for Enantioselective Synthesis of Quaternary All-Carbon Stereogenic Centers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Ikai T, Ando M, Ito M, Ishidate R, Suzuki N, Maeda K, Yashima E. Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. J Am Chem Soc 2021; 143:12725-12735. [PMID: 34347469 DOI: 10.1021/jacs.1c05620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Any polymers composed of racemic repeating units are obviously optically inactive and hence chiral functions, such as asymmetric catalysis, will not be expected at all. Contrary to such a preconceived notion, we report an unprecedented helical polymer-based highly enantioselective organocatalyst prepared by polymerization of a racemic monomer with no catalytic activity. Both the right- and left-handed helical poly(biarylylacetylene)s (PBAs) composed of dynamically racemic 2-arylpyridyl-N-oxide monomer units with N-oxide moieties located in the vicinity of the helical polymer backbone can be produced by noncovalent interaction with a chiral alcohol through deracemization of the biaryl pendants. The macromolecular helicity and the axial chirality induced in the PBAs are retained ("memorized") after complete removal of the chiral alcohol. Accordingly, the helical PBAs with dual static memory of the helicity and axial chirality show remarkable enantioselectivity (86% ee) for the asymmetric allylation of benzaldehyde. The enantioselectivity is slightly lower than that (96% ee) of the homochiral PBAs prepared from the corresponding enantiopure (R)- and (S)-monomers, but is comparable to that (88% ee) of the helical PBA composed of nonracemic monomers of ca. 60% ee.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuka Ando
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masaki Ito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryoma Ishidate
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Rehpenn A, Walter A, Storch G. Molecular Editing of Flavins for Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1458-2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe diverse activity of flavoenzymes in organic transformations has fascinated researchers for a long time. However, when applied outside an enzyme environment, the isolated flavin cofactor only shows largely reduced activity. This highlights the importance of embedding the reactive isoalloxazine core of flavins in defined surroundings. The latter include crucial non-covalent interactions with amino acid side chains or backbone as well as controlled access to reactants such as molecular oxygen. Nevertheless, molecular flavins are increasingly applied in the organic laboratory as valuable organocatalysts. Chemical modification of the parent isoalloxazine structure is of particular interest in this context in order to achieve reactivity and selectivity in transformations, which are so far only known with flavoenzymes or even unprecedented. This review aims to give a systematic overview of the reported designed flavin catalysts and highlights the impact of each structural alteration. It is intended to serve as a source of information when comparing the performance of known catalysts, but also when designing new flavins. Over the last few decades, molecular flavin catalysis has emerged from proof-of-concept reactions to increasingly sophisticated transformations. This stimulates anticipating new flavin catalyst designs for solving contemporary challenges in organic synthesis.1 Introduction2 N1-Modification3 N3-Modification4 N5-Modification5 C6–C9-Modification6 N10-Modification7 Conclusion
Collapse
|
8
|
Tsukada T, Nakano H. Emission Properties of Hybrid Films of Benzylideneaniline-based Amorphous Molecular Materials with Organic Acids. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuma Tsukada
- Department of Applied Chemistry, Muroran Institute of Technology
| | - Hideyuki Nakano
- Department of Applied Chemistry, Muroran Institute of Technology
| |
Collapse
|
9
|
Stricker F, Kölsch JC, Beil SB, Preiß S, Waldvogel SR, Opatz T, Besenius P. Facile access to foldable redox-active flavin-peptide conjugates. Org Biomol Chem 2021; 19:4483-4486. [PMID: 33960997 DOI: 10.1039/d1ob00414j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient approach for the synthesis of foldable redox-active flavin peptide conjugates was established. A model β-hairpin oligopeptide motif was utilized to demonstrate that azidolysine side-chains are readily functionalised with an alkyne-bearing flavine derivative. The folding equilibrium of the peptide backbone as well as the redox behaviour of the flavin moieties remains intact after the conjugation.
Collapse
Affiliation(s)
- Friedrich Stricker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Jonas Christopher Kölsch
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Sebastian B Beil
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany. and Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Sebastian Preiß
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany. and Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany. and Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
10
|
Tsukada T, Kitamura Y, Nakano H. Reversible Change in Fluorescent Color of Moisture‐sensitive Binary Films of 4‐[Bis(4‐methylphenyl)amino]benzylideneaniline with Organic Acids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takuma Tsukada
- Department of Applied Chemistry Muroran Institute of Technology 27-1, Mizumoto-cho, Muroran Hokkaido 050-8585 Japan
| | - Yuya Kitamura
- Department of Applied Chemistry Muroran Institute of Technology 27-1, Mizumoto-cho, Muroran Hokkaido 050-8585 Japan
| | - Hideyuki Nakano
- Department of Applied Chemistry Muroran Institute of Technology 27-1, Mizumoto-cho, Muroran Hokkaido 050-8585 Japan
| |
Collapse
|
11
|
Ribes J, Beztsinna N, Bailly R, Castano S, Rascol E, Taib-Maamar N, Badarau E, Bestel I. Flavin-Conjugated Nanobombs: Key Structural Requirements Governing Their Self-Assemblies' Morphologies. Bioconjug Chem 2021; 32:553-562. [PMID: 33621053 DOI: 10.1021/acs.bioconjchem.1c00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to artificial molecules, natural photosensitizers have the benefit of excellent toxicity profiles and of life-compatible activating energy ranges. Flavins are such photosensitizers that were selected by nature in a plethora of light-triggered biochemical reactions. Flavin-rich nanoparticles could thus emerge as promising tools in photodynamic therapies and in active-targeting drug delivery. Self-assembled flavin-conjugated phospholipids improve the pharmacokinetics of natural flavins and, in the case of controlled morphologies, reduce photobleaching phenomena. The current article presents a proof of concept for the design of riboflavin-rich nanoparticles of tunable morphology from multilamellar patches to vesicular self-assemblies. Coarse-grained simulations of the self-assembling process revealed the key interactions governing the obtained nanomaterials and successfully guided the synthesis of new flavin-conjugates of predictable self-assembly. The obtained flavin-based liposomes had a 65 nm hydrodynamic diameter, were stable, and showed potential photosensitizer activity.
Collapse
Affiliation(s)
- Jonathan Ribes
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Nataliia Beztsinna
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Remy Bailly
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Sabine Castano
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Estelle Rascol
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Nada Taib-Maamar
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Eduard Badarau
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Isabelle Bestel
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| |
Collapse
|
12
|
Walter A, Storch G. Synthetic C6-Functionalized Aminoflavin Catalysts Enable Aerobic Bromination of Oxidation-Prone Substrates. Angew Chem Int Ed Engl 2020; 59:22505-22509. [PMID: 32790228 PMCID: PMC7756793 DOI: 10.1002/anie.202009657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Indexed: 12/19/2022]
Abstract
Flavoenzymes catalyze oxidations via hydroperoxide intermediates that result from activation of molecular O2. These reactions—such as hydroxylation and halogenation—depend on the additional catalytic activity of functional groups in the peptide environment of the flavin cofactor. We report synthetic flavin catalysts that contain C6 amino modifications at the isoalloxazine core and are consequently capable of mediating halogenations outside the peptide surrounding. The catalysts are competent in the selective, biomimetic bromination of oxidation‐prone phenols, flavones, and flavanones using a halide salt in combination with 2,6‐lutidinium oxalate as a flavin reductant under visible‐light irradiation. Our studies show the beneficial effect of stacked bisflavins as well as the catalytic activity of the flavin modifications. The designed flavin catalysts outperform isolated natural (−)‐riboflavin and contribute to the continuing search for tailored flavins in oxidation reactions.
Collapse
Affiliation(s)
- Alexandra Walter
- Department ChemieTechnische Universität MünchenLichtenbergstr. 485747GarchingGermany
| | - Golo Storch
- Department ChemieTechnische Universität MünchenLichtenbergstr. 485747GarchingGermany
| |
Collapse
|
13
|
Walter A, Storch G. Synthetische, C6‐funktionalisierte Aminoflavinkatalysatoren ermöglichen die aerobe Bromierung oxidationsanfälliger Substrate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra Walter
- Department Chemie Technische Universität München Lichtenbergstr. 4 85747 Garching Deutschland
| | - Golo Storch
- Department Chemie Technische Universität München Lichtenbergstr. 4 85747 Garching Deutschland
| |
Collapse
|
14
|
Li B, Cui L, Li C. Macrocycle Co‐Crystals Showing Vapochromism to Haloalkanes. Angew Chem Int Ed Engl 2020; 59:22012-22016. [DOI: 10.1002/anie.202010802] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Bin Li
- College of Science Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Lei Cui
- College of Science Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
| | - Chunju Li
- College of Science Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
15
|
Li B, Cui L, Li C. Macrocycle Co‐Crystals Showing Vapochromism to Haloalkanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bin Li
- College of Science Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Lei Cui
- College of Science Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
| | - Chunju Li
- College of Science Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
16
|
Wada K, Kakuta T, Yamagishi TA, Ogoshi T. Obvious vapochromic color changes of a pillar[6]arene containing one benzoquinone unit with a mechanochromic change before vapor exposure. Chem Commun (Camb) 2020; 56:4344-4347. [PMID: 32193526 DOI: 10.1039/d0cc01112f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a color changeable aromatic vapor detection system by combining the mechanochromism and vapochromism of pillar[6]arene containing one benzoquinone unit. The color of pillar[6]arene solid was changed by mechanochromism before vapor exposure. Different aromatic vapors then induced an obvious vapochromic color change from dark red to light orange or vice versa.
Collapse
Affiliation(s)
- Keisuke Wada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | | | | | | |
Collapse
|
17
|
Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nat Chem 2020; 12:551-559. [DOI: 10.1038/s41557-020-0453-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
|
18
|
Song S, Wang J, Song N, Di H, Liu D, Yu Z. Peptide interdigitation-induced twisted nanoribbons as chiral scaffolds for supramolecular nanozymes. NANOSCALE 2020; 12:2422-2433. [PMID: 31916547 DOI: 10.1039/c9nr09492j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Establishing reliable strategies for rationally manipulating the organization of peptide building blocks and thereby precisely creating chiral nanostructures is challenging, while meaningful toward development of advanced functional materials. Here we report on a peptide-interdigitating mechanism for the reliable self-assembly of lipid-inspired amphiphiles (LIPIAs) into robust twisted nanoribbons by grafting domains to one alkyl tail of lipids as an extended element. Peptide interdigitation promoted the self-assembly of LIPIAs into twisted or flat nanoribbons driven by antiparallel or parallel β-sheet hydrogen bonds, respectively, strongly associated with the connecting direction of the incorporated domains. We found that the LIPIAs containing N-terminus-connected domains with either bulky or small side chain groups formed twisted nanoribbons in a broad pH range, thus implying a sequence- and pH-independent strategy for creation of robust chiral nanostructures. Integrating the resulting twisted nanoribbons with gold nanoparticles led to supramolecular nanozymes exhibiting the excellent catalytic activity and enantioselectivity of asymmetric oxidation of 3,4-dihyroxy-phenylalanine molecules. Our finding demonstrates that the peptide-interdigitating mechanism is a reliable strategy for precise creation of chiral nanostructures serving as chiral matrices for supramolecular nanozymes with improved catalytic performance, thus potentially paving the way towards advanced biomimetic systems resembling natural systems.
Collapse
Affiliation(s)
- Shuxin Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Zaborniak I, Chmielarz P, Matyjaszewski K. Synthesis of Riboflavin‐Based Macromolecules through Low ppm ATRP in Aqueous Media. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Paweł Chmielarz
- Department of Physical ChemistryFaculty of ChemistryRzeszow University of Technology Al. Powstańców Warszawy 6 35‐959 Rzeszów Poland
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
20
|
Zhang S, Li G, Li L, Deng X, Zhao G, Cui X, Tang Z. Alloxan-Catalyzed Biomimetic Oxidations with Hydrogen Peroxide or Molecular Oxygen. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiqi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guangxun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Ling Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiongfei Deng
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Gang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
21
|
Watanabe M, Sakai T, Oka M, Makinose Y, Miyazaki H, Iida H. Non‐Covalently Immobilized Chiral Imidazolidinone on Sulfated‐Chitin: Reusable Heterogeneous Organocatalysts for Asymmetric Diels‐Alder Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mirai Watanabe
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Takuya Sakai
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Marina Oka
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Yuki Makinose
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Hidetoshi Miyazaki
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Hiroki Iida
- Department of ChemistryGraduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu Matsue 690-8504 Japan
| |
Collapse
|
22
|
Zou H, Hai Y, Ye H, You L. Dynamic Covalent Switches and Communicating Networks for Tunable Multicolor Luminescent Systems and Vapor-Responsive Materials. J Am Chem Soc 2019; 141:16344-16353. [PMID: 31547653 DOI: 10.1021/jacs.9b07175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular switches are an intensive area of research, and in particular, the control of multistate switching is challenging. Herein we introduce a general and versatile strategy of dynamic covalent switches and communicating networks, wherein distinct states of reversible covalent systems can induce addressable fluorescence switching. The regulation of intramolecular ring/chain equilibrium, intermolecular dynamic covalent reactions (DCRs) with amines, and both permitted the activation of optical switches. The variation in electron-withdrawing competition between the fluorophore and 2-formylbenzenesulfonyl unit afforded diverse signaling patterns. The combination of switches in situ further enabled the creation of communicating networks for multistate color switching, including white emission, through the delicate control of DCRs in complex mixtures. Finally, reversible and recyclable multiresponsive luminescent materials were achieved with molecular networks on the solid support, allowing visualization of different types of vapors and quantification of primary amine vapors with high sensitivity and wide detection range. The results reported herein should be appealing for future studies of dynamic assemblies, molecular sensing, intelligent materials, and biological labeling.
Collapse
Affiliation(s)
- Hanxun Zou
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China
| | - Lei You
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
23
|
Stereoselectivity-tailored chemo-enzymatic synthesis of enantiocomplementary poly (ω-substituted-δ-valerolactone) enabled by engineered lipase. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Catalysts Supported by Homochiral Molecular Helices: A New Concept to Implement Asymmetric Amplification in Catalytic Science. ChemCatChem 2019. [DOI: 10.1002/cctc.201901246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Shen Z, Sang Y, Wang T, Jiang J, Meng Y, Jiang Y, Okuro K, Aida T, Liu M. Asymmetric catalysis mediated by a mirror symmetry-broken helical nanoribbon. Nat Commun 2019; 10:3976. [PMID: 31484928 PMCID: PMC6726595 DOI: 10.1038/s41467-019-11840-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Although chirality has been recognized as an essential entity for life, it still remains a big mystery how the homochirality in nature emerged in essential biomolecules. Certain achiral motifs are known to assemble into chiral nanostructures. In rare cases, their absolute geometries are enantiomerically biased by mirror symmetry breaking. Here we report the first example of asymmetric catalysis by using a mirror symmetry-broken helical nanoribbon as the ligand. We obtain this helical nanoribbon from a benzoic acid appended achiral benzene-1,3,5-tricarboxamide by its helical supramolecular assembly and employ it for the Cu2+-catalyzed Diels–Alder reaction. By thorough optimization of the reaction (conversion: > 99%, turnover number: ~90), the enantiomeric excess eventually reaches 46% (major/minor enantiomers = 73/27). We also confirm that the helical nanoribbon indeed carries helically twisted binding sites for Cu2+. Our achievement may provide the fundamental breakthrough for producing optically active molecules from a mixture of totally achiral motifs. If asymmetric catalysts were available by mirror symmetry breaking, an important insight may be given to how the biomolecular homochirality emerged in nature. Here, the authors report the first example of asymmetric catalysis by employing mirror symmetry-broken helical nanoribbons as the ligand.
Collapse
Affiliation(s)
- Zhaocun Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Yutao Sang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jian Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yan Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuqian Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China. .,CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China.
| |
Collapse
|
26
|
Kitamura Y, Sato A, Nakano H. Vapochromic Emission Observed for Amorphous Molecular Materials: Emitting Properties of <i>N</i>,<i>N</i>-Bis(9,9-dimethylfluoren-2-yl)-4-nitroaniline. J PHOTOPOLYM SCI TEC 2019. [DOI: 10.2494/photopolymer.32.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuya Kitamura
- Department of Applied Chemistry, Muroran Institute of Technology
| | - Ayaka Sato
- Department of Applied Chemistry, Muroran Institute of Technology
| | - Hideyuki Nakano
- Department of Applied Chemistry, Muroran Institute of Technology
| |
Collapse
|
27
|
Guo LY, Zhang H, Huang ST, Di M, Yao G, Wu S. Synthesis and characterization of a polyisocyanide with thioether pendant caused an oxidation-triggered helix-to-helix transition. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStimuli responsive helical polymers have attracted wide attention and many polymers responsive to the external stimuli have been synthesized. But, only a few examples have been reported regarding the redox-induced helicity inversion helical polymers. The polyisocyanide including thioether pendant (poly-MBTIP) was synthesized by polymerization of methyl (R)-3-(benzylthio)-2-isocyanopropanoate (MBTIP) monomer using NiCl2·6H2O as catalytic agent in dry DCM. The chiroptical and oxidation properties of the poly-MBTIP are investigated. The poly-MBTIPs exhibit intense specific optical rotations and Cotton effects compared to the monomer, strongly suggesting a helical conformation of the polymer backbone. Additionally, the thioether pendant of poly-MBTIP backbone was oxidized to sulfoxide group by H2O2. Interestingly, the specific optical rotations and Cotton effects of poly-MBTIP oxidized are reversed, probably suggesting a helical conformation inversion.
Collapse
Affiliation(s)
- Li-Yuan Guo
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Han Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Sheng-Tang Huang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Man Di
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Gang Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shi Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
28
|
Sakai T, Watanabe M, Ohkado R, Arakawa Y, Imada Y, Iida H. Flavinium and Alkali-Metal Assembly on Sulfated Chitin: A Heterogeneous Supramolecular Catalyst for H 2 O 2 -Mediated Oxidation. CHEMSUSCHEM 2019; 12:1640-1645. [PMID: 30803158 DOI: 10.1002/cssc.201900485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Heterogeneous multiple-catalyst assemblies were developed in which the flavinium cation and Na or Li cations were easily immobilized on a chitin-derived anionic polymeric scaffold through noncovalent ionic interactions. The supramolecular flavinium catalysts were successfully employed in the environmentally friendly heterogeneous Baeyer-Villiger oxidation and sulfoxidation by H2 O2 . Owing to the cooperative catalytic effect of flavinium, alkali metal, and sulfated chitin, the supramolecular flavinium assembly showed higher catalytic activity for the Baeyer-Villiger oxidation of cyclic ketones than the corresponding homogeneous flavinium catalyst. Because the ionic assembly was stable under the reaction conditions, the catalyst could be readily recovered by simple filtration and reused.
Collapse
Affiliation(s)
- Takuya Sakai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Mirai Watanabe
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yukihiro Arakawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima, 770-8506, Japan
| | - Yasushi Imada
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima, 770-8506, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
29
|
Wang Z, Pan D, Li T, Jin Z. N-Heterocyclic Carbene (NHC)-Organocatalyzed Kinetic Resolutions, Dynamic Kinetic Resolutions, and Desymmetrizations. Chem Asian J 2018; 13:2149-2163. [PMID: 29900699 DOI: 10.1002/asia.201800493] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/22/2018] [Indexed: 11/09/2022]
Abstract
The last couple of decades have witnessed tremendous development within N-heterocyclic carbene (NHC) organocatalysis. NHCs have been used as powerful organic catalysts in asymmetric synthesis. Although great achievements have been made in asymmetric NHC catalysis, their applications in kinetic resolution (KR), dynamic kinetic resolution (DKR), and desymmetrization processes have been relatively less developed. Moreover, limited activation modes have been involved in these processes. This review provides an overview of the NHC-organocatalyzed KR, DKR, and desymmetrization reactions in the preparation of chiral functional molecules. The aim is to highlight both the importance and elegance of these methods in the construction of challenging chiral compounds and to provide our own perspective on future development in this direction.
Collapse
Affiliation(s)
- Zhongyao Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Dingwu Pan
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
30
|
Sha JQ, Yang XY, Sheng N, Liu GD, Li JS, Yang JB. Synthesis and PPy loading for enhanced visible-light photocatalytic activity of new POMOFs containing silver chains. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Sakai T, Kumoi T, Ishikawa T, Nitta T, Iida H. Comparison of riboflavin-derived flavinium salts applied to catalytic H 2O 2 oxidations. Org Biomol Chem 2018; 16:3999-4007. [PMID: 29766194 DOI: 10.1039/c8ob00856f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of flavinium salts, 5-ethylisoalloxazinium, 5-ethylalloxazinium, and 1,10-ethylene-bridged alloxazinium triflates, were prepared from commercially available riboflavin. This study presents a comparison between their optical and redox properties, and their catalytic activity in H2O2 oxidations of sulfide, tertiary amine, and cyclobutanone. Reflecting the difference between the π-conjugated ring structures, the flavinium salts displayed very different redox properties, with reduction potentials in the order of: 5-ethylisoalloxazinium > 5-ethylalloxazinium > 1,10-ethylene-bridged alloxazinium. A comparison of their catalytic activity revealed that 5-ethylisoalloxazinium triflate specifically oxidises sulfide and cyclobutanone, and 5-ethylalloxazinium triflate smoothly oxidises tertiary amine. 1,10-Bridged alloxazinium triflate, which can be readily obtained from riboflavin in large quantities, showed moderate catalytic activity for the H2O2 oxidation of sulfide and cyclobutanone.
Collapse
Affiliation(s)
- Takuya Sakai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.
| | | | | | | | | |
Collapse
|
32
|
Kulikov OV, Siriwardane DA, Budhathoki-Uprety J, McCandless GT, Mahmood SF, Novak BM. The secondary structures of PEG-functionalized random copolymers derived from (R)- and (S)- families of alkyne polycarbodiimides. Polym Chem 2018. [DOI: 10.1039/c8py00282g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Macromolecular micelles: a hydrophobic polyamidine backbone surrounded by hydrophilic PEG chains.
Collapse
Affiliation(s)
- Oleg V. Kulikov
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | | | | | | | | | |
Collapse
|
33
|
Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 2017; 47:1307-1350. [PMID: 29271432 DOI: 10.1039/c6cs00703a] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral sulfoxides are in extremely high demand in nearly every sector of the chemical industry concerned with the design and development of new synthetic reagents, drugs, and functional materials. The primary objective of this review is to update readers on the latest developments from the past five years (2011-2016) in the preparation of optically active sulfoxides. Methodologies covered include catalytic asymmetric sulfoxidation using either chemical, enzymatic, or hybrid biocatalytic means; kinetic resolution involving oxidation to sulfones, reduction to sulfides, modification of side chains, and imidation to sulfoximines; as well as various other methods including nucleophilic displacement at the sulfur atom for the desymmetrization of achiral sulfoxides, enantioselective recognition and separation based on either metal-organic frameworks (MOF's) or host-guest chemistry, and the Horner-Wadsworth-Emmons reaction. A second goal of this work concerns a critical discussion of the problem of the accurate determination of the stereochemical outcome of a reaction due to the self-disproportionation of enantiomers (SDE) phenomenon, particularly as it relates to chiral sulfoxides. The SDE is a little-appreciated phenomenon that can readily and spontaneously occur for scalemic samples when subjected to practically any physicochemical process. It has now been unequivocally demonstrated that ignorance in the SDE phenomenon inevitably leads to erroneous interpretation of the stereochemical outcome of catalytic enantioselective reactions, in particular, for the synthesis of chiral sulfoxides. It is hoped that this two-pronged approach to covering the chemistry of chiral sulfoxides will be appealing, engaging, and motivating for current research-active authors to respond to in their future publications in this exciting area of current research.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 210093 Nanjing, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69009 Heidelberg, Germany.
| | - Józef Drabowicz
- Department of Heterooganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland and Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Alicja Wzorek
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
34
|
Zhang J, Chen X, Li W, Li B, Wu L. Solvent Dielectricity-Modulated Helical Assembly and Morphologic Transformation of Achiral Surfactant-Inorganic Cluster Ionic Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12750-12758. [PMID: 29048910 DOI: 10.1021/acs.langmuir.7b01259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ionic complexes comprising single/double chain cationic surfactant and Lindqvist-type polyoxomolybdate anionic cluster were used for controlled self-assembly in organic solutions. In the solvent with low dielectric constant the complexes self-assembled into flat ribbon like lamellar aggregations with an inverse bilayer substructure where the cluster located at the middle. Under the condition of increased dielectric constant, the solvent triggered the formation of helical self-assemblies, which finally transformed from helical ribbons to the flower-like assemblies due to the bilayer becoming excessively twisted. The self-assembled morphology and the substructure were characterized by SEM, TEM, and XRD. The solvent dielectricity-controlled morphologic transformations modulated by the variation of electrostatic interactions between organic cations and inorganic polyanions were demonstrated by 1H NMR and IR spectra. The strategy in this work represents an effective route in targeting the chirality-directed functionalization of inorganic clusters by combining controllable and helical assemblies of achiral polyoxometalate complexes in one system.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
- Institute of Applied Chemistry, Shanxi University , Taiyuan 030006, P. R. China
| | - Xiaofei Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| |
Collapse
|
35
|
Bryliakov KP. Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H2O2 and O2. Chem Rev 2017; 117:11406-11459. [DOI: 10.1021/acs.chemrev.7b00167] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
36
|
Pang LH, Li JM, Lu XM, Lu QH. Spectroscopic investigation on chirality transfer in additive-driven self-assembly of block polymers. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Jiang J, Ouyang G, Zhang L, Liu M. Self‐Assembled Chiral Nanostructures as Scaffolds for Asymmetric Reactions. Chemistry 2017; 23:9439-9450. [DOI: 10.1002/chem.201700727] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Jiang
- Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
| | - Guanghui Ouyang
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of ScienceBeijing National Laboratory for Molecular Science (BNLMS) Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of ScienceBeijing National Laboratory for Molecular Science (BNLMS) Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Minghua Liu
- Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of ScienceBeijing National Laboratory for Molecular Science (BNLMS) Zhongguancun North First Street 2 100190 Beijing P. R. China
| |
Collapse
|
38
|
Ogoshi T, Shimada Y, Sakata Y, Akine S, Yamagishi TA. Alkane-Shape-Selective Vapochromic Behavior Based on Crystal-State Host-Guest Complexation of Pillar[5]arene Containing One Benzoquinone Unit. J Am Chem Soc 2017; 139:5664-5667. [PMID: 28414220 DOI: 10.1021/jacs.7b00631] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colored crystals of pillar[5]arene containing one benzoquinone unit were found to exhibit alkane-shape-selective vapochromic behavior. Activated pillar[5]arene crystals, prepared by removing solvated methanol from pillar[5]arene crystals, changed color from dark-brown to light-red after exposure to linear alkane vapors; however, no color changes were observed on exposure to branched or cyclic alkanes. Uptake of methanol vapor by the activated crystals induced a different color change, from dark-brown to black. This multi-vapochromism results from the different intermolecular π-stacking interactions between the benzoquinone and 1,4-diethoxybenzene units in the alkane- and methanol-containing crystals. Unlike most known vapochromic materials, these pillar[5]arene-based materials were highly stable; after uptake of n-alkanes or methanol the color of the crystals did not change after storage in air for 3 weeks. This is because the included guests were stabilized in the cavity by multiple CH/π interactions.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,JST, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuo Shimada
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
39
|
Kulikov OV, Siriwardane DA, McCandless GT, Mahmood SF, Novak BM. Self-assembling Morphologies Obtained from Helical Polycarbodiimide Copolymers and Their Triazole Derivatives. J Vis Exp 2017:55124. [PMID: 28287569 PMCID: PMC5408759 DOI: 10.3791/55124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A facile method for the preparation of polycarbodiimide-based secondary structures (e.g., nano-rings, "craters," fibers, looped fibers, fibrous networks, ribbons, worm-like aggregates, toroidal structures, and spherical particles) is described. These aggregates are morphologically influenced by extensive hydrophobic side chain-side chain interactions of the singular polycarbodiimide strands, as inferred by atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. Polycarbodiimide-g-polystyrene copolymers (PS-PCDs) were prepared by a combination of synthetic methods, including coordination-insertion polymerization, copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) "click" chemistry, and atom transfer radical polymerization (ATRP). PS-PCDs were found to form specific toroidal architectures at low concentrations in CHCl3. To determine the influence of a more polar solvent medium (i.e., THF and THF/EtOH) on polymer aggregation behavior, a number of representative PS-PCD composites have been tested to show discrete concentration-dependent spherical particles. These fundamental studies are of practical interest to the development of experimental procedures for desirable architectures by directed self-assembly in thin film. These architectures may be exploited as drug carriers, whereas other morphological findings represent certain interest in the area of novel functional materials.
Collapse
Affiliation(s)
- Oleg V Kulikov
- Department of Chemistry and Biochemistry, University of Texas at Dallas;
| | | | | | | | - Bruce M Novak
- Department of Chemistry and Biochemistry, University of Texas at Dallas;
| |
Collapse
|
40
|
Arias S, Núñez-Martínez M, Quiñoá E, Riguera R, Freire F. Simultaneous Adjustment of Size and Helical Sense of Chiral Nanospheres and Nanotubes Derived from an Axially Racemic Poly(phenylacetylene). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602398. [PMID: 27758030 DOI: 10.1002/smll.201602398] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/22/2016] [Indexed: 05/26/2023]
Abstract
Nanospheres and nanotubes with full control of their size and helical sense are obtained in chloroform from the axially racemic chiral poly(phenylacetylene) poly-(R)-1 using either Ag+ as both chiral inducer and cross-linking agent or Na+ as chiral inducer and Ag+ as cross-linking agent. The size is tuned by the polymer/ion ratio while the helical sense is modulated by the polymer/cosolvent (i.e., MeCN) ratio. In this way, the helicity and the size of the nanoparticles can be easily interconverted by very simple experimental changes.
Collapse
Affiliation(s)
- Sandra Arias
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Núñez-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ricardo Riguera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
41
|
OGURA K, NAKANO H. Vapochromic Fluoresccence of Amorphous Molecular Materials Based on Diarylbenzaldehyde. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2016-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kosuke OGURA
- Department of Applied Chemistry, Muroran Institute of Technology
| | - Hideyuki NAKANO
- Department of Applied Chemistry, Muroran Institute of Technology
| |
Collapse
|
42
|
Ogura K, Nakano H. Vapochromic Fluorescence Observed for Emitting Amorphous Molecular Materials: Synthesis and Emitting Properties of 3-{4-[Bis(4-methylphenyl)amino]phenylcarbonyl}-6-{4-[bis(4-methylphenyl)amino]phenyl}-3,5-dimethyl-3,4-dihydro-2H-pyran. J PHOTOPOLYM SCI TEC 2017. [DOI: 10.2494/photopolymer.30.431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kosuke Ogura
- Department of Applied Chemistry, Muroran Institute of Technology
| | - Hideyuki Nakano
- Department of Applied Chemistry, Muroran Institute of Technology
| |
Collapse
|
43
|
Jiang J, Meng Y, Zhang L, Liu M. Self-Assembled Single-Walled Metal-Helical Nanotube (M-HN): Creation of Efficient Supramolecular Catalysts for Asymmetric Reaction. J Am Chem Soc 2016; 138:15629-15635. [DOI: 10.1021/jacs.6b08808] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yan Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing National Laboratory for Molecular Science (BNLMS), Beijing 100190, China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing National Laboratory for Molecular Science (BNLMS), Beijing 100190, China
| | - Minghua Liu
- Key laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing National Laboratory for Molecular Science (BNLMS), Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
44
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1288] [Impact Index Per Article: 143.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
45
|
Iida H, Ishikawa T, Nomura K, Murahashi SI. Anion effect of 5-ethylisoalloxazinium salts on flavin-catalyzed oxidations with H2O2. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Beztsinna N, Tsvetkova Y, Bartneck M, Lammers T, Kiessling F, Bestel I. Amphiphilic Phospholipid-Based Riboflavin Derivatives for Tumor Targeting Nanomedicines. Bioconjug Chem 2016; 27:2048-61. [DOI: 10.1021/acs.bioconjchem.6b00317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nataliia Beztsinna
- Institute of Chemistry & Biology of Membranes & Nano-objects, CBMN UMR 5248, Bordeaux University, 33600 Pessac, France
| | - Yoanna Tsvetkova
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Matthias Bartneck
- Gastroenterology
and Metabolic Disorders, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Twan Lammers
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Fabian Kiessling
- Experimental
Molecular Imaging, RWTH Aachen University Clinic, 52056 Aachen, Germany
| | - Isabelle Bestel
- Institute of Chemistry & Biology of Membranes & Nano-objects, CBMN UMR 5248, Bordeaux University, 33600 Pessac, France
| |
Collapse
|
47
|
Bliumkin L, Dutta Majumdar R, Soong R, Adamo A, Abbatt JPD, Zhao R, Reiner E, Simpson AJ. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5506-5516. [PMID: 27172272 DOI: 10.1021/acs.est.6b00361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photochemistry is a key environmental process directly linked to the fate, source, and toxicity of pollutants in the environment. This study explores two approaches for integrating light sources with nuclear magnetic resonance (NMR) spectroscopy: sample irradiation using a "sunlight simulator" outside the magnet versus direct irradiation of the sample inside the magnet. To assess their applicability, the in situ NMR photoreactors were applied to a series of environmental systems: an atmospheric pollutant (p-nitrophenol), crude oil extracts, and groundwater. The study successfully illustrates that environmentally relevant aqueous photochemical processes can be monitored in situ and in real time using NMR spectroscopy. A range of intermediates and degradation products were identified and matched to the literature. Preliminary measurements of half-lives were also obtained from kinetic curves. The sunlight simulator was shown to be the most suitable model to explore environmental photolytic processes in situ. Other light sources with more intense UV output hold potential for evaluating UV as a remediation alternative in areas such as wastewater treatment plants or oil spills. Finally, the ability to analyze the photolytic fate of trace chemicals at natural abundance in groundwater, using a cryogenic probe, demonstrates the viability of NMR spectroscopy as a powerful and complementary technique for environmental applications in general.
Collapse
Affiliation(s)
- Liora Bliumkin
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | | | | | | | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Ran Zhao
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Eric Reiner
- Ontario Ministry of the Environment , Toronto, Ontario M9P 3 V6, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
48
|
Kulikov OV, Siriwardane DA, McCandless GT, Mahmood SF, Novak BM. Self-assembly studies on triazolepolycarbodiimide- g -polystyrene copolymers. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Affiliation(s)
- Pierpaolo Minei
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Via Moruzzi 13 56124 Pisa Italy
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Via Moruzzi 13 56124 Pisa Italy
- CNR-Istituto per i Processi Chimico Fisici; UOS Pisa, Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
50
|
Minei P, Ahmad M, Barone V, Brancato G, Passaglia E, Bottari G, Pucci A. Vapochromic Behaviour of Polycarbonate Films Doped with a Luminescent Molecular Rotor. POLYM ADVAN TECHNOL 2016; 27:429-435. [PMID: 28904520 PMCID: PMC5593119 DOI: 10.1002/pat.3688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report on vapochromic films suitable for detecting volatile organic compounds (VOCs), based on polycarbonate (PC) doped with 4-(triphenylamino)phthalonitrile (TPAP), a fluorescent molecular rotor sensitive to solvent polarity and viscosity. PC films of variable thickness (from 20 up to 80 µm) and containing small amounts of TPAP (0.05 wt.%) were prepared and exposed to a saturated atmosphere of different VOCs. TPAP/PC films showed a gradual decrease and red-shift of the emission during the exposure to solvents with high polarity index and favourable interaction with the polymer matrix such as THF, CHCl3, and acetonitrile. In the case of the most interacting solvents (THF and CHCl3), TPAP/PC films also showed a fluorescence increase at longer exposure times, as a consequence of an irreversible, solvent-induced crystallization process of the polymeric matrix. The vapochromism of TPAP/PC films is rationalized on the basis of alterations of the rotor intramolecular motion upon solvent uptake by PC and polarity effects of the microenvironment. Interestingly, the fluorescence response of the TPAP/PC films shows a non-trivial, tuneable dependence on film thickness during the second solvent-exposure stage. The latter effect is attributed to a variable extent of the crystallization process occurring in the PC films. This observation promptly suggests, in turn, an effective procedure to modulate the spectroscopic response in such functionalized polymeric materials through the precise control of the film thickness.
Collapse
Affiliation(s)
- Pierpaolo Minei
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Muzaffer Ahmad
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Elisa Passaglia
- Istituto di Chimica dei Composti Organo Metallici (ICCOM), Consiglio Nazionale delle Ricerche, UOS Pisa, Via G. Moruzzi 1, 56124 Pisa
| | - Giovanni Bottari
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049, Cantoblanco, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, C/Faraday 9, 28049 Madrid, Spain
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
- INSTM, UdR Pisa, Via G. Moruzzi 13, 56124 Pisa Italy
| |
Collapse
|