1
|
Rather IA, Ahmad M, Talukdar P, Ali R. Probing and evaluating transmembrane chloride ion transport in double walled trifluorophenyl/phthalimide extended calix[4]pyrrole-based supramolecular receptors. J Mater Chem B 2024; 12:5950-5956. [PMID: 38804847 DOI: 10.1039/d3tb02880a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Therapeutic applications have sparked increased interest in the use of synthetic anion receptors for ion transport across lipid membranes. In this context, the construction of synthetic transmembrane transporters for the physiologically important chloride ion is currently of enormous interest. As a result, considerable effort is being devoted to the design and synthesis of artificial transmembrane chloride ion transporters. However, only inadequate progress has been made in developing macrocyclic chloride ion transporters using the fundamental principles of supramolecular chemistry, and hence this field entails fostering investigations. In this investigation, the synthesis of two new double walled trifluorophenyl/phthalimide extended calix[4]pyrrole (C4P) receptors (3 and 7) has been successfully reported. 1H-NMR titration and HRMS studies confirmed the 1 : 1 binding stoichiometry of the chloride ion with these receptors in the solution phase (only receptor 3b was studied by 1H-NMR). Regarding ion transport of 3b and 7, when studied in the HPTS-based vesicular system, 3b showed better activity with an EC50 value of 0.39 μM. The detailed ion transport studies on 3b have revealed that ion transport occurs through the Cl-/NO3- antiport mode.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| |
Collapse
|
2
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
3
|
Giri M, Dash Y, Guchhait T. Does Larger Cavity-Size Really Help Bigger Anions to Bind? A Scrutiny on Core-Expanded Calix[4]pyrroles and Their Properties. Chempluschem 2024; 89:e202300427. [PMID: 37830245 DOI: 10.1002/cplu.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Calix[4]pyrroles are an important class of oligopyrrolic macrocycles and have found applications in many diverse fields including anion recognition. To modulate the properties of the calix[4]pyrrole, several structural modifications are realized. The core-expansion has attracted extra attention as it provides larger cavity-size compared to parent calix[4]pyrrole(s). This review highlights the synthetic development of various core-expanded calix[4]pyrroles and their applications in anion-binding properties. Emphasis is given to the changes in the binding properties observed with expanded versions of calix[4]pyrrole(s) in both solution and the solid states. The expanded versions of calix[4]pyrrole do not always show higher binding affinities for larger anions as anticipated. Rather, they display reduced affinities with the anions. The truncated form or asymmetric nature of the expanded versions of calix[4]pyrrole does not probably allow to access all the available binding sites for the anions and hence reduced binding affinities are observed. The receptors which contain a greater number of binding sites and are somehow rigid or preorganized apparently show enhanced binding affinities for anions. The relative binding constants for halide series indicate that the enlarged molecules are more beneficial for largest iodide among others. However, most of the receptors show selectivity towards smallest fluoride over other anions studied.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Yashaswini Dash
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| |
Collapse
|
4
|
Ben Toumia I, Bachetti T, Chekir-Ghedira L, Profumo A, Ponassi M, Di Domizio A, Izzotti A, Sciacca S, Puglisi C, Forte S, Giuffrida R, Colarossi C, Milardi D, Grasso G, Lanza V, Fiordoro S, Drago G, Tkachenko K, Cardinali B, Romano P, Iervasi E, Vargas GC, Barboro P, Kohnke FH, Rosano C. Fraisinib: a calixpyrrole derivative reducing A549 cell-derived NSCLC tumor in vivo acts as a ligand of the glycine-tRNA synthase, a new molecular target in oncology. Front Pharmacol 2024; 14:1258108. [PMID: 38235113 PMCID: PMC10791888 DOI: 10.3389/fphar.2023.1258108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Background and purpose: Lung cancer is the leading cause of death in both men and women, constituting a major public health problem worldwide. Non-small-cell lung cancer accounts for 85%-90% of all lung cancers. We propose a compound that successfully fights tumor growth in vivo by targeting the enzyme GARS1. Experimental approach: We present an in-depth investigation of the mechanism through which Fraisinib [meso-(p-acetamidophenyl)-calix(4)pyrrole] affects the human lung adenocarcinoma A549 cell line. In a xenografted model of non-small-cell lung cancer, Fraisinib was found to reduce tumor mass volume without affecting the vital parameters or body weight of mice. Through a computational approach, we uncovered that glycyl-tRNA synthetase is its molecular target. Differential proteomics analysis further confirmed that pathways regulated by Fraisinib are consistent with glycyl-tRNA synthetase inhibition. Key results: Fraisinib displays a strong anti-tumoral potential coupled with limited toxicity in mice. Glycyl-tRNA synthetase has been identified and validated as a protein target of this compound. By inhibiting GARS1, Fraisinib modulates different key biological processes involved in tumoral growth, aggressiveness, and invasiveness. Conclusion and implications: The overall results indicate that Fraisinib is a powerful inhibitor of non-small-cell lung cancer growth by exerting its action on the enzyme GARS1 while displaying marginal toxicity in animal models. Together with the proven ability of this compound to cross the blood-brain barrier, we can assess that Fraisinib can kill two birds with one stone: targeting the primary tumor and its metastases "in one shot." Taken together, we suggest that inhibiting GARS1 expression and/or GARS1 enzymatic activity may be innovative molecular targets for cancer treatment.
Collapse
Affiliation(s)
| | | | - Leila Chekir-Ghedira
- Unit of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Aldo Profumo
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Stefano Forte
- Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | | | | | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Catania, Italy
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Valeria Lanza
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Catania, Italy
| | - Stefano Fiordoro
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Giacomo Drago
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Paolo Romano
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Barboro
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Franz Heinrich Kohnke
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), University of Messina, Messina, Italy
| | | |
Collapse
|
5
|
Cataldo A, Norvaisa K, Halgreen L, Bodman SE, Bartik K, Butler SJ, Valkenier H. Transmembrane Transport of Inorganic Phosphate by a Strapped Calix[4]pyrrole. J Am Chem Soc 2023. [PMID: 37471295 DOI: 10.1021/jacs.3c04631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic anion receptors are increasingly being explored for the transport of anions across lipid membranes because of their potential therapeutic applications. A considerable amount of research focuses on the transport of chloride, whereas the transmembrane transport of inorganic phosphate has not been reported to date, despite the biological relevance of this anion. Here we present a calix[4]pyrrole with a bisurea strap that functions as a receptor and transporter for H2PO4-, relying on the formation of eight hydrogen bonds and efficient encapsulation of the anion. Using a phosphate-sensitive lanthanide probe and 31P NMR spectroscopy, we demonstrate that this receptor can transport phosphate into vesicles by H2PO4-/Cl- antiport, H2PO4- uniport, and Cs+/H2PO4- symport mechanisms. This first example of inorganic phosphate transport by a neutral receptor opens perspectives for the future development of transporters for various biological phosphates.
Collapse
Affiliation(s)
- Alessio Cataldo
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Karolis Norvaisa
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Lau Halgreen
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Samantha E Bodman
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, U.K
| | - Kristin Bartik
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, U.K
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
6
|
Aryl- and Superaryl-Extended Calix[4]pyrroles: From Syntheses to Potential Applications. Top Curr Chem (Cham) 2023; 381:7. [PMID: 36607442 DOI: 10.1007/s41061-022-00419-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/10/2022] [Indexed: 01/07/2023]
Abstract
The incorporation of aryl substituents at the meso-positions of calix[4]pyrrole (C4P) scaffolds produces aryl-extended (AE) and super-aryl-extended (SAE) calix[4]pyrroles. The cone conformation of the all-α isomers of "multi-wall" AE-C4Ps and SAE-C4Ps displays deep aromatic clefts or cavities. In particular, "four-wall" receptors feature an aromatic polar cavity closed at one end with four convergent pyrrole rings and fully open at the opposite end. This makes AE- and SAE-C4P scaffolds effective receptors for the molecular recognition of negatively charged ions and neutral guest molecules with donor-acceptor and hydrogen bonding motifs. In addition, adequately functionalized all-α isomers of multi wall AE- and SAE-C4P scaffolds self-assemble into uni-molecular and supra-molecular aggregates displaying capsular and cage-like structures. The self-assembly process requires the presence of template ions or molecules that lock the C4P cone conformation and complementing the inner polar functions and volumes of their cavities. We envisioned performing an in-depth revision of AE- and SAE-C4P scaffolds owing to their importance in different domains such as supramolecular chemistry, biology, material sciences and pharmaceutical chemistry. Herewith, besides the synthetic details on the elaboration of their structures, we also draw attention to their diverse applications. The organization of this review is mainly based on the number of "walls" present in the AE-C4P derivatives and their structural modifications. The sections are further divided based on the C4P functions and applications. The authors are convinced that this review will be of interest to researchers working in the general area of supramolecular chemistry as well as those involved in the study of the binding properties and applications of C4P derivatives.
Collapse
|
7
|
Rather IA, Riaz U, Ali R. Experimental and Computational Anion Binding Studies of meso-Substituted One-Walled Phthalimide-based Calix[4]pyrrole. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Yang XY, Yuan B, Xiong H, Zhao Y, Wang L, Zhang SQ, Mao S. Allyl phenyl selenides as H 2O 2 acceptors to develop ROS-responsive theranostic prodrugs. Bioorg Chem 2022; 129:106154. [PMID: 36137311 DOI: 10.1016/j.bioorg.2022.106154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Reactive oxygen species (ROS)-responsive prodrugs have received significant attention due to their capacity to target tumors to relieve the side effects caused by chemotherapy. Herein, a series of novel H2O2-activated theranostic prodrugs (CPTSe1-CPTSe7) were developed containing allyl phenyl selenide moieties as H2O2 acceptors. Compared with conventional boronate ester-based prodrug CPT-B, CPTSe1 was more stable in human plasma and showed a more complete release of camptothecin (CPT) in H2O2 inducing experiment. The selectively activated fluorescence signals of CPTSe1 in tumor cells make it useful for real-time monitoring of CPT release and H2O2 detection. Furthermore, excellent selectivity of CPTSe1 was achieved for tumor cells over normal cells. Our results provide a new platform for the development of H2O2-responsive theranostic prodrugs.
Collapse
Affiliation(s)
- Xue-Yan Yang
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Bo Yuan
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| | - Yahao Zhao
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lu Wang
- College of Pharmacy, University of Michigan, NCRC, 1600 Huron Pkwy, Ann Arbor, 48109, USA
| | - San-Qi Zhang
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Shuai Mao
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; College of Pharmacy, University of Michigan, NCRC, 1600 Huron Pkwy, Ann Arbor, 48109, USA.
| |
Collapse
|
9
|
Toumia IB, Ponassi M, Barboro P, Iervasi E, Vargas GC, Banelli B, Fiordoro S, Ghedira LC, Kohnke FH, Izzotti A, Rosano C. Two calix[4]pyrroles as potential therapeutics for castration-resistant prostate cancer. Invest New Drugs 2022; 40:1185-1193. [PMID: 35976541 DOI: 10.1007/s10637-022-01294-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
Macrocyclic compounds meso-(p-acetamidophenyl)-calix[4]pyrrole and meso-(m-acetamidophenyl)-calix[4]pyrrole have previously been reported to exhibit cytotoxic properties towards lung cancer cells. Here, we report pre-clinical in vitro and in vivo studies showing that these calixpyrrole derivatives can inhibit cell growth in both PC3 and DU145 prostatic cancer cell lines. We explored the impact of these compounds on programmed cell death, as well as their ability to inhibit cellular invasion. In this study we have demonstrated the safety of these macrocyclic compounds by cytotoxicity tests on ex-vivo human peripheral blood mononuclear cells (PBMCs), and by in vivo subcutaneous administration. Preliminary in vivo tests demonstrated no hepato-, no nephro- and no genotoxicity in Balb/c mice compared to controls treated with cisplatin. These findings suggest these calixpyrroles might be novel therapeutic tools for the treatment of prostate cancer and of particular interest for the treatment of androgen-independent castration-resistant prostate cancer.
Collapse
Affiliation(s)
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Barboro
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | | | - Leila Chekir Ghedira
- Unit of Bioactive Natural Substances and Biotechnology UR17ES47, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | | |
Collapse
|
10
|
Chloride Binding Properties of a Macrocyclic Receptor Equipped with an Acetylide Gold(I) Complex: Synthesis, Characterization, Reactivity, and Cytotoxicity Studies. INORGANICS 2022. [DOI: 10.3390/inorganics10070095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this work, we report the synthesis and characterization of a mono-nuclear “two wall” aryl-extended calix[4]pyrrole receptor (2Au) decorated with an acetylide-gold(I)-PTA complex at its upper rim. We describe the 1H NMR titration experiments of 2Au and its “two wall” aryl-extended calix[4]pyrrole synthetic precursors: the non-symmetric mono-iodo-mono-ethynyl 2 and the symmetric bis-iodo 3 with TBACl in dichloromethane and acetone solution. In acetone solution, we use isothermal titration calorimetry (ITC) experiments to thermodynamically characterize the formed 1:1 chloride complexes and perform pair-wise competitive binding experiments. In both solvents, we measured a decrease in the binding constant of the mono-nuclear 2Au complex for chloride compared to the parent mono-iodo-mono-ethynyl 2. In turn, receptor 2 also shows a reduction in binding affinity for chloride compared to its precursor bis-iodo calix[4]pyrrole 3. The free energy differences (∆G) of the 1:1 chloride complexes cannot be exclusively attributed to their dissimilar electrostatic surface potential values either at the center of the meso-phenyl wall or its para-substituent. We conclude that solvation/desolvation processes play an important role in the stabilization of the chloride complexes. In acetone solution and in the presence of TBACl, 6Au, a reference compound for the acetylide Au(I)•PTA unit, produces a bis(alkynyl)gold(I) anionic complex [7Au]−. Thus, the observation of two separate sets of signals for the bound aromatic calix[4]pyrrole protons, when more than 1 equiv. of the salt is added, is assigned to the formation of the chloride complexes of 2Au and of the “in situ” formed calix[4]pyrrole anionic dimer [8Au]−. Finally, preliminary data obtained in cell viability assays of 2Au and 6Au with human cancer cells lines assign them with moderate activities showing that the calix[4]pyrrole unit is not relevant.
Collapse
|
11
|
Chen M, Hu C, Zhang S, Wu D, Mao Z, Zheng X. The Construction of Cucurbit[7]uril-Based Supramolecular Nanomedicine for Glioma Therapy. Front Chem 2022; 10:867815. [PMID: 35372259 PMCID: PMC8966231 DOI: 10.3389/fchem.2022.867815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Two supramolecular nanomedicines (CB[7]⊃DOX and CB[7]⊃CPT) based on the host–guest recognition between CB[7] and anticancer drugs were constructed. After supramolecular modification, the stability and water solubility of DOX and CPT were greatly improved, and the anticancer activities of chemotherapeutic drugs were effectively maintained. This work provided a simple but efficient method to enrich supramolecular nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Mantao Chen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chi Hu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxiang Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Dan Wu, ; Zhengwei Mao, ; Xiujue Zheng,
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Dan Wu, ; Zhengwei Mao, ; Xiujue Zheng,
| | - Xiujue Zheng
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Dan Wu, ; Zhengwei Mao, ; Xiujue Zheng,
| |
Collapse
|
12
|
Yang Q, Xu W, Cheng M, Zhang S, Kovaleva EG, Liang F, Tian D, Liu JA, Abdelhameed RM, Cheng J, Li H. Controlled release of drug molecules by pillararene-modified nanosystems. Chem Commun (Camb) 2022; 58:3255-3269. [PMID: 35195641 DOI: 10.1039/d1cc05584d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive nanosystems have attracted the interest of researchers due to their intelligent function of controlled release regulated by a variety of external stimuli and have been applied in biomedical fields. Pillar[n]arenes with the advantages of a rigid structure, electron holes and easy functionalization are considered as excellent candidates for the construction of host-guest nanosystems. In recent years, many pillararene modified nanosystems have been reported in response to different stimuli. In this feature article, we summarize the advance of stimuli-responsive pillararene modified nanosystems for controlled release of drugs from the perspectives of decomposition release and gated release, focusing on the control principles of these nanosystems. We expect that this review can enlighten and guide investigators in the field of stimuli-responsive controlled release.
Collapse
Affiliation(s)
- Qinglin Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Ural Federal University, Mira Street, 28, 620002 Yekaterinburg, Russia.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Jun-An Liu
- The Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, 33 El Buhouth St., Dokki, Siza, P.O. 12311, Egypt.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
13
|
Rather IA, Ali R, Ali A. Recent developments in calix[4]pyrrole (C4P)-based supramolecular functional systems. Org Chem Front 2022. [DOI: 10.1039/d2qo01298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent advances with calix[4]pyrrole-based supramolecular functional entities in the fields of molecular recognition (receptors, sensors, and metal ion caged systems), self-assembly (polymers), photo/pH-responsive molecular switches and catalysis are reviewed.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| | - Ayaaz Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| |
Collapse
|
14
|
Ielo I, Giacobello F, Castellano A, Sfameni S, Rando G, Plutino MR. Development of Antibacterial and Antifouling Innovative and Eco-Sustainable Sol-Gel Based Materials: From Marine Areas Protection to Healthcare Applications. Gels 2021; 8:26. [PMID: 35049561 PMCID: PMC8774406 DOI: 10.3390/gels8010026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacterial colonization of surfaces is the leading cause of deterioration and contaminations. Fouling and bacterial settlement led to damaged coatings, allowing microorganisms to fracture and reach the inner section. Therefore, effective treatment of surface damaged material is helpful to detach bio-settlement from the surface and prevent deterioration. Moreover, surface coatings can withdraw biofouling and bacterial colonization due to inherent biomaterial characteristics, such as superhydrophobicity, avoiding bacterial resistance. Fouling was a past problem, yet its untargeted toxicity led to critical environmental concerns, and its use became forbidden. As a response, research shifted focus approaching a biocompatible alternative such as exciting developments in antifouling and antibacterial solutions and assessing their antifouling and antibacterial performance and practical feasibility. This review introduces state-of-the-art antifouling and antibacterial materials and solutions for several applications. In particular, this paper focuses on antibacterial and antifouling agents for concrete and cultural heritage conservation, antifouling sol-gel-based coatings for filtration membrane technology, and marine protection and textile materials for biomedicine. In addition, this review discusses the innovative synthesis technologies of antibacterial and antifouling solutions and the consequent socio-economic implications. The synthesis and the related physico-chemical characteristics of each solution are discussed. In addition, several characterization techniques and different parameters that influence the surface finishing coatings deposition were also described.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy;
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| |
Collapse
|
15
|
Wang H, Jones LO, Hwang I, Allen MJ, Tao D, Lynch VM, Freeman BD, Khashab NM, Schatz GC, Page ZA, Sessler JL. Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. J Am Chem Soc 2021; 143:20403-20410. [PMID: 34812619 DOI: 10.1021/jacs.1c10255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein are two functionalized crown ether strapped calix[4]pyrroles, H1 and H2. As inferred from competitive salt binding experiments carried out in nitrobenzene-d5 and acetonitrile-d3, these hosts capture LiCl selectively over four other test salts, viz. NaCl, KCl, MgCl2, and CaCl2. Support for the selectivity came from density functional theory (DFT) calculations carried out in a solvent continuum. These theoretical analyses revealed a higher innate affinity for LiCl in the case of H1, but a greater selectivity relative to NaCl in the case of H2, recapitulating that observed experimentally. Receptors H1 and H2 were outfitted with methacrylate handles and subject to copolymerization with acrylate monomers and cross-linkers to yield gels, G1 and G2, respectively. These two gels were found to adsorb lithium chloride preferentially from an acetonitrile solution containing a mixture of LiCl, NaCl, KCl, MgCl2, and CaCl2 and then release the lithium chloride in methanol. The gels could then be recycled for reuse in the selective adsorption of LiCl. As such, the present study highlights the use of solvent polarity switching to drive separations with potential applications in lithium purification and recycling.
Collapse
Affiliation(s)
- Hu Wang
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Inhong Hwang
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marshall J Allen
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States.,McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daliao Tao
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Vincent M Lynch
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zachariah A Page
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan L Sessler
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
17
|
Maiti M, Yoon SA, Cha Y, Athul KK, Bhuniya S, Lee MH. Cell-specific activation of gemcitabine by endogenous H 2S stimulation and tracking through simultaneous fluorescence turn-on. Chem Commun (Camb) 2021; 57:9614-9617. [PMID: 34486009 DOI: 10.1039/d1cc00118c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The endogenous H2S-driven theranostic H2S-Gem has been invented. The theranostic prodrug H2S-Gem is selectively activated in cancer cells, releasing active gemcitabine with a simultaneous fluorescence turn-on. H2S-Gem selectively inhibited cancer cell growth compared to the mother chemotherapeutic gemcitabine. Overall, it is a unique protocol for tracking and transporting chemotherapeutic agents to tumor areas without the guidance of tumor-directive ligands.
Collapse
Affiliation(s)
- Mrinmoy Maiti
- Department of Science, School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | - Yujin Cha
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | - K K Athul
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Salt Lake, Kolkata, 700091, India.
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Salt Lake, Kolkata, 700091, India.
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
18
|
Gold Derivatives Development as Prospective Anticancer Drugs for Breast Cancer Treatment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commonly used anticancer drugs are cisplatin and other platinum-based drugs. However, the use of these drugs in chemotherapy causes numerous side effects and the onset of frequent drug resistance phenomena. This review summarizes the most recent results on the gold derivatives used for their significant inhibitory effects on the in vitro proliferation of breast cancer cell models and for the consequences deriving from morphological changes in the same cells. In particular, the study discusses the antitumor activity of gold nanoparticles, gold (I) and (III) compounds, gold complexes and carbene-based gold complexes, compared with cisplatin. The results of screening studies of cytotoxicity and antitumor activity for the gold derivatives show that the death of cancer cells can occur intrinsically by apoptosis. Recent research has shown that gold (III) compounds with square planar geometries, such as that of cisplatin, can intercalate the DNA and provide novel anticancer agents. The gold derivatives described can make an important contribution to expanding the knowledge of medicinal bioorganometallic chemistry and broadening the range of anticancer agents available, offering improved characteristics, such as increased activity and/or selectivity, and paving the way for further discoveries and applications.
Collapse
|
19
|
Affiliation(s)
- Franz H. Kohnke
- Department CHIBIOFARAM; University of Messina; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
20
|
Chahal MK, Labuta J, Březina V, Karr PA, Matsushita Y, Webre WA, Payne DT, Ariga K, D'Souza F, Hill JP. Knock-on synthesis of tritopic calix[4]pyrrole host for enhanced anion interactions. Dalton Trans 2019; 48:15583-15596. [PMID: 31353382 DOI: 10.1039/c9dt02365h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interactions of anionic guests with a tritopic peripherally functionalized conjugated calix[4]pyrrole host (1) prepared using a regioselective synthetic method is reported. The regioselectivity of synthesis relies on selective N-alkylation of the calix[4]pyrrole caused by peripheral substitution of one pyrrole group with subsequent N-alkylation at the opposing pyrrole group termed by us 'knock-on' regioselectivity. The resulting host molecule exhibits anion interactions with common chloride and nitrate anions enhanced by an order of magnitude over the parent conjugated calix[4]pyrrole. Combined analysis of 1H NMR and UV-vis spectroscopic titration data enabled an evaluation of binding strengths of anions with the host KA in a binding model where the salt dissociation process is also incorporated in the form of its dissociation constant Kd. Anions could be classified as two types based on their interactions with 1: Type A anions (chloride, nitrate, perchlorate, hydrogensulphate) associate as 1 : 1 complexes through hydrogen bonding while interactions involving Type B anions (acetate, fluoride, dihydrogenphosphate) are complicated by host deprotonation and/or countercation association. Hosts based on rim-functionalized calix[4]pyrroles such as 1 represent a promising new family of chromophores for estimation of biologically relevant anions or other species.
Collapse
Affiliation(s)
- Mandeep K Chahal
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Václav Březina
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, USA
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Whitney A Webre
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, USA
| | - Daniel T Payne
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan. and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, USA
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
21
|
Yu G, Chen X. Host-Guest Chemistry in Supramolecular Theranostics. Theranostics 2019; 9:3041-3074. [PMID: 31244941 PMCID: PMC6567976 DOI: 10.7150/thno.31653] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Macrocyclic hosts, such as cyclodextrins, calixarenes, cucurbiturils, and pillararenes, exhibit unparalleled advantages in disease diagnosis and therapy over the past years by fully taking advantage of their host-guest molecular recognitions. The dynamic nature of the non-covalent interactions and selective host-guest complexation endow the resultant nanomaterials with intriguing properties, holding promising potentials in theranostic fields. Interestingly, the differences in microenvironment between the abnormal and normal cells/tissues can be employed as the stimuli to modulate the host-guest interactions, realizing the purpose of precise diagnosis and specific delivery of drugs to lesion sites. In this review, we summarize the progress of supramolecular theranostics on the basis of host-guest chemistry benefiting from their fantastic topological structures and outstanding supramolecular chemistry. These state-of-the-art examples provide new methodologies to overcome the obstacles faced by the traditional theranostic systems, promoting their clinical translations.
Collapse
Affiliation(s)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
22
|
Kielmann M, Senge MO. Molecular Engineering of Free-Base Porphyrins as Ligands-The N-H⋅⋅⋅X Binding Motif in Tetrapyrroles. Angew Chem Int Ed Engl 2019; 58:418-441. [PMID: 30067890 PMCID: PMC6391963 DOI: 10.1002/anie.201806281] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 12/15/2022]
Abstract
The core N-H units of planar porphyrins are often inaccessible to forming hydrogen-bonding complexes with acceptor molecules. This is due to the fact that the amine moieties are "shielded" by the macrocyclic system, impeding the formation of intermolecular H-bonds. However, methods exist to modulate the tetrapyrrole conformations and to reshape the vector of N-H orientation outwards, thus increasing their availability and reactivity. Strategies include the use of porpho(di)methenes and phlorins (calixphyrins), as well as saddle-distorted porphyrins. The former form cavities due to interruption of the aromatic system. The latter are highly basic systems and capable of binding anions and neutral molecules via N-H⋅⋅⋅X-type H-bonds. This Review discusses the role of porphyrin(oid) ligands in various coordination-type complexes, means to access the core for hydrogen bonding, the concept of conformational control, and emerging applications, such as organocatalysis and sensors.
Collapse
Affiliation(s)
- Marc Kielmann
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
| |
Collapse
|
23
|
Rather IA, Wagay SA, Hasnain MS, Ali R. New dimensions in calix[4]pyrrole: the land of opportunity in supramolecular chemistry. RSC Adv 2019; 9:38309-38344. [PMID: 35540221 PMCID: PMC9076024 DOI: 10.1039/c9ra07399j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide. This study is encouraged by the utilization of anions in nature in a plethora of biological systems such as chloride channels and proteins and as polyanions for genetic information. The molecular recognition of anionic species is greatly interesting in terms of their favourable interactions. In this comprehensive review, in addition to giving accounts of some selected syntheses, we illustrated diverse applications ranging from molecular containers to ion transporters and drug carriers of a supramolecular receptor named calix[4]pyrrole. We believe that the present review may act as a catalyst in enhancing the novel applications of calix[4]pyrrole and its congeners in the other dimensions of science and technology. The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide.![]()
Collapse
Affiliation(s)
| | | | | | - Rashid Ali
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|
24
|
Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 2018; 46:7021-7053. [PMID: 28980674 DOI: 10.1039/c6cs00898d] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy is currently one of the most effective ways to treat cancer. However, traditional chemotherapy faces several obstacles to clinical trials, such as poor solubility/stability, non-targeting capability and uncontrollable release of the drugs, greatly limiting their anticancer efficacy and causing severe side effects towards normal tissues. Supramolecular chemotherapy integrating non-covalent interactions and traditional chemotherapy is a highly promising candidate in this regard and can be appropriately used for targeted drug delivery. By taking advantage of supramolecular chemistry, some limitations impeding traditional chemotherapy for clinical applications can be solved effectively. Therefore, we present here a review summarizing the progress of supramolecular chemotherapy in cancer treatment based on host-guest recognition and provide guidance on the design of new targeting supramolecular chemotherapy combining diagnostic and therapeutic functions. Based on a large number of state-of-the-art studies, our review will advance supramolecular chemotherapy on the basis of host-guest recognition and promote translational clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | |
Collapse
|
25
|
Kielmann M, Senge MO. Molekulares Engineering freier Porphyrinbasen als Liganden - das N-H⋅⋅⋅X-Bindungsmotiv in Tetrapyrrolen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marc Kielmann
- School of Chemistry; SFI Tetrapyrrole Laboratory; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street Dublin 2 Irland
| | - Mathias O. Senge
- School of Chemistry; SFI Tetrapyrrole Laboratory; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street Dublin 2 Irland
| |
Collapse
|
26
|
Kongor A, Panchal M, Athar M, Jha PC, Jhala D, Sindhav G, Shah N, Jain VK. Selective fluorescence sensing of Cu(II) ions using calix[4]pyrrole fabricated Ag nanoparticles: A spectroscopic and computational approach. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Yu B, Song N, Hu H, Chen G, Shen Y, Cong H. A degradable triple temperature-, pH-, and redox-responsive drug system for cancer chemotherapy. J Biomed Mater Res A 2018; 106:3203-3210. [DOI: 10.1002/jbm.a.36515] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 China
| | - Na Song
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
| | - Guihuan Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 China
| |
Collapse
|
28
|
Zhao G, Wu H, Feng R, Wang D, Xu P, Wang H, Guo Z, Chen Q. Bimetallic Zeolitic Imidazolate Framework as an Intrinsic Two-Photon Fluorescence and pH-Responsive MR Imaging Agent. ACS OMEGA 2018; 3:9790-9797. [PMID: 31459108 PMCID: PMC6644450 DOI: 10.1021/acsomega.8b00923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 05/29/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) has received wide attention in recent years as a potential drug vehicle for the treatment of cancer due to its acid-responsiveness and moderate biocompatibility. However, its congenital deficiency of intrinsic imaging capability limits its wider applications; therefore, a postsynthetic exchange approach was utilized to introduce paramagnetic manganese(II) ions into the ZIF-8 matrix. As a result, bimetallic zeolitic imidazolate frameworks (Mn-Zn-ZIF) were thus fabricated and exhibited pH-responsive T1-weighted magnetic resonance imaging (MRI) contrast effect. Remarkably, we also found its own fluorescence derived from 2-methylimidazole, which is the first report of the intrinsic two-photon fluorescence imaging of ZIFs to our knowledge. Mn-Zn-ZIF still preserves the original properties of ZIF-8 of high surface areas, microporosity, and acid sensitivity. After further PEGylation of Mn-Zn-ZIF, the nanoparticles showed no obvious toxicity and its MRI contrast effect has also been enhanced. Our work highlights the promise of modified zeolitic imidazolate frameworks as potential cancer theranostic platforms.
Collapse
Affiliation(s)
- Gaozheng Zhao
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Huihui Wu
- Anhui
Key Laboratory for Cellular Dynamics and Chemical Biology, School
of Life Sciences, University of Science
and Technology of China, Hefei 230027, China
| | - Ruilu Feng
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Dongdong Wang
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Pengping Xu
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Haibao Wang
- Radiology
Department of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhen Guo
- Anhui
Key Laboratory for Cellular Dynamics and Chemical Biology, School
of Life Sciences, University of Science
and Technology of China, Hefei 230027, China
| | - Qianwang Chen
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| |
Collapse
|
29
|
A novel calix[4]pyrrole derivative as a potential anticancer agent that forms genotoxic adducts with DNA. Sci Rep 2018; 8:11075. [PMID: 30038406 PMCID: PMC6056420 DOI: 10.1038/s41598-018-29314-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/09/2018] [Indexed: 01/03/2023] Open
Abstract
meso-(p-acetamidophenyl)-calix[4]pyrrole 3 was found to exhibit remarkable cytotoxicity towards A549 cancer cells. A comparative study including the isomer of 3 meso-(m-acetamidophenyl)-calix[4]pyrrole 5, as well as molecules containing 'fragments' of these structures, demonstrated that both the calix[4]pyrrole and the acetamidophenyl units are essential for high cytotoxicity. Although calix[4]pyrroles and other anion-complexing ionophores have recently been reported to induce apoptosis by perturbing cellular chloride concentrations, in our study an alternative mechanism has emerged, as proven by the isolation of covalent DNA adducts revealed by the 32P postlabelling technique. Preliminary pharmacokinetic studies indicate that 3 is able to cross the Blood-Brain-Barrier, therefore being a potential drug that could kill primary and brain metastatic cancer cells simultaneously.
Collapse
|
30
|
Kang R, Miao R, Qi Y, Chang X, Shang C, Wang L, Fang Y. Tuning the formation of reductive species of perylene-bisimide derivatives in DMF via aggregation matter. Chem Commun (Camb) 2018; 53:10018-10021. [PMID: 28836631 DOI: 10.1039/c7cc05645a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Host-guest interaction and chemical modification are found to be effective in tuning the formation of reductive species of perylene-bisimide (PBI) derivatives in DMF. Moreover, some of the PBI derivatives as synthesized produce radical anions in the solvent without the need of a base.
Collapse
Affiliation(s)
- Rui Kang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ellis RJ, Reinhart B, Williams NJ, Moyer BA, Bryantsev VS. Capping the calix: how toluene completes cesium(i) coordination with calix[4]pyrrole. Chem Commun (Camb) 2018; 53:5610-5613. [PMID: 28484775 DOI: 10.1039/c7cc02347b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of solvent in molecular recognition systems is under-researched and often ignored, especially when the solvent is considered "non-interacting". This study concerns the role of toluene solvent in cesium(i) recognition by calix[4]pyrrole. We show that π-donor interactions bind toluene molecules onto the open face of the cation-receptor complex, thus "capping the calix." By characterizing this unusual aromatically-saturated complex, we show how "non-interacting" aromatic solvents can directly coordinate receptor-bound cations and thus influence recognition.
Collapse
Affiliation(s)
- Ross J Ellis
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | |
Collapse
|
32
|
Lee J, Waggoner NW, Polanco L, You GR, Lynch VM, Kim SK, Humphrey SM, Sessler JL. Ship in a breakable bottle: fluoride-induced release of an organic molecule from a Pr(iii)-linked molecular cage. Chem Commun (Camb) 2018; 52:8514-7. [PMID: 27273123 DOI: 10.1039/c6cc03471c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3-dimensional networked molecular cage, , has been synthesized. This macrocycle-based framework was prepared from a solvothermal reaction involving a flexible organic building block, calix[4]pyrrole dibenzoic acid (H2), and Pr(NO3)3·6H2O. A unique feature of is that it retains free calix[4]pyrrole molecules in the framework pores. Treatment with a fluoride anion source serves to destroy the network and allows release of the organic guest. The net result is a 'molecular ship' in a 'breakable bottle'.
Collapse
Affiliation(s)
- Juhoon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, TX78712-1224, USA.
| | - Nolan W Waggoner
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, TX78712-1224, USA.
| | - Luis Polanco
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, TX78712-1224, USA.
| | - Ga Rim You
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, TX78712-1224, USA.
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, TX78712-1224, USA.
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, South Korea.
| | - Simon M Humphrey
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, TX78712-1224, USA.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, TX78712-1224, USA.
| |
Collapse
|
33
|
Deng Z, Gao P, Yu L, Ma B, You Y, Chan L, Mei C, Chen T. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells. Biomaterials 2017; 129:111-126. [PMID: 28340357 DOI: 10.1016/j.biomaterials.2017.03.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 01/04/2023]
Abstract
Elucidation of the communication between metal complexes and cell membrane may provide useful information for rational design of metal-based anticancer drugs. Herein we synthesized a novel class of ruthenium (Ru) complexes containing phtpy derivatives (phtpy = phenylterpyridine), analyzed their structure-activity relationship and revealed their action mechanisms. The result showed that, the increase in the planarity of hydrophobic Ru complexes significantly enhanced their lipophilicity and cellular uptake. Meanwhile, the introduction of nitro group effectively improved their anticancer efficacy. Further mechanism studies revealed that, complex (2c), firstly accumulated on cell membrane and interacted with death receptors to activate extrinsic apoptosis signaling pathway. The complex was then transported into cell cytoplasm through transferrin receptor-mediated endocytosis. Most of the intracellular 2c accumulated in cell plasma, decreasing the level of cellular ROS, inducing the activation of caspase-9 and thus intensifying the apoptosis. At the same time, the residual 2c can translocate into cell nucleus to interact with DNA, induce DNA damage, activate p53 pathway and enhance apoptosis. Comparing with cisplatin, 2c possesses prolonged circulation time in blood, comparable antitumor ability and importantly, much lower toxicity in vivo. Taken together, this study uncovers the role of membrane receptors in the anticancer actions of Ru complexes, and provides fundamental information for rational design of membrane receptor targeting anticancer drugs.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Pan Gao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lianling Yu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Bin Ma
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuanyuan You
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chaoming Mei
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
34
|
He YC, Pan JG, Liu DS. Structural study of the novel deuterated calix[4]pyrrole complex d
12- meso-tetrakis(4-methoxyphenyl)- meso-tetramethylcalix[4]pyrrole–pyridine N-oxide–acetonitrile (1/1/1). Acta Crystallogr C 2017; 73:254-258. [DOI: 10.1107/s2053229617001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
Calix[4]pyrroles act as powerful receptors for electron-rich neutral guests and anionic guests in organic solvents. For the electron-rich neutral guest pyridine N-oxide, calix[4]pyrrole, with a deep cavity, provides an appropriate environment. The ability of calix[4]pyrrole to host binding guest molecules is the result of hydrogen bonding, π–π, C—H...π and hydrophobic interactions of the cavity. The novel title complex, C52H40D12N4O4·C5H5NO·C2H3N, based on d
12-meso-tetrakis(4-methoxyphenyl)-meso-tetramethylcalix[4]pyrrole, has been assembled using an excess of pyridine N-oxide and is the first deuterated complex of calix[4]pyrrole. A single-crystal X-ray study shows that the receptor adopts a cone conformation with the N-oxide fragment encapsulated deep within the cavity. 1H NMR spectroscopy was used to probe the molecular binding formation in CD3CN. The results are consistent with the single-crystal X-ray study in identifying that the pyridine N-oxide molecule occupies the cavity of the calix[4]pyrrole molecule. UV–vis spectroscopy revealed that the calix[4]pyrrole receptor molecules are able to form 1:1 inclusion complexes in CH3CN.
Collapse
|
35
|
Acid-catalyzed hydrogen-deuterium exchange in β-pyrrolic positions of calix[4]pyrrole at room temperature. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Abstract
Sensing of metal ions and anions is of great importance because of their widespread distribution in environmental systems and biological processes. Colorimetric and fluorescent chemosensors based on organic molecular species have been demonstrated to be effective for the detection of various ions and possess the significant advantages of low cost, high sensitivity, and convenient implementation. Of the available classes of organic molecules, porphyrin analogues possess inherently many advantageous features, making them suitable for the design of ion chemosensors, with the targeted sensing behavior achieved and easily modulated based on their following characteristics: (1) NH moieties properly disposed for binding of anions through cooperative hydrogen-bonding interactions; (2) multiple pyrrolic N atoms or other heteroatoms for selectively chelating metal ions; (3) variability of macrocycle size and peripheral substitution for modulation of ion selectivity and sensitivity; and (4) tunable near-infrared emission and good biocompatibility. In this Review, design strategies, sensing mechanisms, and sensing performance of ion chemosensors based on porphyrin analogues are described by use of extensive examples. Ion chemosensors based on normal porphyrins and linear oligopyrroles are also briefly described. This Review provides valuable information for researchers of related areas and thus may inspire the development of more practical and effective approaches for designing high-performance ion chemosensors based on porphyrin analogues and other relevant compounds.
Collapse
Affiliation(s)
- Yubin Ding
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology , Shanghai 200237, P. R. China.,Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology , Shanghai 200237, P. R. China
| |
Collapse
|
37
|
D'Acunto M, Tommasone S, Talotta C, Brancatelli G, Geremia S, Valletta E, Marino Merlo F, Macchi B, Gaeta C, Neri P, Spinella A. Installing tungsten Fischer carbene complexes into a calixarene framework. RSC Adv 2016. [DOI: 10.1039/c6ra17326h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first examples of calix[4]arene-based Fischer carbene complexes are here reported. The organometallic calixarene complexes showed a promising cytotoxicity towards human tumor cell lines.
Collapse
|
38
|
Zhang J, Liang YC, Lin X, Zhu X, Yan L, Li S, Yang X, Zhu G, Rogach AL, Yu PKN, Shi P, Tu LC, Chang CC, Zhang X, Chen X, Zhang W, Lee CS. Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy in Vitro and in Vivo. ACS NANO 2015; 9:9741-9756. [PMID: 26390118 DOI: 10.1021/acsnano.5b02513] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. Herein, a self-monitored and self-delivered photosensitizer-doped FRET nanoparticle (NP) drug delivery system (DDS) is designed for this purpose. During preparation, a donor/acceptor pair of perylene and 5,10,15,20-tetro (4-pyridyl) porphyrin (H2TPyP) is co-doped into a chemotherapeutic anticancer drug curcumin (Cur) matrix. In the system, Cur works as a chemotherapeutic agent. In the meantime, the green fluorescence of Cur molecules is quenched (OFF) in the form of NPs and can be subsequently recovered (ON) upon release in tumor cells, which enables additional imaging and real-time self-monitoring capabilities. H2TPyP is employed as a photodynamic therapeutic drug, but it also emits efficient NIR fluorescence for diagnosis via FRET from perylene. By exploiting the emission characteristics of these two emitters, the combinatorial drugs provide a real-time dual-fluorescent imaging/tracking system in vitro and in vivo, and this has not been reported before in self-delivered DDS which simultaneously shows a high drug loading capacity (77.6%Cur). Overall, our carrier-free DDS is able to achieve chemotherapy (Cur), photodynamic therapy (H2TPyP), and real-time self-monitoring of the release and distribution of the nanomedicine (Cur and H2TPyP). More importantly, the as-prepared NPs show high cancer therapeutic efficiency both in vitro and in vivo. We expect that the present real-time self-monitored and self-delivered DDS with multiple-therapeutic and multiple-fluorescent ability will have broad applications in future cancer therapy.
Collapse
Affiliation(s)
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica , Taipei, 115, Taiwan
| | | | | | | | - Shengliang Li
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | | | | | | | | - Lung-Chen Tu
- Department of Plastic Surgery, Mackay Memorial Hospital , Taipei, 10449, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan and Institute of Physics, Academia Sinica , Taipei, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan and Institute of Physics, Academia Sinica , Taipei, Taiwan
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China
| | - Xianfeng Chen
- School of Chemistry and Forensic Sciences, Faculty of Life Sciences, University of Bradford , Bradford, BD7 1DP, U.K
| | | | | |
Collapse
|
39
|
Lappano R, Rosano C, Pisano A, Santolla MF, De Francesco EM, De Marco P, Dolce V, Ponassi M, Felli L, Cafeo G, Kohnke FH, Abonante S, Maggiolini M. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models. Dis Model Mech 2015; 8:1237-46. [PMID: 26183213 PMCID: PMC4610237 DOI: 10.1242/dmm.021071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Camillo Rosano
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Assunta Pisano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | | | - Paola De Marco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Vincenza Dolce
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Marco Ponassi
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Lamberto Felli
- U.O.S. Biopolymers and Proteomics, IST-National Institute for Cancer Research, Genova 16132, Italy
| | - Grazia Cafeo
- Department of Chemical Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Marcello Maggiolini
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| |
Collapse
|
40
|
Zhang J, Li S, An FF, Liu J, Jin S, Zhang JC, Wang PC, Zhang X, Lee CS, Liang XJ. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. NANOSCALE 2015; 7:13503-10. [PMID: 26199064 PMCID: PMC4636738 DOI: 10.1039/c5nr03259h] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed to improve their drug loading capacities (which are typically <10%) and reduce their potential systemic toxicity. Therefore, the development of alternative self-carried nanodrug delivery strategies without using inert carriers is highly desirable. In this study, we developed a self-carried curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environments with drug loading capacities >78 wt%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescence "OFF-ON" activation and real-time monitoring of the Cur molecule release. In vitro and in vivo experiments clearly show that the therapeutic efficacy of the PEGylated Cur NPs is considerably better than that of free Cur. This self-carried strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and monitoring.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Shengliang Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Fei-Fei An
- Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Juan Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Shubin Jin
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Jin-Chao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, P. R. China
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington D.C., USA
| | - Xiaohong Zhang
- Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, P. R. China
| |
Collapse
|
41
|
Sun JJ, Han Y, Sun J, Yan CG. Synthesis and crystal structure of Ni, Cu complexes of 5-methyl-10,10,15,15,20,20-hexaethylcalix[4]pyrrole mono-Schiff bases. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Saha I, Lee JT, Lee CH. Recent Advancements in Calix[4]pyrrole-Based Anion-Receptor Chemistry. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403701] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Synthesis, crystal structure and complexing properties of calix[4]pyrrole 10α,20α-disubstituted Schiff bases and urea derivatives. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Cafeo G, Kohnke FH, Mezzatesta G, Profumo A, Rosano C, Villari A, White AJP. Host-Guest Chemistry of a Bis-Calix[4]pyrrole Derivative Containing atrans/cis-Switchable Azobenzene Unit with Several Aliphatic Bis-Carboxylates. Chemistry 2015; 21:5323-7. [DOI: 10.1002/chem.201406183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 01/11/2023]
|
45
|
Kim DS, Sessler JL. Calix[4]pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions. Chem Soc Rev 2015; 44:532-46. [DOI: 10.1039/c4cs00157e] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calix[4]pyrroles function as “molecular containers” as illustrated by their ability to act as carriers for the through-membrane transport of ions and as “monomers” in the construction of aggregated supramolecular constructs.
Collapse
Affiliation(s)
- Dong Sub Kim
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | |
Collapse
|
46
|
Saha I, Lee JH, Hwang H, Kim TS, Lee CH. Remarkably selective, non-linear allosteric regulation of anion binding by a tetracationic calix[4]pyrrole homodimer. Chem Commun (Camb) 2015; 51:5679-82. [DOI: 10.1039/c5cc00487j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A covalently coupled, dimeric tetra-cationic calix[4]pyrrole homodimer bearing anthracene linkers displayed distinctive cooperativity and fluoride selectivity with large positive allosterism.
Collapse
Affiliation(s)
- Indrajit Saha
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| | - Ji Hye Lee
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| | - Hyonseok Hwang
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| | - Tae Sun Kim
- Department of Chemistry Hallym University
- Chun Cheon
- 200-701 Korea
| | - Chang-Hee Lee
- Department of Chemistry
- Kangwon National University
- Chun Cheon 200-701
- Korea
| |
Collapse
|
47
|
Wang B, Wang Z, Ai F, Tang WK, Zhu G. A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition. J Inorg Biochem 2014; 142:118-25. [PMID: 25450026 DOI: 10.1016/j.jinorgbio.2014.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes.
Collapse
Affiliation(s)
- Beilei Wang
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Zhigang Wang
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Fujin Ai
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Wai Kin Tang
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Guangyu Zhu
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
48
|
Yang D, Chen W, Hu J. Design of Controlled Drug Delivery System Based on Disulfide Cleavage Trigger. J Phys Chem B 2014; 118:12311-7. [DOI: 10.1021/jp507763a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wulian Chen
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jianhua Hu
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
49
|
Han Y, Sun JJ, Wang GL, Yan CG. Synthesis and crystal structures of meso-substituted calix[4]pyrrole mono-Schiff bases and transition metal complexes. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0450-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Wu X, Sun X, Guo Z, Tang J, Shen Y, James TD, Tian H, Zhu W. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J Am Chem Soc 2014; 136:3579-88. [PMID: 24524232 DOI: 10.1021/ja412380j] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vivo monitoring of the biodistribution and activation of prodrugs is urgently required. Near infrared (NIR) fluorescence-active fluorophores with excellent photostability are preferable for tracking drug release in vivo. Herein, we describe a NIR prodrug DCM-S-CPT and its polyethylene glycol-polylactic acid (PEG-PLA) loaded nanoparticles as a potent cancer therapy. We have conjugated a dicyanomethylene-4H-pyran derivative as the NIR fluorophore with camptothecin (CPT) as the anticancer drug using a disulfide linker. In vitro experiments verify that the high intracellular glutathione (GSH) concentrations in tumor cells cause cleavage of the disulfide linker, resulting in concomitantly the active drug CPT release and significant NIR fluorescence turn-on with large Stokes shift (200 nm). The NIR fluorescence of DCM-S-CPT at 665 nm with fast response to GSH can act as a direct off-on signal reporter for the GSH-activatable prodrug. Particularly, DCM-S-CPT possesses much better photostability than ICG, which is highly desirable for in situ fluorescence-tracking of cancer chemotherapy. DCM-S-CPT has been successfully utilized for in vivo and in situ tracking of drug release and cancer therapeutic efficacy in living animals by NIR fluorescence. DCM-S-CPT exhibits excellent tumor-activatable performance when intravenously injected into tumor-bearing nude mice, as well as specific cancer therapy with few side effects. DCM-S-CPT loaded in PEG-PLA nanoparticles shows even higher antitumor activity than free CPT, and is also retained longer in the plasma. The tumor-targeting ability and the specific drug release in tumors make DCM-S-CPT as a promising prodrug, providing significant advances toward deeper understanding and exploration of theranostic drug-delivery systems.
Collapse
Affiliation(s)
- Xumeng Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology , Shanghai 200237, China
| | | | | | | | | | | | | | | |
Collapse
|