1
|
Dai W, Yang X, Lv K, Li L, Peng Y, Ma H, An Z. Modulating Heavy Atom Effect in Germylene for Persistent Room Temperature Phosphorescence. Chemistry 2024:e202401882. [PMID: 38820203 DOI: 10.1002/chem.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
It is worth but still challenging to develop the low-valent main group compounds with persistent room temperature phosphorescence (pRTP). Herein, we presented germylene-based persistent phosphors by introduction of low-valent Ge center into chromophore. A novel phosphors CzGe and its series of derivatives, namely CzGeS, CzGeSe, CzGeAu, and CzGeCu, were synthesized. Experiments and theoretical calculations reveal that the pRTP behavior were "turn on" due to the heavy atom effect of germylene. More importantly, the low-valent of oxidation state and structural traits propelled GeCz had a balance between the intersystem crossing and the shortening of lifetime caused by the heavy atoms, resulting the ultralong lifetime of 309 ms and phosphorescent quantum efficiency of 15.84 %, which is remarkable among heavy main group phosphors. This research provides valuable insights to the design of heavy atoms in phosphors and expand the applications of germylene chemistry.
Collapse
Affiliation(s)
- Wen Dai
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoang Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kaiqi Lv
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Lei Li
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Peng
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
2
|
Huang KH, Liu HH, Cheng KY, Tsai CL, Cheng YJ. Sequence-controlled alternating block polychalcogenophenes: synthesis, structural characterization, molecular properties, and transistors for bromine detection. Chem Sci 2023; 14:8552-8563. [PMID: 37592995 PMCID: PMC10430600 DOI: 10.1039/d3sc02289g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Sequence-controlled polychalcogenophenes have attracted much interest in terms of synthesis, structure and function in polymer science. For the first time, we developed a new class of alternating block conjugated copolymers denoted as poly(alt-AB)x-b-(alt-AC)y where both blocks are constituted by an alternating copolymer. 3-Hexylthiophene (S), 3-hexylselenophene (Se) and 3-hexyltellurophene (Te) are used as A, B and C units to assemble three sequence-controlled polychalcogenophenes P(SSe)b(STe), P(SSe)b(SeTe) and P(STe)b(SeTe) which are prepared by adding two different Grignard monomers in sequence to carry out Ni(dppp)Cl2-catalyzed Kumada polymerization. The molecular weight, dispersity, and length of each block (x = y) and main-chain sequence can be synthetically controlled via the catalyst transfer polycondensation mechanism. The polymer structures, i.e. alternating block main chain with high side-chain regioregularity, are unambiguously confirmed by 1H-NMR and 13C-NMR. The optical and electrochemical properties of the polymers can be systematically fine-tuned by the composition and ratio of the chalcogenophenes. From GIWAXS measurements, all the polymers exhibited predominantly edge-on orientations, indicating that the packing behaviors of the alternating block polychalcogenophenes with high regioregularity are inherited from the highly crystalline P3HT. P(SSe)b(STe) exhibited a hole OFET mobility of 1.4 × 10-2 cm2 V-1 s-1, which represents one of the highest values among the tellurophene-containing polychalcogenophenes. The tellurophene units in the polymers can undergo Br2 addition to form the oxidized TeBr2 species which results in dramatically red-shifted absorption due to the alternating arrangement to induce strong charge transfer character. The OFET devices using the tellurophene-containing polychalcogenophenes can be applied for Br2 detection, showing high sensitivity, selectivity and reversibility.
Collapse
Affiliation(s)
- Kuo-Hsiu Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Huai-Hsuan Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Kuang-Yi Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Chia-Lin Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
- Center for Emergent Functional Matter Science, National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| |
Collapse
|
3
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
4
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox‐Active Heteroatom‐Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bruno T. Luppi
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Abhishek V. Muralidharan
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Nils Ostermann
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - I T. Cheong
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Inke Siewert
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - Eric Rivard
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
5
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox-Active Heteroatom-Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2021; 61:e202114586. [PMID: 34826183 DOI: 10.1002/anie.202114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/11/2022]
Abstract
The discovery of metallic conductivity in polyacetylene [-HC=CH-]n upon doping represents a landmark achievement. However, the insolubility of polyacetylene and a dearth of methods for its chemical modification have limited its widespread use. Here, we employ a ring-opening metathesis polymerization (ROMP) protocol to prepare functionalized polyacetylenes (fPAs) bearing: (1) electron-deficient boryl (-BR2 ) and phosphoryl (-P(O)R2 ) side chains; (2) electron-donating amino (-NR2 ) groups, and (3) ring-fused 1,2,3-triazolium units via strain-promoted Click chemistry. These functional groups render most of the fPAs soluble and can lead to intense light absorption across the visible to near-IR region. Also, the presence of redox-active boryl and amino groups leads to opposing near-IR optical responses upon (electro)chemical reduction or oxidation. Some of the resulting fPAs show greatly enhanced air stability when compared to known polyacetylenes. Lastly, these fPAs can be cross-linked to yield network materials with the full retention of optical properties.
Collapse
Affiliation(s)
- Bruno T Luppi
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Abhishek V Muralidharan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Nils Ostermann
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - I T Cheong
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Inke Siewert
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
6
|
Cheng S, Zhao R, Seferos DS. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology. Acc Chem Res 2021; 54:4203-4214. [PMID: 34726058 DOI: 10.1021/acs.accounts.1c00556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the discovery of conductive poly(acetylene), the study of conjugated polymers has remained an active and interdisciplinary frontier between polymer chemistry, polymer physics, computation, and device engineering. One of the ultimate goals of polymer science is to reliably synthesize structures, similar to small molecule synthesis. Kumada catalyst-transfer polymerization (KCTP) is a powerful tool for synthesizing conjugated polymers with predictable molecular weights, narrow dispersities, specific end groups, and complex backbone architectures. However, expanding the monomer scope beyond the well-studied 3-alkylthiophenes to include electron-deficient and complex heterocycles has been difficult. Revisiting the successful applications of KCTP can help us gain new insight into the CTP mechanisms and thus inspire breakthroughs in the controlled polymerization of challenging π-conjugated monomers.In this Account, we highlight our efforts over the past decade to achieve controlled synthesis of homopolymers (p-type and n-type), copolymers (diblock and statistical), and monodisperse high oligomers. We first give a brief introduction of the mechanism and state-of-the-art of KCTP. Since the extent of polymerization control is determined by steric and electronic effects of both the catalyst and monomer, the polymerization can be optimized by modifying monomer and catalyst structures, as well as finding a well-matched monomer-catalyst system. We discuss the effects of side-chain steric hindrance and halogens in the context of heavy atom substituted monomers. By moving the side-chain branch point one carbon atom away from the heterocycle to alleviate steric crowding and stabilize the catalyst resting state, we were able to successfully control the polymerization of new tellurophene monomers. Inspired by innocent role of the sterically encumbered 2-transmetalated 3-alkylthiophene monomer, we introduce the treatment of hygroscopic monomers with a bulky Grignard compound as a water-scavenger for the improved synthesis of water-soluble conjugated polymers. For challenging electron-deficient monomers, we discuss the design of new Ni(II)diimine catalysts with electron-donating character which enhance the stability of the association complex between the catalyst and the growing polymer chain, resulting in the quasi-living synthesis of n-type polymers. Beyond n-type homopolymers, the Ni(II)diimine catalysts are also capable of producing electron-rich and electron-deficient diblock and statistical copolymers. We discuss how density functional theory (DFT) calculations elucidate the role of catalyst steric and electronic effects in controlling the synthesis of π-conjugated polymers. Moreover, we demonstrate the synthesis of monodisperse high oligomers by temperature cycling, which takes full advantage of the unique character of KCTP in that it proceeds through distinct intermediates that are not reactive. The insight we gained thus far leads to the first example of isolated living conjugated polymer chains prepared by a standard KCTP procedure, with general applicability to different monomers and catalytic systems. In summarizing a decade of innovation in KCTP, we hope this Account will inspire future development in the field to overcome key challenges including the controlled synthesis of electron-deficient heterocycles, complex and high-performance systems, and degradable and recyclable materials as well as cutting-edge catalyst design.
Collapse
Affiliation(s)
- Susan Cheng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ruyan Zhao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
7
|
Varni AJ, Kawakami M, Kramer SN, Rice M, Geib SJ, Peteanu LA, Kowalewski T, Noonan KJT. Investigating the impact of regiochemistry in ester functionalized polyfurans. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Anthony J. Varni
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Manami Kawakami
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Stephanie N. Kramer
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Megan Rice
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Steven J. Geib
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Linda A. Peteanu
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Tomasz Kowalewski
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Kevin J. T. Noonan
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
8
|
Fritze L, Fest M, Helbig A, Bischof T, Krummenacher I, Braunschweig H, Finze M, Helten H. Boron-Doped α-Oligo- and Polyfurans: Highly Luminescent Hybrid Materials, Color-Tunable through the Doping Density. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Fest
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Bischof
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
9
|
de Salles HD, Coelho FL, Paixão DB, Barboza CA, da Silveira Rampon D, Rodembusch FS, Schneider PH. Evidence of a Photoinduced Electron-Transfer Mechanism in the Fluorescence Self-quenching of 2,5-Substituted Selenophenes Prepared through In Situ Reduction of Elemental Selenium in Superbasic Media. J Org Chem 2021; 86:10140-10153. [PMID: 34283602 DOI: 10.1021/acs.joc.1c00874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of new 2,5-disubstituted selenophene derivatives are described from elemental selenium and 1,3-diynes in superbasic media. The activation of elemental selenium in a KOH/DMSO system allows cyclization with conjugated diynes at room temperature. The cyclization reaction is extended to a broad range of functional groups, for which photophysics were experimentally and theoretically investigated. The selenophene derivatives present absorption maxima in the UV-A region and fluorescence emission in the violet-to-blue region. Fluorescence decay profiles were obtained showing a monoexponential decay with fast fluorescence lifetimes (∼0.118 ns), as predicted by the Strickler-Berg relations. In general, in both investigations, no dependence on the solvent polarity on the absorption and emission maxima location was observed. On the other hand, solvents and substituents are shown to play a role in the fluorescence quantum yield values. In addition, a fluorescence self-quenching behavior could be observed, related to a photoinduced electron-transfer mechanism. Theoretical calculations performed at the MP2/ADC(2)/cc-pVDZ level of theory were performed in order to investigate the photophysical features of this series of selenophene derivatives.
Collapse
Affiliation(s)
- Helena Domingues de Salles
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Lange Coelho
- Instituto de Química, Universidade Federal de Goiás (UFG), Campus Samambaia, 74690-900 Goaînia, Goiás, Brazil
| | - Douglas Bernardo Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Daniel da Silveira Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990 Curitiba, Paraná, Brazil
| | - Fabiano Severo Rodembusch
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Henrique Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Topolskaia V, Pollit AA, Cheng S, Seferos DS. Trends in Conjugated Chalcogenophenes: A Theoretical Study. Chemistry 2021; 27:9038-9043. [PMID: 34000075 DOI: 10.1002/chem.202100270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/08/2022]
Abstract
Heavy atom substitution in chalcogenophenes is a versatile strategy for tailoring and ultimately improving conjugated polymer properties. While thiophene monomers are commonly implemented in polymer designs, relatively little is known regarding the molecular properties of the heavier chalcogenophenes. Herein, we use density functional theory (DFT) calculations to examine how group 16 heteroatoms, including the radioactive polonium, affect polychalcogenophene properties including bond length, chain twisting, aromaticity, and optical properties. Heavier chalcogenophenes are more quinoidal in character and consequently have reduced band gaps and larger degrees of planarity. We consider both the neutral and radical cationic species. Upon p-type doping, bond length rearrangement is indicative of a more delocalized electronic structure, which combined with optical calculations is consistent with the polaron-model of charge storage on conjugated polymer chains. A better understanding of the properties of these materials at their molecular levels will inevitably be useful in material design as the polymer community continues to explore more main group containing polymers to tackle issues in electronic devices.
Collapse
Affiliation(s)
- Valentina Topolskaia
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Adam A Pollit
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Susan Cheng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
11
|
Dhiman A, Giribabu L, Trivedi R. π-Conjugated Materials Derived From Boron-Chalcogenophene Combination. A Brief Description of Synthetic Routes and Optoelectronic Applications. CHEM REC 2021; 21:1738-1770. [PMID: 33844422 DOI: 10.1002/tcr.202100039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Functional materials composed of Boron-chalcogenophene conjugates have emerged as promising ensemble featuring commendable optoelectronic properties. This review describes the categories, synthetic routes and optoelectronic applications of a range of boron-chalcogenophene conjugates. Conjugation and linking of different types of tri- and tetra-coordinated boron moieties with chalcogenophenes have remained an important strategy for constructing a range of functional materials. Synthetic protocols have been devised to efficiently prepare such chemically robust conjugates, often exhibiting a myriad of photophysical properties, redox capabilities and also solid-state behaviors. Tin-boron and silicon-boron exchange protocols have been efficiently adapted to access these boron-chalcogenophenes. Few other commonly used methods namely, hydroboration of alkynes as well as electrophilic borylations are also mentioned. The chemical and electronic properties of such boron-chalcogenophene conjugates are directly influenced by the strong Lewis acid character of trivalent boranes which can further alter the intra- and inter- molecular Lewis acid-base interactions. Apart from the synthetic protocols, recent advances in the application of these boron-chalcogenophene conjugates towards analyte sensing, organic electronics, molecular switches and several other aspects will be discussed in this review.
Collapse
Affiliation(s)
- Ankita Dhiman
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
12
|
Braun CA, Ferguson MJ, Rivard E. Tellura(benzo)bithiophenes: Synthesis, Oligomerization, and Phosphorescence. Inorg Chem 2021; 60:2672-2679. [PMID: 33481578 DOI: 10.1021/acs.inorgchem.0c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of planar π-extended Te-containing heteroacenes, termed tellura(benzo)bithiophenes, were synthesized. This new structural class of heterocycle features a tellurophene ring fused to a benzobithiophene unit with aromatic side groups (either -C6H4iPr or -C6H4OCH3) positioned at the 2- and 5-positions of the tellurophene moiety. Although attempts to enhance molecular rigidity and extend ring-framework π-delocalization in a cumenyl (-C6H4iPr)-capped tellura(benzo)bithiophene led to oxidation (and Te-C bond scission) to form a diene-one, the formation of an oligomeric tellura(benzo)bithiophene was possible via Kumada catalyst-transfer polycondensation (KCTP). Furthermore, one tellura(benzo)bithiophene derivative exhibits orange-red phosphorescence at room temperature in air when incorporated into a poly(methyl methacrylate) host; accompanying TD-DFT computations provided insight into a potential mechanism for the observed phosphorescence.
Collapse
Affiliation(s)
- Christina A Braun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
13
|
Ji JM, Kim CK, Kim HK. Well-dispersed Te-doped mesoporous carbons as Pt-free counter electrodes for high-performance dye-sensitized solar cells. Dalton Trans 2021; 50:9399-9409. [PMID: 34223586 DOI: 10.1039/d0dt04372a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tellurium-doped carbon nanomaterial (Te-MC(P)) was newly developed by the soft-templated carbonization of the PAN-b-PBA copolymer with poly(3-hexyltellurophene). Te-MC(P) was characterized with various characterization methods, including the nitrogen sorption isotherm measurement (BET), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS), which reveal that the Te atoms are homogeneously dispersed in the three-dimensional hierarchical, graphite-like mesoporous carbon matrix with a Te doping level of 0.27 atom %. Based on the characterization results, the electrocatalytic ability of Te-MC(P) was evaluated by using a symmetrical dummy cell test with both Co(bpy)32+/3+ (bpy = 2,2'-bipyridine) and I-/I3- redox electrolytes as counter electrodes (CEs). The Te-MC(P) CEs showed remarkably lower charge-transfer resistance (Rct) values by approximately 10 times in the electrochemical impedance spectroscopy (EIS) measurement, compared to the counterpart platinum (Pt) and the tellurium-based material (Te-MC(A)), prepared with a telluric acid precursor that has a lower Te doping level of 0.15 at%. As a result, the excellent electrocatalytic ability of Te-MC(P) resulted in the improvement of photovoltaic performance. The power conversion efficiencies (PCEs) of Te-MC(P)-based dye-sensitized solar cells (DSSCs) were 12.69% for the Co(bpy)32+/3+ redox electrolyte with the SGT-021 porphyrin dye and 9.73% for the I-/I3- redox electrolyte with the N719 ruthenium dye. Furthermore, Te- MC(P) CEs exhibited remarkable electrochemical stability in the two redox electrolytes. These results could suggest that the Te-MC(P) CE is one of the best promising alternatives to Pt CEs as a low-cost, highly stable and efficient electrocatalytic CE for practical applications.
Collapse
Affiliation(s)
- Jung-Min Ji
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Chang Ki Kim
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Hwan Kyu Kim
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| |
Collapse
|
14
|
Yin X, Liu J, Jäkle F. Electron‐Deficient Conjugated Materials via p–π* Conjugation with Boron: Extending Monomers to Oligomers, Macrocycles, and Polymers. Chemistry 2020; 27:2973-2986. [DOI: 10.1002/chem.202003481] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaodong Yin
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
- Key Laboratory of Cluster Science Ministry of Education of China Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
15
|
Mackenzie HK, Rawe BW, Samedov K, Walsgrove HTG, Uva A, Han Z, Gates DP. A Smart Phosphine–Diyne Polymer Displays “Turn-On” Emission with a High Selectivity for Gold(I/III) Ions. J Am Chem Soc 2020; 142:10319-10324. [DOI: 10.1021/jacs.0c04330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harvey K. Mackenzie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Benjamin W. Rawe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Kerim Samedov
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Henry T. G. Walsgrove
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Azalea Uva
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zeyu Han
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Derek P. Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
16
|
Sonawane AD, Shimozuma A, Udagawa T, Ninomiya M, Koketsu M. Synthesis and photophysical properties of selenopheno[2,3-b]quinoxaline and selenopheno[2,3-b]pyrazine heteroacenes. Org Biomol Chem 2020; 18:4063-4070. [PMID: 32418998 DOI: 10.1039/d0ob00718h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we report the novel synthesis of three different heterocycles, namely 2-arylselenopheno[2,3-b]quinoxaline, 3-(aryl/alkylselanyl)-2-arylselenopheno[2,3-b]quinoxaline and 6-phenyl-7-(arylselanyl)selenopheno[2,3-b]pyrazine derivatives, from the corresponding 2,3-dichloroquinoxaline and 2,3-dichloropyrazine derivatives. Furthermore, photophysical properties were investigated to study the effect of heteroatoms on UV-absorbance and fluorescence properties.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
17
|
Li Y, Gong Y, Che Y, Xu X, Yu L, Peng Q. Propeller-Like All-Fused Perylene Diimide Based Electron Acceptors With Chalcogen Linkage for Efficient Polymer Solar Cells. Front Chem 2020; 8:350. [PMID: 32411672 PMCID: PMC7201106 DOI: 10.3389/fchem.2020.00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
Perylene diimide (PDI) is a widely explored chromophore for constructing non-fullerene acceptors (NFAs) for polymer solar cells (PSCs). The advantage of using PDI derivatives lies in the readily availability of PDI unit which largely reduces the synthesis cost and improves material stability. Indeed, the recent development of high performance NFAs shed light on the feasibility of the commercialization, but the complex synthesis and poor stability of the top performing NFAs cast a shadow on this bright future. Our previous work has demonstrated a propeller-like structure with three PDIs lined to a benzene center core with a C-C bond which prevented the PDIs to aggregate into undesired large crystals. In this work, we designed and synthesized three new propeller-like PDI derivatives with extra chalcogen linkages between the PDIs and the center core to form all-fused rigid structures. These molecules showed more suitable absorption range than that of their unfused counterparts when blend with donor polymer PTB7-Th. Comparing between the molecules with extra oxygen, sulfur or selenium linkages, the sulfur-based BTT-PDI outperformed the others due to its higher photon absorption and charge transport abilities. This work demonstrated the great potential of PDI derivatives for PSC applications and explored the influences of linkage type on the fused PDI derivatives, which provided a useful tuning knob for molecular design of PDI-based NFAs in the future.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yufei Gong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yongjie Che
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xiaopeng Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Liyang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qiang Peng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Hicks GEJ, Jarrett-Wilkins CN, Panchuk JR, Manion JG, Seferos DS. Oxidation promoted self-assembly of π-conjugated polymers. Chem Sci 2020; 11:6383-6392. [PMID: 34094104 PMCID: PMC8159418 DOI: 10.1039/d0sc00806k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Self-assembly is an attractive strategy for organizing molecules into ordered structures that can span multiple length scales. Crystallization Driven Self-Assembly (CDSA) involves a block copolymer with a crystallizable core-forming block and an amorphous corona-forming block that aggregate into micelles with a crystalline core in solvents that are selective for the corona block. CDSA requires core- and corona-forming blocks with very different solubilities. This hinders its use for the self-assembly of purely π-conjugated block copolymers since blocks with desirable optoelectronic properties tend to have similar solubilities. Further, this approach is not readily reversible, precluding stimulus-responsive assembly and disassembly. Here, we demonstrate that selective oxidative doping of one block of a fully π-conjugated block copolymer promotes the self-assembly of redox-responsive micelles. Heteroatom substitution in polychalcogenophenes enables the modulation of the intrinsic polymer oxidation potential. We show that oxidized micelles with a narrow size distribution form spontaneously and disassemble in response to a chemical reductant. This method expands the scope of π-conjugated polymers that can undergo controlled self-assembly and introduces reversible, redox-responsive self-assembly of π-conjugated polymers.
Collapse
Affiliation(s)
- Garion E J Hicks
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Charles N Jarrett-Wilkins
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jenny R Panchuk
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Joseph G Manion
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Dwight S Seferos
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
19
|
Sonawane AD, Sonawane RA, Win KMN, Ninomiya M, Koketsu M. In situ air oxidation and photophysical studies of isoquinoline-fused N-heteroacenes. Org Biomol Chem 2020; 18:2129-2138. [PMID: 32134103 DOI: 10.1039/d0ob00375a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient, metal free and environment friendly synthesis of isoquinoline-fused benzimidazole has been developed via in situ air oxidation. Also, syntheses of isoquinoline-fused quinazolinone heteroacenes were successfully achieved. The synthesized isoquinoline-fused benzimidazole and isoquinoline-fused quinazolinone derivatives showed λmax, Fmax and Φf values in the ranges 356-394 nm, 403-444 nm and 0.063-0.471, respectively, in CHCl3.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
20
|
Liu HH, Liang WW, Lai YY, Su YC, Yang HR, Cheng KY, Huang SC, Cheng YJ. Synthesis of side-chain regioregular and main-chain alternating poly(bichalcogenophene)s and an ABC-type periodic poly(terchalcogenophene). Chem Sci 2020; 11:3836-3844. [PMID: 34122851 PMCID: PMC8152668 DOI: 10.1039/d0sc00404a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared. Grignard metathesis of SSeI2, STeI2, SeTeI2, and SSeTeI2 occurred regioselectively at the lighter chalcogenophene site because of its relatively lower electron density and less steric bulk. Nickel-catalyzed Kumada catalyst-transfer polycondensation of these Mg species provided a new class of side-chain regioregular and main-chain AB-type alternating poly(bichalcogenophene)s-PSSe, PSTe, and PSeTe-through a chain-growth mechanism. The ring-walking of the Ni catalyst from the lighter to the heavier chalcogenophene facilitated subsequent oxidative addition, thereby suppressing the possibility of chain-transfer or chain-termination. More significantly, the Ni catalyst could walk over the distance of three rings (ca. 1 nm)-from a thiophene unit via a selenophene unit to a tellurophene unit-to form PSSeTe, the first ABC-type regioregular and periodic poly(terchalcogenophene) comprising three different types of 3-hexylchalcogenophenes.
Collapse
Affiliation(s)
- Huai-Hsuan Liu
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Wei-Wei Liang
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Yu-Ying Lai
- Institute of Polymer Science and Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Chen Su
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Hau-Ren Yang
- Institute of Polymer Science and Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Yi Cheng
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Sheng-Cih Huang
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
| |
Collapse
|
21
|
Rivard E. Metallacycle Transfer and its Link to Light-Emitting Materials and Conjugated Polymers. CHEM REC 2019; 20:640-648. [PMID: 31833670 DOI: 10.1002/tcr.201900095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Indexed: 02/05/2023]
Abstract
Major advances in optoelectronic technologies (e. g., solar cells, organic light-emitting diodes, etc…) are prefaced by the discovery of new synthetic methodologies. In this review, the key role of the Fagan-Nugent reaction in enabling our team (and others) to gain access to new building blocks for luminescent materials and conjugated polymers bearing p-block elements will be described. The Fagan-Nugent reaction is extremely powerful as a synthetic tool since the efficient zirconium-element atom exchange involved affords a wide range of unsaturated inorganic heterocycles of controllable composition and function.
Collapse
Affiliation(s)
- Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
22
|
Wu X, Lv L, Hu L, Shi Q, Peng A, Huang H. The Synthesis and Optoelectronic Applications for Tellurophene-Based Small Molecules and Polymers. Chemphyschem 2019; 20:2600-2607. [PMID: 31179624 DOI: 10.1002/cphc.201900386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/24/2019] [Indexed: 12/25/2022]
Abstract
Tellurophene-based small molecules and polymers have received great attentions owing to their applications in thin-film transistors, solar cells, and sensors. This article reviews the current progress of the synthesis and applications of tellurophene-based small molecules and polymers. The physicochemical properties and optoelectronic applications of tellurophene-based materials are summarized and discussed. In the end, the challenges and outlook of tellurophene-based materials are presented.
Collapse
Affiliation(s)
- Xiaoxi Wu
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby. Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.Sino-Danish center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lv
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lifang Hu
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aidong Peng
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Jiang M, Guo J, Liu B, Tan Q, Xu B. Synthesis of Tellurium-Containing π-Extended Aromatics with Room-Temperature Phosphorescence. Org Lett 2019; 21:8328-8333. [PMID: 31560555 DOI: 10.1021/acs.orglett.9b03106] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of tellurium-embedded π-extended aromatics from tellurium powder and readily available cyclic diaryliodonium salts has been developed. The versatility of this method has been demonstrated by the synthesis of various functionalized dibenzotellurophenes (DBTe's), a ladder-type π-system, and a heterosumanene. These compounds demonstrated good air/moisture stability and high thermal stability. Remarkably, many DBTe's exhibited interesting tunable room-temperature phosphorescence (RTP) in the solid state.
Collapse
Affiliation(s)
- Mengjing Jiang
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Jimin Guo
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
24
|
Hupf E, Tsuchiya Y, Moffat W, Xu L, Hirai M, Zhou Y, Ferguson MJ, McDonald R, Murai T, He G, Rivard E. A Modular Approach to Phosphorescent π-Extended Heteroacenes. Inorg Chem 2019; 58:13323-13336. [PMID: 31503465 DOI: 10.1021/acs.inorgchem.9b02213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A modular route to previously inaccessible classes of ring-fused π-extended heteroacenes bearing the heavy inorganic element tellurium (Te) is presented. These new materials can be viewed as n-doped analogs of molecular graphene subunits that exhibit color tunable visible light phosphorescence in the solid state and in the presence of air. The general mechanism of phosphorescence in these systems was probed experimentally and computationally via time-dependent density functional theory (TD-DFT). The incorporation of Te into π-extended oligoacene frameworks was achieved by an efficient Zr/Te transmetalation protocol; related zirconium-element exchange reactions have been used to prepare both electron-rich and electron-deficient heterocycles containing different elements from throughout the p-block. Therefore, the current study provides a clear path to incorporate inorganic elements into heteroacenes of greater complexity and side group selectivity compared to existing synthetic routes.
Collapse
Affiliation(s)
- Emanuel Hupf
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Yuki Tsuchiya
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada.,Department of Chemistry and Biomolecular Science, Faculty of Engineering , Gifu University , Yanagido , Gifu 501-1193 , Japan
| | - Wayne Moffat
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Letian Xu
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi Province 710054 , China
| | - Masato Hirai
- Department of Chemistry, Graduate School of Science, Institute of Transformative Bio-Molecules (WPI-ITbM), and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Furo, Chikusa, Nagoya 464-8602 , Japan
| | - Yuqiao Zhou
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Michael J Ferguson
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Robert McDonald
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering , Gifu University , Yanagido , Gifu 501-1193 , Japan
| | - Gang He
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi Province 710054 , China
| | - Eric Rivard
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
25
|
Braun CA, Martinek N, Zhou Y, Ferguson MJ, Rivard E. Using boryl-substitution and improved Suzuki-Miyaura cross-coupling to access new phosphorescent tellurophenes. Dalton Trans 2019; 48:10210-10219. [PMID: 31192334 DOI: 10.1039/c9dt02095k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new di(isopropoxy)boryl -B(OiPr)2 tellurophene precursor is described, from which several previously inaccessible phosphorescent borylated tellurophenes are formed via exchange of the -OiPr groups. One such tellurophene Mes(iPrO)B-Te-6-B(OiPr)Mes, bearing a sterically encumbered mesityl (Mes) substituent at each boron center, exhibits bright yellow-orange phosphorescence in the solid state at room temperature and in the presence of the known quencher O2. Furthermore, Suzuki-Miyaura cross-coupling between the newly prepared borylated tellurophenes and the test substrate 2-bromothiophene was examined with the pre-catalyst Cl(XPhos)Pd(aminobiphenyl). While more electron deficient boryl groups such as catecholatoboryl (-Bcat) yield significant protodeboronation in place of productive C-C bond formation, efficient formation of the desired thiophene-capped tellurophene thienyl-Te-6-thienyl was noted from tellurophenes bearing the readily accessible pinacolatoboryl (-Bpin) and 1,8-naphthalenediaminatoboryl (-Bdan) functional groups. These findings open the door for the efficient synthesis of aryl tellurophenes and polytellurophenes via the ubiquitous Suzuki-Miyaura coupling of borylated tellurophenes, which was previously hampered by protodeboronation.
Collapse
Affiliation(s)
- Christina A Braun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Nicole Martinek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| |
Collapse
|
26
|
Sonawane AD, Kubota Y, Koketsu M. Iron-Promoted Intramolecular Cascade Cyclization for the Synthesis of Selenophene-Fused, Quinoline-Based Heteroacenes. J Org Chem 2019; 84:8602-8614. [DOI: 10.1021/acs.joc.9b01061] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
27
|
Takahashi K, Shimo S, Hupf E, Ochiai J, Braun CA, Torres Delgado W, Xu L, He G, Rivard E, Iwasawa N. Self‐Assembly of Macrocyclic Boronic Esters Bearing Tellurophene Moieties and Their Guest‐Responsive Phosphorescence. Chemistry 2019; 25:8479-8483. [DOI: 10.1002/chem.201901319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Kohei Takahashi
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Shunsuke Shimo
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Emanuel Hupf
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Junichi Ochiai
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Christina A. Braun
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - William Torres Delgado
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Letian Xu
- Frontier Institute of Science and TechnologyXi'an Jiaotong University Xian Shaanxi Province 710054 P.R. China
| | - Gang He
- Frontier Institute of Science and TechnologyXi'an Jiaotong University Xian Shaanxi Province 710054 P.R. China
| | - Eric Rivard
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
28
|
Mahdavifar Z, Tajdinan S, Shakerzadeh E. Exploring the electro‐optical properties of conjugated polymers based on oligo‐selenophene and oligo(3,4‐ethylenedioxyselenophene). Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zabiollah Mahdavifar
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Samira Tajdinan
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Ehsan Shakerzadeh
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
29
|
Pahlavanlu P, Seferos DS. Navigating the chalcogens: Sulfur substitution for n-type organic materials. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1602625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Paniz Pahlavanlu
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Manion JG, Panchuk JR, Seferos DS. Applying Heteroatom Substitution in Organic Photovoltaics. CHEM REC 2019; 19:1113-1122. [PMID: 30793821 DOI: 10.1002/tcr.201800182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/24/2019] [Indexed: 11/07/2022]
Abstract
Poly(3-alkylthiophene) (P3AT) has been a central focus of research on organic photovoltaics (OPVs) for well over a decade. Due to their controlled synthesis P3ATs have proven to be a vital model system for developing an understanding of the effects of polymer structure on optoelectronic properties and blend morphology in bulk heterojunction OPVs. Similar to their thiophene counterparts, selenophene and tellurophene can be polymerized in a controlled manner. As single atom substitution results in significant differences in absorption, charge transport and self-assembly these model systems provide a unique opportunity to probe fundamental structure-property relationships. In this account, we provide an overview of our work on copolymers of thiophene and selenophene and examine how the optoelectronic and morphological behavior of these materials can be strategically adjusted through polymer design. We also highlight recent developments on poly(3-alkyltellurophene) and comment on its future in fundamental and applied studies.
Collapse
Affiliation(s)
- Joseph G Manion
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, CAN M5S 3H6
| | - Jenny R Panchuk
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, CAN M5S 3H6
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, CAN M5S 3H6
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, CAN M5S 3E5
| |
Collapse
|
31
|
Vidal F, Jäkle F. Functional Polymeric Materials Based on Main‐Group Elements. Angew Chem Int Ed Engl 2019; 58:5846-5870. [DOI: 10.1002/anie.201810611] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
32
|
Vidal F, Jäkle F. Funktionelle polymere Materialien auf der Basis von Hauptgruppen‐Elementen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810611] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
33
|
Wang S, Shang J, Yan C, Wang W, Yuan C, Zhang HL, Shao X. Trichalcogenasumanenes containing various chalcogen atoms: synthesis, structure, properties, and chemical reactivity. Org Chem Front 2019. [DOI: 10.1039/c8qo01220b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trichalcogenasumanenes containing two kinds of chalcogen are synthesized. The majority chalcogen governs the optical properties and the heavier chalcogen governs the chemical reactivity.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jihai Shang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
34
|
Luppi BT, McDonald R, Ferguson MJ, Sang L, Rivard E. Rapid access to (cycloalkyl)tellurophene oligomer mixtures and the first poly(3-aryltellurophene). Chem Commun (Camb) 2019; 55:14218-14221. [DOI: 10.1039/c9cc07512g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New poly- and oligotellurophenes bearing cycloalkyl and 3-aryl substituents have been reported, with narrow band gaps approaching 1.3 eV observed.
Collapse
Affiliation(s)
- Bruno T. Luppi
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | | - Lingzi Sang
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Eric Rivard
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
35
|
Ye S, Janasz L, Zajaczkowski W, Manion JG, Mondal A, Marszalek T, Andrienko D, Müllen K, Pisula W, Seferos DS. Self-Organization and Charge Transport Properties of Selenium and Tellurium Analogues of Polythiophene. Macromol Rapid Commun 2018; 40:e1800596. [PMID: 30417480 DOI: 10.1002/marc.201800596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/03/2018] [Indexed: 11/10/2022]
Abstract
A series of conjugated polymers comprising polythiophene, polyselenophene, and polytellurophene with branched 3,7-dimethyloctyl side chains, well-matched molecular weight, dispersity, and regioregularity is synthesized. The ionization potential is found to vary from 5.14 to 5.32 eV, with polytellurophene having the lowest potential. Field-effect transistors based on these materials exhibit distinct hole transport mobility that varies by nearly three orders of magnitude, with polytellurophene having the highest mobility (2.5 × 10-2 cm² V-1 s-1 ). The large difference in mobility demonstrates the significant impact of heteroatom substitution. Although the series of polymers are very similar in structure, their solid-state properties are different. While the thin film microstructure of polythiophene and polyselenophene is identical, polytellurophene reveals globular features in the film topography. Polytellurophenes also appear to be the least crystalline, even though their charge transport properties are superior to other samples. The torsional barrier and degree of planarity between repeat units increase as one moves down group-16 elements. These studies show how a single atom in a polymer chain can have a substantial influence on the bulk properties of a material, and that heavy group-16 atoms have a positive influence on charge transport properties when all other variables are kept unchanged.
Collapse
Affiliation(s)
- Shuyang Ye
- Lash Miller Chemical Laboratory, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Lukasz Janasz
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116,, 90-924, Lodz, Poland
| | | | - Joseph G Manion
- Lash Miller Chemical Laboratory, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Anirban Mondal
- Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116,, 90-924, Lodz, Poland.,Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Wojciech Pisula
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116,, 90-924, Lodz, Poland.,Max Planck Institute for Polymer Research, Ackermannweg 10,, 55128, Mainz, Germany
| | - Dwight S Seferos
- Lash Miller Chemical Laboratory, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
36
|
Hoover GC, Ham J, Tang C, Carrera EI, Seferos DS. Synthesis and self-assembly of thiol-modified tellurophenes. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An asymmetric thiol-modified tellurophene was designed and synthesized, and the ability of the compound to form a monolayer on a gold electrode was confirmed. The surface-active tellurophene was synthesized using Cadiot–Chodkiewicz coupling followed by ring closing and thiol modification. The tellurophene compound forms a monolayer on gold surfaces from a concentrated solution within 24 h. The ability of the compound to conjugate to gold is confirmed by X-ray photoelectron spectroscopy (XPS). A surface blocking experiment was used to evaluate the extent of formation of a monolayer on a gold electrode.
Collapse
Affiliation(s)
- Gabrielle C. Hoover
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jennifer Ham
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Connie Tang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Elisa I. Carrera
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
37
|
Casola KK, Gomes MR, Back DF, Zeni G. Electrophilic Cyclization Involving Carbon-Selenium/Carbon-Halide Bond Formation: Synthesis of 3-Substituted Selenophenes. J Org Chem 2018; 83:6706-6718. [PMID: 29847130 DOI: 10.1021/acs.joc.8b01136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The butylselanyl propargyl alcohols reacted with iodine to afford 3-iodoselenophenes. The change of nucleophile position from propargyl to homopropargyl was crucial for the aromatization and formation of selenophene rings. The experiments revealed that bromine and N-bromosuccinimide were not able to cyclize the butylselanyl propargyl alcohols; however, when the bromine source was copper(II) bromide the corresponding 3-bromoselenophenes were obtained in good yields. In addition, the reaction of butylselanyl propargyl alcohols with diorganyl diselenides catalyzed by copper(I) iodide gave the 3-(organoselanyl)selenophenes. The reaction took place with aromatic rings substituted by either electron-donating or -withdrawing groups in the alkynes and propargyl positions. The steric effects of substituents were dominant in determining the yields, whereas electronic effects had only a minor influence. Furthermore, by monitoring the reaction by 1H NMR, we were able to identify the key intermediate, which supported the elaboration of a proposed reaction mechanism. The 3-iodoselenophenes prepared allowed the synthesis of multifunctional selenophenes via application in metal-catalyzed coupling reactions, such as Sonogashira, Ullmann and Suzuki type reactions.
Collapse
|
38
|
Torres Delgado W, Braun CA, Boone MP, Shynkaruk O, Qi Y, McDonald R, Ferguson MJ, Data P, Almeida SKC, Aguiar ID, de Souza GLC, Brown A, He G, Rivard E. Moving Beyond Boron-Based Substituents To Achieve Phosphorescence in Tellurophenes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12124-12134. [PMID: 28968055 DOI: 10.1021/acsami.7b11628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Previous research in our group showed that tellurophenes with pinacolboronate (BPin) units at the 2- and/or 5-positions displayed efficient phosphorescence in the solid state, both in the presence of oxygen and water. In this current study, we show that luminescence from a tellurophene is possible when various aryl-based substituents are present, thus greatly expanding the family of known (and potentially accessible) Te-based phosphors. Moreover, for the green phosphorescent perborylated tellurium heterocycle, 2,3,4,5-TeC4BPin4 (4BTe), oxygen-mediated quenching of phosphorescence is an important contributor to the lack of emission in solution (when exposed to air); thus, this system displays aggregation-enhanced emission (AEE). These discoveries should facilitate the future design of color tunable tellurium-based luminogens.
Collapse
Affiliation(s)
- William Torres Delgado
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Christina A Braun
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Michael P Boone
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Olena Shynkaruk
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Yanyu Qi
- Center for Materials Chemistry, Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710054 , People's Republic of China
| | - Robert McDonald
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Michael J Ferguson
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Przemyslaw Data
- Department of Physics , Durham University , Durham , U.K. DH1 3LE
- Faculty of Chemistry , Silesian University of Technology , Strzody 9 , Gliwice , Poland 44-100
| | - Shawan K C Almeida
- Departamento de Química , Universidade Federal de Mato Grosso , Cuiabá , Mato Grosso 78060-900 , Brazil
| | - Inara de Aguiar
- Departamento de Química , Universidade Federal de Mato Grosso , Cuiabá , Mato Grosso 78060-900 , Brazil
| | - Gabriel L C de Souza
- Departamento de Química , Universidade Federal de Mato Grosso , Cuiabá , Mato Grosso 78060-900 , Brazil
| | - Alex Brown
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| | - Gang He
- Center for Materials Chemistry, Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710054 , People's Republic of China
| | - Eric Rivard
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta , Canada T6G 2G2
| |
Collapse
|
39
|
Karapala VK, Shih HP, Han CC. Cascade and Effective Syntheses of Functionalized Tellurophenes. Org Lett 2018; 20:1550-1554. [DOI: 10.1021/acs.orglett.8b00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vamsi Krishna Karapala
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hong-Pin Shih
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Chien-Chung Han
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
40
|
Nagahora N, Yahata S, Goto S, Shioji K, Okuma K. 2,5-Diaryltellurophenes: Effect of Electron-Donating and Electron-Withdrawing Groups on their Optoelectronic Properties. J Org Chem 2018; 83:1969-1975. [PMID: 29392944 DOI: 10.1021/acs.joc.7b02906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transformation of 1,2-bis(1-arylvinyl)ditellurides into 2,5-diaryltellurophenes by sequential ditelluride exchange and thermal intramolecular cyclization reactions is presented, and the optoelectronic properties of a series of 2,5-diaryltellurophenes with both electron-donating and electron-withdrawing aryl substituents are disclosed. Furthermore, the multicolored emissive tellurophenes in solution at room temperature have been demonstrated.
Collapse
Affiliation(s)
- Noriyoshi Nagahora
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Shuhei Yahata
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Shoko Goto
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Kosei Shioji
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| | - Kentaro Okuma
- Department of Chemistry, Faculty of Science, Fukuoka University , Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
41
|
Wang S, Li X, Hou X, Sun Y, Shao X. Tritellurasumanene: ultrasound assisted one-pot synthesis and extended valence adducts with bromine. Chem Commun (Camb) 2018; 52:14486-14489. [PMID: 27904895 DOI: 10.1039/c6cc08170c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tritellurasumanene is synthesized from a triphenylene skeleton via ultrasound assisted one-pot reaction. This compound adopts a flat conjugated system and displays TeTe (3.83 Å) interactions in the solid state. Its optical properties and chemical reactivity are quite different from those of its trithia- and triselena-analogues.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, P. R. China.
| | - Xuexiang Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, P. R. China.
| | - Xueqing Hou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, P. R. China.
| | - Yantao Sun
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, P. R. China.
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, P. R. China.
| |
Collapse
|
42
|
Al-Rubaie AZ, Yosif MY, Asker KA. A new cyclic telluride. Synthesis and reactions of 1,3,5,6,7,8-hexahydronaphtho[2,3-c]tellurophene. HETEROATOM CHEMISTRY 2017. [DOI: 10.1002/hc.21402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ali Z. Al-Rubaie
- Department of Chemistry; College of Science; University of Basrah; Basrah Iraq
| | - Majeed Y. Yosif
- Department of Chemistry; College of Science; University of Basrah; Basrah Iraq
| | - Kahtan A. Asker
- Department of Chemistry; College of Science; University of Basrah; Basrah Iraq
| |
Collapse
|
43
|
Evaluation of photovoltaic properties and effective conjugated length of DTTTD-based polymers as donor in BHJ solar cells; quantum chemical approach. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Wu B, Melvina, Wu X, Lee Yeow EK, Yoshikai N. Versatile telluracycle synthesis via the sequential electrophilic telluration of C(sp 2)-Zn and C(sp 2)-H bonds. Chem Sci 2017; 8:4527-4532. [PMID: 28970880 PMCID: PMC5618338 DOI: 10.1039/c7sc01162h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 12/01/2022] Open
Abstract
We report herein a new approach for the synthesis of tellurium-bridged aromatic compounds based on the sequential electrophilic telluration of C(sp2)-Zn and C(sp2)-H bonds with tellurium(iv) chlorides. A combination of transition metal-catalyzed (migratory) arylmetalation of alkynes and sequential telluration allows for the expedient construction of a library of functionalized benzo[b]tellurophenes. Furthermore, a variety of heteroarene-fused benzotellurophenes and other novel tellurium-embedded polycyclic aromatics can be readily synthesized from the corresponding 2-iodoheterobiaryls.
Collapse
Affiliation(s)
- Bin Wu
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| | - Melvina
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| | - Xiangyang Wu
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| | - Edwin Kok Lee Yeow
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| |
Collapse
|
45
|
Ochiai Y, Goto E, Higashihara T. Controlled Synthesis of Poly(p
-phenylene) Using a Zincate Complex,
t
Bu4
ZnLi2. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yuto Ochiai
- Graduate School of Organic Materials Science; Yamagata University; 4-3-16 Jonan 992-8510 Japan
| | - Eisuke Goto
- Graduate School of Organic Materials Science; Yamagata University; 4-3-16 Jonan 992-8510 Japan
| | - Tomoya Higashihara
- Graduate School of Organic Materials Science; Yamagata University; 4-3-16 Jonan 992-8510 Japan
| |
Collapse
|
46
|
Cao H, Brettell-Adams IA, Qu F, Rupar PA. Bridged Difurans: Stabilizing Furan with p-Block Elements. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongda Cao
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0036, United States
| | - Ian A. Brettell-Adams
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0036, United States
| | - Fengrui Qu
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0036, United States
| | - Paul A. Rupar
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0036, United States
| |
Collapse
|
47
|
González DM, Raftopoulos KN, He G, Papadakis CM, Brown A, Rivard E, Müller-Buschbaum P. Bandgap-Tuning in Triple-Chalcogenophene Polymer Films by Thermal Annealing. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Moseguí González
- Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Konstantinos N. Raftopoulos
- Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Gang He
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
| | - Christine M. Papadakis
- Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Alex Brown
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
| | - Eric Rivard
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Drive Edmonton Alberta T6G 2G2 Canada
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| |
Collapse
|
48
|
Lawson JR, Melen RL. Tris(pentafluorophenyl)borane and Beyond: Modern Advances in Borylation Chemistry. Inorg Chem 2017; 56:8627-8643. [DOI: 10.1021/acs.inorgchem.6b02911] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- James R. Lawson
- School of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | - Rebecca L. Melen
- School of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| |
Collapse
|
49
|
Neto JSS, Iglesias BA, Back DF, Zeni G. Iron-Promoted Tandem Cyclization of 1,3-Diynyl Chalcogen Derivatives with Diorganyl Dichalcogenides for the Synthesis of Benzo[b]furan-Fused Selenophenes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600759] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- José S. S. Neto
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Bernardo A. Iglesias
- Laboratório de Materiais Inorgânicos, Departamento de Química; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos, Departamento de Química; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| |
Collapse
|
50
|
Jiao N, He D, Qian L, Lei Z, Ding L. Lock-up function of fluorine enhances photovoltaic performance of polythiophene. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0244-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|