1
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
2
|
Heinrich B, Vázquez O. 4-Methyltrityl-Protected Pyrrole and Imidazole Building Blocks for Solid Phase Synthesis of DNA-Binding Polyamides. Org Lett 2020; 22:533-536. [PMID: 31904984 DOI: 10.1021/acs.orglett.9b04288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-binding polyamides are synthetic oligomers of pyrrole/imidazole units with high specificity and affinity for double-stranded DNA. To increase their synthetic diversity, we report a mild methodology based on 4-methyltrityl (Mtt) solid phase peptide synthesis (SPPS), whose building blocks are more accessible than the standard Fmoc and Boc SPPS ones. We demonstrate the robustness of the approach by preparing and studying a hairpin with all precursors. Importantly, our strategy is orthogonal and compatible with sensitive molecules and could be readily automated.
Collapse
Affiliation(s)
- Benedikt Heinrich
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , 35043 Marburg , Germany
| | - Olalla Vázquez
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , 35043 Marburg , Germany
| |
Collapse
|
3
|
Fritzsch R, Greetham GM, Clark IP, Minnes L, Towrie M, Parker AW, Hunt NT. Monitoring Base-Specific Dynamics during Melting of DNA-Ligand Complexes Using Temperature-Jump Time-Resolved Infrared Spectroscopy. J Phys Chem B 2019; 123:6188-6199. [PMID: 31268327 DOI: 10.1021/acs.jpcb.9b04354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ultrafast time-resolved infrared spectroscopy employing nanosecond temperature-jump initiation has been used to study the melting of double-stranded (ds)DNA oligomers in the presence and absence of minor groove-binding ligand Hoechst 33258. Ligand binding to ds(5'-GCAAATTTCC-3'), which binds Hoechst 33258 in the central A-tract region with nanomolar affinity, causes a dramatic increase in the timescales for strand melting from 30 to ∼250 μs. Ligand binding also suppresses premelting disruption of the dsDNA structure, which takes place on 100 ns timescales and includes end-fraying. In contrast, ligand binding to the ds(5'-GCATATATCC-3') sequence, which exhibits an order of magnitude lower affinity for Hoechst 33258 than the A-tract motif, leads to an increase by only a factor of 5 in melting timescales and reduced suppression of premelting sequence perturbation and end-fraying. These results demonstrate a dynamic impact of the minor groove ligand on the dsDNA structure that correlates with binding strength and thermodynamic stabilization of the duplex. Moreover, the ability of the ligand to influence base pairs distant from the binding site has potential implications for allosteric communication mechanisms in dsDNA.
Collapse
Affiliation(s)
- Robby Fritzsch
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Lucy Minnes
- Department of Physics, SUPA , University of Strathclyde , Glasgow G4 0NG , U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute , University of York , Heslington, York YO10 5DD , U.K
| |
Collapse
|
4
|
Khadpekar AJ, Khan M, Sose A, Majumder A. Low Cost and Lithography-free Stamp fabrication for Microcontact Printing. Sci Rep 2019; 9:1024. [PMID: 30705344 PMCID: PMC6355877 DOI: 10.1038/s41598-018-36521-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Microcontact printing (µCP) is a commonly used technique for patterning proteins of interest on substrates. The cells take the shape of these printed patterns. This technique is used to explore the effect of cellular morphology on their various functions such as survival, differentiation, migration, etc. An essential step for µCP is to fabricate a stamp from a silicon mould, prepared using lithography. Lithography is cost intensive and needs a high level of expertise to handle the instrumentation. Also, one stamp can be used to print patterns of one size and shape. Here, to overcome these limitations, we devised a low-cost fabrication technique using readily available objects such as injection needles and polystyrene beads. We patterned the C2C12, myoblasts cells on the shapes printed using lithography-free fabricated stamps. We further exploited the surface curvature of the stamp to vary the size of the print either by changing the applied load and/or the substrate stiffness. We showed that the print dimension could be predicted well by using JKR theory of contact mechanics. Moreover, some innovative improvisations enabled us to print complex shapes, which would be otherwise difficult with conventional lithography technique. We envisage that this low cost and easy to fabricate method will allow many research laboratories with limited resources to perform exciting research which is at present out of their reach.
Collapse
Affiliation(s)
| | - Moin Khan
- Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhishek Sose
- Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
5
|
Nemoto T, Qin R, Takayanagi S, Kondo Y, Li J, Shiga N, Nakajima M, Shinohara KI, Yoda N, Suzuki T, Kaneda A. Synthesis of LSD1 Inhibitor-Pyrrole-Imidazole Polyamide Conjugates for Region-Specific Alterations of Histone Modification. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Cinti S, Proietti E, Casotto F, Moscone D, Arduini F. Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Anal Chem 2018; 90:13680-13686. [DOI: 10.1021/acs.analchem.8b04052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefano Cinti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Elena Proietti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Federica Casotto
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Flynn GE, Withers JM, Macias G, Sperling JR, Henry SL, Cooper JM, Burley GA, Clark AW. Reversible DNA micro-patterning using the fluorous effect. Chem Commun (Camb) 2018; 53:3094-3097. [PMID: 28243661 PMCID: PMC5358500 DOI: 10.1039/c7cc00288b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a new method for the immobilisation of DNA into defined patterns with sub-micron resolution, using the fluorous effect. The method is fully reversible via a simple solvent wash, allowing the patterning, regeneration and re-patterning of surfaces with no degradation in binding efficiency following multiple removal/attachment cycles of different DNA sequences.
Collapse
Affiliation(s)
- Gabriella E Flynn
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Jamie M Withers
- WestCHEM & Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Gerard Macias
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Justin R Sperling
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Sarah L Henry
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Jonathan M Cooper
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Glenn A Burley
- WestCHEM & Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| |
Collapse
|
8
|
Ma H, Li Z, Xue N, Cheng Z, Miao X. A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA. Mikrochim Acta 2018; 185:93. [DOI: 10.1007/s00604-017-2633-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
|
9
|
Lee H, Lee SW, Lee G, Lee W, Nam K, Lee JH, Hwang KS, Yang J, Lee H, Kim S, Lee SW, Yoon DS. Identifying DNA mismatches at single-nucleotide resolution by probing individual surface potentials of DNA-capped nanoparticles. NANOSCALE 2018; 10:538-547. [PMID: 29167849 DOI: 10.1039/c7nr05250b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we demonstrate a powerful method to discriminate DNA mismatches at single-nucleotide resolution from 0 to 5 mismatches (χ0 to χ5) using Kelvin probe force microscopy (KPFM). Using our previously developed method, we quantified the surface potentials (SPs) of individual DNA-capped nanoparticles (DCNPs, ∼100 nm). On each DCNP, DNA hybridization occurs between ∼2200 immobilized probe DNA (pDNA) and target DNA with mismatches (tDNA, ∼80 nM). Thus, each DCNP used in the bioassay (each pDNA-tDNA interaction) corresponds to a single ensemble in which a large number of pDNA-tDNA interactions take place. Moreover, one KPFM image can scan at least dozens of ensembles, which allows statistical analysis (i.e., an ensemble average) of many bioassay cases (ensembles) under the same conditions. We found that as the χn increased from χ0 to χ5 in the tDNA, the average SP of dozens of ensembles (DCNPs) was attenuated owing to fewer hybridization events between the pDNA and the tDNA. Remarkably, the SP attenuation vs. the χn showed an inverse-linear correlation, albeit the equilibrium constant for DNA hybridization exponentially decreased asymptotically as the χn increased. In addition, we observed a cascade reaction at a 100-fold lower concentration of tDNA (∼0.8 nM); the average SP of DCNPs exhibited no significant decrease but rather split into two separate states (no-hybridization vs. full-hybridization). Compared to complementary tDNA (i.e., χ0), the ratio of no-hybridization/full-hybridization within a given set of DCNPs became ∼1.6 times higher in the presence of tDNA with single mismatches (i.e., χ1). The results imply that our method opens new avenues not only in the research on the DNA hybridization mechanism in the presence of DNA mismatches but also in the development of a robust technology for DNA mismatch detection.
Collapse
Affiliation(s)
- Hyungbeen Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li Y, Liu S, Ling L. Sensitive Fluorescent Sensor for Recognition of HIV-1 dsDNA by Using Glucose Oxidase and Triplex DNA. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:8298365. [PMID: 29805840 PMCID: PMC5901486 DOI: 10.1155/2018/8298365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 05/08/2023]
Abstract
A sensitive fluorescent sensor for sequence-specific recognition of double-stranded DNA (dsDNA) was developed on the surface of silver-coated glass slide (SCGS). Oligonucleotide-1 (Oligo-1) was designed to assemble on the surface of SCGS and act as capture DNA, and oligonucleotide-2 (Oligo-2) was designed as signal DNA. Upon addition of target HIV-1 dsDNA (Oligo-3•Oligo-4), signal DNA could bind on the surface of silver-coated glass because of the formation of C•GoC in parallel triplex DNA structure. Biotin-labeled glucose oxidase (biotin-GOx) could bind to signal DNA through the specific interaction of biotin-streptavidin, thereby GOx was attached to the surface of SCGS, which was dependent on the concentration of target HIV-1 dsDNA. GOx could catalyze the oxidation of glucose and yield H2O2, and the HPPA can be oxidized into a fluorescent product in the presence of HRP. Therefore, the concentration of target HIV-1 dsDNA could be estimated with fluorescence intensity. Under the optimum conditions, the fluorescence intensity was proportional to the concentration of target HIV-1 dsDNA over the range of 10 pM to 1000 pM, the detection limit was 3 pM. Moreover, the sensor had good sequence selectivity and practicability and might be applied for the diagnosis of HIV disease in the future.
Collapse
Affiliation(s)
- Yubin Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sheng Liu
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Hairpin probe for sequence-specific recognition of double-stranded DNA on simian virus 40. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7152-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Synthesis of pyrrole-imidazole polyamide oligomers based on a copper-catalyzed cross-coupling strategy. Bioorg Med Chem Lett 2017; 27:2197-2200. [PMID: 28389153 DOI: 10.1016/j.bmcl.2017.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct.
Collapse
|
13
|
Olejniczak J, Collet G, Nguyen Huu VA, Chan M, Lee S, Almutairi A. Biorthogonal click chemistry on poly(lactic-co-glycolic acid)-polymeric particles. Biomater Sci 2017; 5:211-215. [DOI: 10.1039/c6bm00721j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biodegradable polymeric materials are a key area of investigation in drug delivery and disease treatment.
Collapse
Affiliation(s)
- Jason Olejniczak
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California
- La Jolla
- USA
| | - Guillaume Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California
- La Jolla
- USA
| | - Viet Anh Nguyen Huu
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California
- La Jolla
- USA
| | - Minnie Chan
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California
- La Jolla
- USA
| | - Sangeun Lee
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California
- La Jolla
- USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California
- La Jolla
- USA
| |
Collapse
|
14
|
Kawamoto Y, Sasaki A, Chandran A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H. Targeting 24 bp within Telomere Repeat Sequences with Tandem Tetramer Pyrrole–Imidazole Polyamide Probes. J Am Chem Soc 2016; 138:14100-14107. [DOI: 10.1021/jacs.6b09023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yusuke Kawamoto
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Asuka Sasaki
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Anandhakumar Chandran
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Satoru Ide
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Toshikazu Bando
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material
Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Wirth-Hamdoune D, Ullrich S, Scheffer U, Radanović T, Dürner G, Göbel MW. A Bis(guanidinium)alcohol Attached to a Hairpin Polyamide: Synthesis, DNA Binding, and Plasmid Cleavage. Chembiochem 2016; 17:506-14. [DOI: 10.1002/cbic.201500566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Wirth-Hamdoune
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Toni Radanović
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Gerd Dürner
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
16
|
Henry SL, Withers JM, Singh I, Cooper JM, Clark AW, Burley GA, Cogdell RJ. DNA-directed spatial assembly of photosynthetic light-harvesting proteins. Org Biomol Chem 2016; 14:1359-62. [DOI: 10.1039/c5ob02351c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript describes the surface immobilization of a light-harvesting complex to prescribed locations directed by the sequence-selective recognition of duplex DNA.
Collapse
Affiliation(s)
- Sarah L. Henry
- Molecular Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- University of Glasgow
- Glasgow G12 8TA
| | - Jamie M. Withers
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1XL
- UK
| | - Ishwar Singh
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1XL
- UK
| | | | | | - Glenn A. Burley
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1XL
- UK
| | - Richard J. Cogdell
- Molecular Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- University of Glasgow
- Glasgow G12 8TA
| |
Collapse
|
17
|
Pauff SM, Fallows AJ, Mackay SP, Su W, Cullis PM, Burley GA. Pyrrole‐Imidazole Polyamides: Manual Solid‐Phase Synthesis. ACTA ACUST UNITED AC 2015; 63:8.10.1-8.10.41. [DOI: 10.1002/0471142700.nc0810s63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Steven M. Pauff
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow United Kingdom
| | - Andrew J. Fallows
- Department of Chemistry, University of Leicester Leicester United Kingdom
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow United Kingdom
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong People's Republic of China
| | - Paul M. Cullis
- Department of Chemistry, University of Leicester Leicester United Kingdom
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow United Kingdom
| |
Collapse
|
18
|
Janssen BMG, van Ommeren SPFI, Merkx M. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation. Int J Mol Sci 2015; 16:12631-47. [PMID: 26053396 PMCID: PMC4490465 DOI: 10.3390/ijms160612631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 01/02/2023] Open
Abstract
The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.
Collapse
Affiliation(s)
- Brian M G Janssen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
| | - Sven P F I van Ommeren
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
19
|
Zheng J, Hua G, Yu J, Lin F, Wade MB, Reneker DH, Becker ML. Post-Electrospinning "Triclick" Functionalization of Degradable Polymer Nanofibers. ACS Macro Lett 2015; 4:207-213. [PMID: 35596433 DOI: 10.1021/mz500759n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
4-Dibenzocyclooctynol (DIBO) was used as an initiator for the ring-opening copolymerization of ε-caprolactone and 1,4,8-trioxaspiro[4.6]-9-undecanone (TOSUO) resulting in a series of DIBO end-functionalized copolymers. Following deprotection of the ketone group, the polymers were derivatized with aminooxyl-containing compounds by oxime ligation. Mixtures of keto- and alkyne-derivatized polymers were co-electrospun into well-defined nanofibers containing three separate chemical handles. Strain-promoted azide alkyne cycloaddition (SPAAC), oxime ligation, and copper-catalyzed azide alkyne cycloaddition (CuAAC) were used to sequentially functionalize the nanofibers first with fluorescent reporters and then separately with bioactive Gly-Arg-Gly-Asp-Ser (GRGDS), BMP-2 peptide, and dopamine. This translationally relevant approach facilitates the straightforward derivatization of diverse bioactive molecules that can be controllably tethered to the surface of nanofibers.
Collapse
Affiliation(s)
- Jukuan Zheng
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Geng Hua
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Jiayi Yu
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Fei Lin
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Mary Beth Wade
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Darrell H. Reneker
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
20
|
Kawamoto Y, Sasaki A, Hashiya K, Ide S, Bando T, Maeshima K, Sugiyama H. Tandem trimer pyrrole-imidazole polyamide probes targeting 18 base pairs in human telomere sequences. Chem Sci 2015; 6:2307-2312. [PMID: 29308145 PMCID: PMC5645774 DOI: 10.1039/c4sc03755c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/20/2015] [Indexed: 01/06/2023] Open
Abstract
The novel tandem trimer pyrrole-imidazole polyamide probe targeting 18 bp in telomeric repeats visualized telomeres in human cells selectively.
The binding of molecules to specific DNA sequences is important for imaging genome DNA and for studying gene expression. Increasing the number of base pairs targeted by these molecules would provide greater specificity. N-Methylpyrrole–N-methylimidazole (Py–Im) polyamides are one type of such molecules and can bind to the minor groove of DNA in a sequence-specific manner without causing denaturation of DNA. Our recent work has demonstrated that tandem hairpin Py–Im polyamides conjugated with a fluorescent dye can be synthesized easily and can serve as new probes for studying human telomeres under mild conditions. Herein, to improve their selectivities to telomeres by targeting longer sequences, we designed and synthesized a fluorescent tandem trimer Py–Im polyamide probe, comprising three hairpins and two connecting regions (hinges). The new motif bound to 18 bp dsDNA in human telomeric repeats (TTAGGG)n, the longest sequence for specific binding reported for Py–Im polyamides. We compared the binding affinities and the abilities to discriminate mismatch, the UV-visible absorption and fluorescence spectra, and telomere staining in human cells between the tandem trimer and a previously developed tandem hairpin. We found that the tandem trimer Py–Im polyamide probe has higher ability to recognize telomeric repeats and stains telomeres in chemically fixed cells with lower background signal.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry , Graduate School of Science , Kyoto University , Kyoto 606-8502 , Sakyo , Japan . ;
| | - Asuka Sasaki
- Biological Macromolecules Laboratory , Structural Biology Center , National Institute of Genetics, and Department of Genetics , School of Life Science , Graduate University for Advanced Studies (Sokendai) , Mishima , Shizuoka 411-8540 , Japan .
| | - Kaori Hashiya
- Department of Chemistry , Graduate School of Science , Kyoto University , Kyoto 606-8502 , Sakyo , Japan . ;
| | - Satoru Ide
- Biological Macromolecules Laboratory , Structural Biology Center , National Institute of Genetics, and Department of Genetics , School of Life Science , Graduate University for Advanced Studies (Sokendai) , Mishima , Shizuoka 411-8540 , Japan .
| | - Toshikazu Bando
- Department of Chemistry , Graduate School of Science , Kyoto University , Kyoto 606-8502 , Sakyo , Japan . ;
| | - Kazuhiro Maeshima
- Biological Macromolecules Laboratory , Structural Biology Center , National Institute of Genetics, and Department of Genetics , School of Life Science , Graduate University for Advanced Studies (Sokendai) , Mishima , Shizuoka 411-8540 , Japan .
| | - Hiroshi Sugiyama
- Department of Chemistry , Graduate School of Science , Kyoto University , Kyoto 606-8502 , Sakyo , Japan . ; .,Institute for Integrated Cell-Material Science (WPI-iCeMS) , Kyoto University , Kyoto 606-8501 , Sakyo , Japan
| |
Collapse
|
21
|
Hu Q, Deng X, Kong J, Dong Y, Liu Q, Zhang X. Simple and fast electrochemical detection of sequence-specific DNA via click chemistry-mediated labeling of hairpin DNA probes with ethynylferrocene. Analyst 2015; 140:4154-61. [DOI: 10.1039/c5an00566c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, the azido-containing hairpins were exploited as the capture probes; after hybridization, labeling of electroactive probes, ethynylferrocene, was conveniently and efficiently achieved via the Cu(i)-catalyzed azide–alkyne cycloaddition.
Collapse
Affiliation(s)
- Qiong Hu
- School of Environmental and Biological Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Xianbao Deng
- School of Environmental and Biological Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Yuanyuan Dong
- School of Environmental and Biological Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Qianrui Liu
- School of Environmental and Biological Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
| | - Xueji Zhang
- School of Environmental and Biological Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- P. R. China
- Chemistry Department
| |
Collapse
|
22
|
Hoenders D, Tigges T, Walther A. Combining the incompatible: Block copolymers consecutively displaying activated esters and amines and their use as protein-repellent surface modifiers with multivalent biorecognition. Polym Chem 2015. [DOI: 10.1039/c4py00928b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the facile synthesis and orthogonal functionalization of diblock copolymers consisting of two incompatible segments, i.e. primary amines and activated esters, and demonstrate their use as protein-repellent brush layers with multivalent biorecognition.
Collapse
Affiliation(s)
- Daniel Hoenders
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| | - Thomas Tigges
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| | - Andreas Walther
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| |
Collapse
|
23
|
Dršata T, Zgarbová M, Špačková N, Jurečka P, Šponer J, Lankaš F. Mechanical Model of DNA Allostery. J Phys Chem Lett 2014; 5:3831-3835. [PMID: 26278756 DOI: 10.1021/jz501826q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The importance of allosteric effects in DNA is becoming increasingly appreciated, but the underlying mechanisms remain poorly understood. In this work, we propose a general modeling framework to study DNA allostery. We describe DNA in a coarse-grained manner by intra-base pair and base pair step coordinates, complemented by groove widths. Quadratic deformation energy is assumed, yielding linear relations between the constraints and their effect. Model parameters are inferred from standard unrestrained, explicit-solvent molecular dynamics simulations of naked DNA. We applied the approach to study minor groove binding of diamidines and pyrrole-imidazole polyamides. The predicted DNA bending is in quantitative agreement with experiment and suggests that diamidine binding to the alternating TA sequence brings the DNA closer to the A-tract conformation, with potentially important functional consequences. The approach can be readily applied to other allosteric effects in DNA and generalized to model allostery in various molecular systems.
Collapse
Affiliation(s)
- Tomáš Dršata
- †Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- ‡Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Prague, Albertov 6, 128 43 Prague, Czech Republic
| | - Marie Zgarbová
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Naďa Špačková
- ∥Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- ⊥Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petr Jurečka
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- ∥Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- #CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Filip Lankaš
- †Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
24
|
Hirata A, Nokihara K, Kawamoto Y, Bando T, Sasaki A, Ide S, Maeshima K, Kasama T, Sugiyama H. Structural Evaluation of Tandem Hairpin Pyrrole–Imidazole Polyamides Recognizing Human Telomeres. J Am Chem Soc 2014; 136:11546-54. [DOI: 10.1021/ja506058e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Akiyoshi Hirata
- HiPep Laboratories, Nakatsukasa-cho 486-46, Kamigyo-ku Kyoto, 602-8158, Japan
| | - Kiyoshi Nokihara
- HiPep Laboratories, Nakatsukasa-cho 486-46, Kamigyo-ku Kyoto, 602-8158, Japan
| | - Yusuke Kawamoto
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Asuka Sasaki
- Biological
Macromolecules Laboratory, Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Satoru Ide
- Biological
Macromolecules Laboratory, Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Biological
Macromolecules Laboratory, Structural Biology Center, National Institute
of Genetics, and Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | - Takeshi Kasama
- Research
Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Sugiyama
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
25
|
Denn B, Karmakar S, Guenther DC, Hrdlicka PJ. Sandwich assay for mixed-sequence recognition of double-stranded DNA: invader-based detection of targets specific to foodborne pathogens. Chem Commun (Camb) 2014; 49:9851-3. [PMID: 24036937 DOI: 10.1039/c3cc45705b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A 96-well plate sandwich assay based on Invader capture/signalling probes is used to recognize 28-mer mixed-sequence dsDNA targets specific to Salmonella enterica, Campylobacter jejuni, Escherichia coli. Targets are detected down to 20-55 pM concentration with excellent binding specificity.
Collapse
Affiliation(s)
- Benjamin Denn
- Department of Chemistry, University of Idaho, 875 Perimeter Drive MS 2343, Moscow, ID 83844-2343, USA.
| | | | | | | |
Collapse
|
26
|
Miao X, Guo X, Xiao Z, Ling L. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. Biosens Bioelectron 2014; 59:54-7. [PMID: 24690562 DOI: 10.1016/j.bios.2014.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/16/2014] [Accepted: 03/03/2014] [Indexed: 01/03/2023]
Abstract
Direct recognition of double-stranded DNA (dsDNA) was crucial to disease diagnosis and gene therapy, because DNA in its natural state is double stranded. Here, a novel sensor for the sequence-specific recognition of dsDNA was developed based on the structure change of ferrocene (Fc) redox probe modified molecular beacon (MB). For constructing such a sensor, gold nanoparticles (AuNPs) were initially electrochemical-deposited onto glass carbon electrode (GCE) surface to immobilize thiolated MB in their folded states with Au-S bond. Hybridization of MB with target dsDNA induced the formation of parallel triplex DNA and opened the stem-loop structure of it, which resulted in the redox probe (Fc) away from the electrode and triggered the decrease of current signals. Under optimal conditions, dsDNA detection could be realized in the range from 350 pM to 25 nM, with a detection limit of 275 pM. Moreover, the proposed method has good sequence-specificity for target dsDNA compared with single base pair mismatch and two base pairs mismatches.
Collapse
Affiliation(s)
- Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Xiaoting Guo
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhiyou Xiao
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Liansheng Ling
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
27
|
Advances in contact printing technologies of carbohydrate, peptide and protein arrays. Curr Opin Chem Biol 2014; 18:1-7. [DOI: 10.1016/j.cbpa.2013.10.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
|
28
|
|
29
|
Chen T, Shao N, Zhu H, Zhang B, Zou H. Cascade reaction for 3-pyrrolines and pyrroles from nitroallylic acetates and N-mesyl 2-aminoethanones. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|