1
|
Mato M, Fernández-González X, D'Avino C, Tomás-Gamasa M, Mascareñas JL. Bioorthogonal Synthetic Chemistry Enabled by Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202413506. [PMID: 39135347 DOI: 10.1002/anie.202413506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/17/2024]
Abstract
The field of bioorthogonal chemistry has revolutionized our ability to interrogate and manipulate biological systems at the molecular level. However, the range of chemical reactions that can operate efficiently in biological environments without interfering with the native cellular machinery, remains limited. In this context, the rapidly growing area of photocatalysis offers a promising avenue for developing new type of bioorthogonal tools. The inherent mildness, tunability, chemoselectivity, and external controllability of photocatalytic transformations make them particularly well-suited for applications in biological and living systems. This minireview summarizes recent advances in bioorthogonal photocatalytic technologies, with a particular focus on their potential to enable the selective generation of designed products within biologically relevant or living settings.
Collapse
Affiliation(s)
- Mauro Mato
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Xulián Fernández-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Cinzia D'Avino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Lin Y, Hashimoto R, Chang TC, Tanaka K. Synthesis of phenanthridine derivatives by a water-compatible gold-catalyzed hydroamination. Bioorg Med Chem 2024; 113:117928. [PMID: 39299083 DOI: 10.1016/j.bmc.2024.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Since transition-metal-catalyzed reactions are one of the most powerful and direct approaches for the synthesis of organic molecules, translating them to biological systems for biomedical applications is an emerging field. The manipulation of transition metal reactions in biological settings for uncaging prodrugs and synthesizing bioactive drugs has been widely studied. To expand the toolbox of transition-metal-mediated prodrug strategy, this work introduces the 2'-alkynl-biphenylamine precursors for the synthesis of phenanthridine derivatives using a water-compatible gold-catalyzed hydroamination under mild conditions. Moreover, the structure-reactivity relationship revealed that the nucleophilicity of the amine group in the precursor was critical for facilitating the gold-catalyzed synthesis of phenanthridine derivatives. The research shows the potential to be used for phenanthridine-based prodrug designs in an aqueous solution.
Collapse
Affiliation(s)
- Yixuan Lin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Riichi Hashimoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
3
|
Chatterjee J, Bandyopadhyay A, Pattabiraman M, Sarkar R. Discovery and development of tyrosine-click (Y-click) reaction for the site-selective labelling of proteins. Chem Commun (Camb) 2024; 60:8978-8996. [PMID: 38913168 DOI: 10.1039/d4cc01997k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
With the versatile utility of bio-conjugated peptides and proteins in the fields of agriculture, food, cosmetics and pharmaceutical industry, the design of smart protocols to conjugate and modulate biomolecules becomes highly desirable. During this process, the most important consideration for biochemists is the retention of configurational integrity of the biomolecules. Moreover, this type of bioconjugation of peptide and protein becomes frivolous if the reaction is not performed with precise amino acid residues. Hence, chemo-selective, as well as site-selective reactions, that are biocompatible and possess an appropriate level of reactivity are necessary. Based on click chemistry, there are so many tyrosine (Y) conjugation strategies, such as sulfur-fluoride exchange (SuFEx), sulfur-triazole exchange (SuTEx), coupling with π-allyl palladium complexes, diazonium salts, diazodicarboxyamide-based reagents etc. Among these techniques, diazodicarboxyamide-based Y-conjugation, which is commonly known as the "tyrosine-click (Y-click) reaction", has met the expectations of synthetic and biochemists for the tyrosine-specific functionalization of biomolecules. Over the past one and a half decades, significant progress has been made in the classical organic synthesis approach, as well as its biochemical, photochemical, and electrochemical variants. Despite such progress and increasing importance, the Y-click reaction has not been reviewed to document variations in its methodology, applications, and broad utility. The present article aims to provide a summary of the approaches for the modulation of biomolecules at the hotspot of tyrosine residue by employing the Y-click reaction. The article also highlights its application for the mapping of proteins, imaging of living cells, and in the fields of analytical and medicinal chemistry.
Collapse
Affiliation(s)
| | - Ayan Bandyopadhyay
- Department of Chemistry, Chapra Government College, Nadia-741123, West Bengal, India
- Department of Higher Education, Government of West Bengal, India.
| | | | - Rajib Sarkar
- Department of Higher Education, Government of West Bengal, India.
- Department of Chemistry, Muragachha Government College, Nadia-741154, West Bengal, India
| |
Collapse
|
4
|
James CC, de Bruin B, Reek JNH. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions. Angew Chem Int Ed Engl 2023; 62:e202306645. [PMID: 37339103 DOI: 10.1002/anie.202306645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The importance of transition metal catalysis is exemplified by its wide range of applications, for example in the synthesis of chemicals, natural products, and pharmaceuticals. However, one relatively new application is for carrying out new-to-nature reactions inside living cells. The complex environment of a living cell is not welcoming to transition metal catalysts, as a diverse range of biological components have the potential to inhibit or deactivate the catalyst. Here we review the current progress in the field of transition metal catalysis, and evaluation of catalysis efficiency in living cells and under biological (relevant) conditions. Catalyst poisoning is a ubiquitous problem in this field, and we propose that future research into the development of physical and kinetic protection strategies may provide a route to improve the reactivity of catalysts in cells.
Collapse
Affiliation(s)
- Catriona C James
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Zhang Y, Tan J, Chen Y. Visible-light-induced protein labeling in live cells with aryl azides. Chem Commun (Camb) 2023; 59:2413-2420. [PMID: 36744609 DOI: 10.1039/d2cc06987c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chemical labeling of proteins in live cells helps to probe their native functions in biological systems. Aryl azides are chemically inert under physiological conditions, but they are activated by certain external stimuli. Recently, photocatalytic live-cell applications of aryl azides by visible light irradiation have become a burgeoning new field in chemical biology. In this Feature Article, we focus on the recent progress of protein labeling in live cells with aryl azides induced by visible-light irradiation. Light irradiation activates aryl azides to generate highly reactive intermediates, which enables protein labeling for protein functionalization, crosslinking, and profiling. The activation mechanism of aryl azides by light irradiation is categorized as photolysis, energy-transfer, and electron-transfer. The extracellular and intracellular protein labeling applications in live cells with aryl azides induced by visible light are discussed, including recent advances in red-light-induced extracellular protein labeling.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Jiawei Tan
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China. .,School of Physical Science and Technology ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
6
|
Madec H, Figueiredo F, Cariou K, Roland S, Sollogoub M, Gasser G. Metal complexes for catalytic and photocatalytic reactions in living cells and organisms. Chem Sci 2023; 14:409-442. [PMID: 36741514 PMCID: PMC9848159 DOI: 10.1039/d2sc05672k] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
The development of organometallic catalysis has greatly expanded the synthetic chemist toolbox compared to only exploiting "classical" organic chemistry. Although more widely used in organic solvents, metal-based catalysts have also emerged as efficient tools for developing organic transformations in water, thus paving the way for further development of bio-compatible reactions. However, performing metal-catalysed reactions within living cells or organisms induces additional constraints to the design of reactions and catalysts. In particular, metal complexes must exhibit good efficiency in complex aqueous media at low concentrations, good cell specificity, good cellular uptake and low toxicity. In this review, we focus on the presentation of discrete metal complexes that catalyse or photocatalyse reactions within living cells or living organisms. We describe the different reaction designs that have proved to be successful under these conditions, which involve very few metals (Ir, Pd, Ru, Pt, Cu, Au, and Fe) and range from in cellulo deprotection/decaging/activation of fluorophores, drugs, proteins and DNA to in cellulo synthesis of active molecules, and protein and organelle labelling. We also present developments in bio-compatible photo-activatable catalysts, which represent a very recent emerging area of research and some prospects in the field.
Collapse
Affiliation(s)
- Hugo Madec
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Francisca Figueiredo
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Kevin Cariou
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Gilles Gasser
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| |
Collapse
|
7
|
Tay NES, Ryu KA, Weber JL, Olow AK, Cabanero DC, Reichman DR, Oslund RC, Fadeyi OO, Rovis T. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat Chem 2023; 15:101-109. [PMID: 36216892 PMCID: PMC9840673 DOI: 10.1038/s41557-022-01057-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.
Collapse
Affiliation(s)
| | - Keun Ah Ryu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - John L Weber
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Aleksandra K Olow
- Genetics and Pharmacogenomics, Merck & Co., Inc., San Francisco, CA, USA
| | | | | | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
- InduPro, Cambridge, MA, USA.
| | - Olugbeminiyi O Fadeyi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
- InduPro, Cambridge, MA, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Zeng K, Han L, Chen Y. Endogenous Proteins Modulation in Live Cells with Small Molecules and Light. Chembiochem 2022; 23:e202200244. [PMID: 35822393 DOI: 10.1002/cbic.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Indexed: 11/05/2022]
Abstract
The protein modulation by light illumination enables the biological role investigation in high spatiotemporal precision. Compared to genetic methods, the small molecules approach is uniquely suited for modulating endogenous proteins. The endogenous protein modulation in live cells with small molecules and light has recently advanced on three distinctive frontiers: i) the infrared-light-induced or localized decaging of small molecules by photolysis, ii) the visible-light-induced photocatalytic releasing of small molecules, and iii) the small-molecule-ligand-directed caging for photo-modulation of proteins. Together, these methods provide powerful chemical biology tool kits for spatiotemporal modulation of endogenous proteins with potential therapeutic applications. This Concept aims to inspire organic chemists and chemical biologists to delve into this burgeoning endogenous protein modulation field for new biological discoveries.
Collapse
Affiliation(s)
- Kaixing Zeng
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Lili Han
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Yiyun Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, BNPC, 345 Lingling Road, 200032, Shanghai, CHINA
| |
Collapse
|
9
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022; 61:e202203390. [PMID: 35510306 PMCID: PMC9400970 DOI: 10.1002/anie.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 12/04/2022]
Abstract
A Ru(bpy)3Cl2 photocatalyst is applied to the rapid trans to cis isomerization of a range of alkene‐containing pharmacological agents, including combretastatin A‐4 (CA‐4), a clinical candidate in oncology, and resveratrol derivatives, switching their configuration from inactive substances to potent cytotoxic agents. Selective in cellulo activation of the CA‐4 analog Res‐3M is demonstrated, along with its potent cytotoxicity and inhibition of microtubule dynamics.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
10
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
11
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
12
|
Huang Z, Liu Z, Xie X, Zeng R, Chen Z, Kong L, Fan X, Chen PR. Bioorthogonal Photocatalytic Decaging-Enabled Mitochondrial Proteomics. J Am Chem Soc 2021; 143:18714-18720. [PMID: 34709827 DOI: 10.1021/jacs.1c09171] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spatiotemporally resolved dissection of subcellular proteome is crucial to our understanding of cellular functions in health and disease. We herein report a bioorthogonal and photocatalytic decaging-enabled proximity labeling strategy (CAT-Prox) for spatiotemporally resolved mitochondrial proteome profiling in living cells. Our systematic survey of the photocatalysts has led to the identification of Ir(ppy)2bpy as a bioorthogonal and mitochondria-targeting catalyst that allowed photocontrolled, rapid rescue of azidobenzyl-caged quinone methide as a highly reactive Michael acceptor for proximity-based protein labeling in mitochondria of live cells. Upon careful validation through in vitro labeling, mitochondria-targeting specificity, in situ catalytic activity as well as protein tagging, we applied CAT-Prox for mitochondria proteome profiling in living Hela cells as well as hard-to-transfect macrophage RAW264.7 cells with approximately 70% mitochondria specificity observed from up to 300 proteins enriched. Finally, CAT-Prox was further applied to the dynamic dissection of mitochondria proteome of macrophage cells upon lipopolysaccharide stimulation. By integrating photocatalytic decaging chemistry with proximity-based protein labeling, CAT-Prox offers a general, catalytic, and nongenetic alternative to the enzyme-based proximity labeling strategies for diverse live cell settings.
Collapse
Affiliation(s)
- Zongyu Huang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziqi Liu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Xie
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruxin Zeng
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zujie Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linghao Kong
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Liu W, Watson EE, Winssinger N. Photocatalysis in Chemical Biology: Extending the Scope of Optochemical Control and Towards New Frontiers in Semisynthetic Bioconjugates and Biocatalysis. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Weilong Liu
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| |
Collapse
|
14
|
Altrichter Y, Schöller J, Seitz O. Toward conditional control of Smac mimetic activity by RNA-templated reduction of azidopeptides on PNA or 2'-OMe-RNA. Biopolymers 2021; 112:e23466. [PMID: 34287823 DOI: 10.1002/bip.23466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Oligonucleotide templated reactions can be used to control the activity of functional molecules based on the presence of a specific trigger sequence. We report an RNA-controlled reaction system to conditionally restore the N-terminal amino group and thus binding affinity of azide-modified Smac mimetic compounds (SMCs) for their target protein X-linked Inhibitor of Apoptosis Protein (XIAP). Two templated reactions were compared: Staudinger reduction with phosphines and a photocatalytic reaction with Ru(bpy)2 (mcbpy). The latter proved faster and more efficient, especially for the activation of a bivalent SMC, which requires two consecutive reduction steps. The templated reaction proceeds with turnover when 2'-OMe-RNA probes are used, but is significantly more efficient with PNA, catalyzing a reaction in the presence of low, substoichiometric amounts (1%-3%, 10 nM) of target RNA.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Justus Schöller
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
16
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021; 60:12446-12454. [DOI: 10.1002/anie.202100369] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
17
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
18
|
Interrogating biological systems using visible-light-powered catalysis. Nat Rev Chem 2021; 5:322-337. [PMID: 37117838 DOI: 10.1038/s41570-021-00265-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Light-powered catalysis has found broad utility as a chemical transformation strategy, with widespread impact on energy, environment, drug discovery and human health. A noteworthy application impacting human health is light-induced sensitization of cofactors for photodynamic therapy in cancer treatment. The clinical adoption of this photosensitization approach has inspired the search for other photochemical methods, such as photoredox catalysis, to influence biological discovery. Over the past decade, light-mediated catalysis has enabled the discovery of valuable synthetic transformations, propelling it to become a highly utilized chemical synthesis strategy. The reaction components required to achieve a photoredox reaction are identical to photosensitization (catalyst, light source and substrate), making it ideally suited for probing biological environments. In this Review, we discuss the therapeutic application of photosensitization and advancements made in developing next-generation catalysts. We then highlight emerging uses of photoredox catalytic methods for protein bioconjugation and probing complex cellular environments in living cells.
Collapse
|
19
|
Watson EE, Angerani S, Sabale PM, Winssinger N. Biosupramolecular Systems: Integrating Cues into Responses. J Am Chem Soc 2021; 143:4467-4482. [DOI: 10.1021/jacs.0c12970] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emma E. Watson
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Simona Angerani
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Pramod M. Sabale
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| |
Collapse
|
20
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
21
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020; 60:4133-4141. [DOI: 10.1002/anie.202013366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
22
|
Vong K, Yamamoto T, Chang TC, Tanaka K. Bioorthogonal release of anticancer drugs via gold-triggered 2-alkynylbenzamide cyclization. Chem Sci 2020; 11:10928-10933. [PMID: 34094342 PMCID: PMC8162444 DOI: 10.1039/d0sc04329j] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023] Open
Abstract
Metal-based uncaging of biomolecules has become an emerging approach for in vivo applications, which is largely due to the advantageous bioorthogonality of abiotic transition metals. Adding to the library of metal-cleavable protecting groups, this work introduces the 2-alkynylbenzamide (Ayba) moiety for the gold-triggered release of secondary amines under mild and physiological conditions. Studies were further performed to highlight some intrinsic benefits of the Ayba protecting group, which are (1) its amenable nature to derivatization for manipulating prodrug properties, and (2) its orthogonality with other commonly used transition metals like palladium and ruthenium. With a focus on highlighting its application for anticancer drug therapies, this study successfully shows that gold-triggered conversion of Ayba-protected prodrugs into bioactive anticancer drugs (i.e. doxorubicin, endoxifen) can proceed effectively in cell-based assays.
Collapse
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University 18 Kremlyovskaya Street Kazan 420008 Russia
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 O-okayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
23
|
Liu Y, Bai Y. Design and Engineering of Metal Catalysts for Bio-orthogonal Catalysis in Living Systems. ACS APPLIED BIO MATERIALS 2020; 3:4717-4746. [DOI: 10.1021/acsabm.0c00581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ying Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
24
|
López-Andarias J, Saarbach J, Moreau D, Cheng Y, Derivery E, Laurent Q, González-Gaitán M, Winssinger N, Sakai N, Matile S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J Am Chem Soc 2020; 142:4784-4792. [PMID: 32109058 PMCID: PMC7307903 DOI: 10.1021/jacs.9b13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Collapse
Affiliation(s)
- Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Jacques Saarbach
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Dimitri Moreau
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Yangyang Cheng
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Derivery
- MRC
Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Quentin Laurent
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Marcos González-Gaitán
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
25
|
Chen J, Li K, Shon JSL, Zimmerman SC. Single-Chain Nanoparticle Delivers a Partner Enzyme for Concurrent and Tandem Catalysis in Cells. J Am Chem Soc 2020; 142:4565-4569. [PMID: 32100539 PMCID: PMC11446247 DOI: 10.1021/jacs.9b13997] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Combining synthetic chemistry and biocatalysis is a promising but underexplored approach to intracellular catalysis. We report a strategy to codeliver a single-chain nanoparticle (SCNP) catalyst and an exogenous enzyme into cells for performing bioorthogonal reactions. The nanoparticle and enzyme reside in endosomes, creating engineered artificial organelles that manufacture organic compounds intracellularly. This system operates in both concurrent and tandem reaction modes to generate fluorophores or bioactive agents. The combination of SCNP and enzymatic catalysts provides a versatile tool for intracellular organic synthesis with applications in chemical biology.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Ke Li
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Ji Seon Lucy Shon
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Zozulia O, Bachmann T, Mokhir A. Red Light Triggered Fluorogenic Reaction with Picomolar Sensitivity Toward Nucleic Acids. Bioconjug Chem 2019; 30:2023-2031. [PMID: 31195795 DOI: 10.1021/acs.bioconjchem.9b00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously reported on a red light triggered, singlet oxygen-mediated fluorogenic reaction that is templated in a highly sequence specific fashion by nucleic acids (S. Dutta, A. Fulop, A. Mokhir, Bioconjgate Chem. 2013, 24 (9), 1533-1542). Up to the present date, it has remained a single templated reaction responsive to nontoxic >650 nm light. However, it is operative only in the presence of relatively high (>2 nM) concentrations of templates that dramatically limit its applicability in nucleic acid detection. In the current work, we established that an inefficient intermolecular electron transfer involved in reduction of the 1,4-endoperoxide intermediate, formed in the rate-limiting reaction step, is responsible for inhibition of the reaction at low reagent concentrations. We suggested the solution of the problem which includes a combination of a cleavable (9-alkoxyanthracene) moiety with a two-electron donating fragment in one molecule. This approach enables the efficient intramolecular electron transfer to the endoperoxide intermediate in the critical reaction step. Due to the intramolecular character of the latter process, it is practically independent of concentration of the reagents. The reaction based on the improved cleavable moiety was found to be >200-fold more sensitive than the previously reported one. It is fast, sequence specific, and compatible with live cells. Accounting for short reactions times (<30 min), nontoxic trigger (red light), excellent sensitivity, and sequence specificity, this is presently the best reported photochemical templated reaction compatible with live cells.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Organic Chemistry Chair II , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Tobias Bachmann
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Organic Chemistry Chair II , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Andriy Mokhir
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Organic Chemistry Chair II , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| |
Collapse
|
27
|
Abstract
Template assistance allows organic reactions to occur under highly dilute conditions-where intermolecular reactions often fail to proceed-by bringing reactants into close spatial proximity. This strategy has been elegantly applied to numerous systems, but always with the retention of at least one of the templating groups in the product. In this report, we describe a traceless, templated amide-forming ligation that proceeds at low micromolar concentration under aqueous conditions in the presence of biomolecules. We utilized the unique features of an acylboronate-hydroxylamine ligation, in which covalent bonds are broken in each of the reactants as the new amide bond is formed. By using streptavidin as a template and acylboronates and O-acylhydroxylamines bearing desthiobiotins that are cleaved upon amide formation, we demonstrate that traceless, templated ligation occurs rapidly even at submicromolar concentrations. The requirement for a close spatial orientation of the functional groups-achieved upon binding to streptavidin-is critical for the observed enhancement in the rate and quantity of product formed.
Collapse
Affiliation(s)
- Alberto Osuna Gálvez
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland
| |
Collapse
|
28
|
Angerani S, Winssinger N. Visible Light Photoredox Catalysis Using Ruthenium Complexes in Chemical Biology. Chemistry 2019; 25:6661-6672. [PMID: 30689234 DOI: 10.1002/chem.201806024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/24/2022]
Abstract
The development of bioorthogonal reactions have had a transformative impact in chemical biology and the quest to expand this toolbox continues. Herein we review recent applications of ruthenium-catalyzed photoredox reactions used in chemical biology.
Collapse
Affiliation(s)
- Simona Angerani
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
29
|
Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J, Li XD, Li X, Huang X, Li X. DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J Am Chem Soc 2018; 140:15859-15867. [DOI: 10.1021/jacs.8b09277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Chen Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
| | - Jianzhao Peng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Liangxu Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Ling Meng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Qingrong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jianfu Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
30
|
Connell TU, Donnelly PS. Labelling proteins and peptides with phosphorescent d6 transition metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Mede T, Jäger M, Schubert US. "Chemistry-on-the-complex": functional Ru II polypyridyl-type sensitizers as divergent building blocks. Chem Soc Rev 2018; 47:7577-7627. [PMID: 30246196 DOI: 10.1039/c8cs00096d] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium polypyridyl type complexes are potent photoactive compounds, and have found - among others - a broad range of important applications in the fields of biomedical diagnosis and phototherapy, energy conversion schemes such as dye-sensitized solar cells (DSSCs) and molecular assemblies for tailored photo-initiated processes. In this regard, the linkage of RuII polypyridyl-type complexes with specific functional moieties is highly desirable to enhance their inherent photophysical properties, e.g., with a targeting function to achieve cell selectivity, or with a dye or redox-active subunits for energy- and electron-transfer. However, the classical approach of performing ligand syntheses first and the formation of Ru complexes in the last steps imposes synthetic limitations with regard to tolerating functional groups or moieties as well as requiring lengthy convergent routes. Alternatively, the diversification of Ru complexes after coordination (termed "chemistry-on-the-complex") provides an elegant complementary approach. In addition to the Click chemistry concept, the rapidly developing synthesis and purification methodologies permit the preparation of Ru conjugates via amidation, alkylation and cross-coupling reactions. In this regard, recent developments in chromatography shifted the limits of purification, e.g., by using new commercialized surface-modified silica gels and automated instrumentation. This review provides detailed insights into applying the "chemistry-on-the-complex" concept, which is believed to stimulate the modular preparation of unpreceded molecular assemblies as well as functional materials based on Ru-based building blocks, including combinatorial approaches.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | |
Collapse
|
32
|
Luciferase-induced photoreductive uncaging of small-molecule effectors. Nat Commun 2018; 9:3539. [PMID: 30166547 PMCID: PMC6117273 DOI: 10.1038/s41467-018-05916-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is extensively used to study dynamic systems and has been utilized in sensors for studying protein proximity, metabolites, and drug concentrations. Herein, we demonstrate that BRET can activate a ruthenium-based photocatalyst which performs bioorthogonal reactions. BRET from luciferase to the ruthenium photocatalyst is used to uncage effector molecules with up to 64 turnovers of the catalyst, achieving concentrations >0.6 μM effector with 10 nM luciferase construct. Using a BRET sensor, we further demonstrate that the catalysis can be modulated in response to an analyte, analogous to allosterically controlled enzymes. The BRET-induced reaction is used to uncage small-molecule drugs (ibrutinib and duocarmycin) at biologically effective concentrations in cellulo. Bioluminescence resonance energy transfer (BRET) has been mostly employed in imaging applications. Here the authors use BRET to activate a ruthenium-based photocatalyst and perform a bioorthogonal chemical reaction, which can be used to uncage small molecule drugs in a cellular context.
Collapse
|
33
|
De Laet N, Llamas EM, Madder A. Templated DNA Cross-Linking: Towards a Non-Invasive Singlet-Oxygen-Based Triggering Method. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathalie De Laet
- Organic and Biomimetic Chemistry Research Group Krijgslaan 281, S4; B-9000 Ghent Belgium
| | - Eva M. Llamas
- Organic and Biomimetic Chemistry Research Group Krijgslaan 281, S4; B-9000 Ghent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group Krijgslaan 281, S4; B-9000 Ghent Belgium
| |
Collapse
|
34
|
Kim KT, Chang D, Winssinger N. Double-Stranded RNA-Specific Templated Reaction with Triplex Forming PNA. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700295] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ki Tae Kim
- Department of Organic Chemistry, NCCR Chemical Biology; Faculty of Science; University of Geneva; 30 quai Ernest Ansermet 1211 Geneva Switzerland
| | - Dalu Chang
- Department of Organic Chemistry, NCCR Chemical Biology; Faculty of Science; University of Geneva; 30 quai Ernest Ansermet 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology; Faculty of Science; University of Geneva; 30 quai Ernest Ansermet 1211 Geneva Switzerland
| |
Collapse
|
35
|
Rebelein JG, Ward TR. In vivo catalyzed new-to-nature reactions. Curr Opin Biotechnol 2018; 53:106-114. [PMID: 29306675 DOI: 10.1016/j.copbio.2017.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
Bioorthogonal chemistry largely relies on the use of abiotic metals to catalyze new-to-nature reactions in living systems. Over the past decade, metal complexes and metal-encapsulated systems such as nanoparticles have been developed to unravel the reactivity of transition metals, including ruthenium, palladium, iridium, copper, iron, and gold in biological systems. Thanks to these remarkable achievements, abiotic catalysts are able to fluorescently label cells, uncage or form cytotoxic drugs and activate enzymes in cellulo/vivo. Recently, strategies for the delivery of such catalysts to specific cell types, cell compartments or proteins were established. These studies reveal the enormous potential of this emerging field and its application in both medicinal chemistry and in synthetic biology.
Collapse
Affiliation(s)
- Johannes G Rebelein
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland.
| |
Collapse
|
36
|
Sato S, Hatano K, Tsushima M, Nakamura H. 1-Methyl-4-aryl-urazole (MAUra) labels tyrosine in proximity to ruthenium photocatalysts. Chem Commun (Camb) 2018; 54:5871-5874. [DOI: 10.1039/c8cc02891e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 1-methyl-4-aryl-urazole (MAUra) structure was found to be a novel tyrosyl radical trapping agent to label tyrosine residues effectively in proximity to ruthenium photocatalysts.
Collapse
Affiliation(s)
- Shinichi Sato
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kensuke Hatano
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Michihiko Tsushima
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
37
|
Chang D, Kim KT, Lindberg E, Winssinger N. Accelerating Turnover Frequency in Nucleic Acid Templated Reactions. Bioconjug Chem 2017; 29:158-163. [PMID: 29178795 DOI: 10.1021/acs.bioconjchem.7b00663] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acid templated reactions have attracted attention as an important technology to sense oligonucleotides and to translate nucleic acid-based instructions into diverse outputs. Great progress has been made in accelerating the reaction in order to improve signal amplification, reaching rates where substrate turnover rather than chemical reaction is rate limiting. Herein we explore the utility of architectures inspired by three-way junction that yield a cleavage of a strand thus accelerating substrate turnover. We demonstrate that such design can overcome product inhibition in templated reactions and operate close to the rate of hybridization.
Collapse
Affiliation(s)
- Dalu Chang
- Department of Organic chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva , 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Ki Tae Kim
- Department of Organic chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva , 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Eric Lindberg
- Department of Organic chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva , 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva , 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
38
|
Saarbach J, Lindberg E, Folliet S, Georgeon S, Hantschel O, Winssinger N. Kinase-templated abiotic reaction. Chem Sci 2017; 8:5119-5125. [PMID: 28970898 PMCID: PMC5615226 DOI: 10.1039/c7sc01416c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/20/2017] [Indexed: 12/16/2022] Open
Abstract
Protein kinases are quintessential regulators of cellular function. Numerous pathologies are intimately linked to the dysregulated activity of a particular protein kinase. Herein we report a technology based on a proximity-induced chemical transformation that enables the detection and imaging of specific kinases. Using two probes that target the nucleotide-binding site and substrate binding site of a target kinase respectively, the reagents appended on the probes are brought within reactive distance thereby enabling the chemical transformation. The reaction used for sensing is a ruthenium-photocatalyzed reduction of a pyridinium immolative linker, which uncages a fluorophore (rhodamine). We demonstrate that this technology can be used to discriminate between closely related kinases with a high signal to noise ratio. We further demonstrate that the technology operates within the complexity of a cellular context with a good correlation between the level of kinase activity and fluorescence output.
Collapse
Affiliation(s)
- J Saarbach
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - E Lindberg
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - S Folliet
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - S Georgeon
- Swiss Institute for Experimental Cancer Research (ISREC) , NCCR Chemical Biology , School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - O Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC) , NCCR Chemical Biology , School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - N Winssinger
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| |
Collapse
|
39
|
Cui X, Zhao J, Karatay A, Yaglioglu HG, Hayvali M, Küçüköz B. A Ru(bipyridine)3[PF6]2Complex with a Rhodamine Unit - Synthesis, Photophysical Properties, and Application in Acid-Controllable Triplet-Triplet Annihilation Upconversion. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoneng Cui
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 116024 Dalian P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; 116024 Dalian P. R. China
| | - Ahmet Karatay
- Department of Engineering Physics; Faculty of Engineering; Ankara University; 06100 Beşevler, Ankara Turkey
| | - Halime Gul Yaglioglu
- Department of Engineering Physics; Faculty of Engineering; Ankara University; 06100 Beşevler, Ankara Turkey
| | - Mustafa Hayvali
- Department of Chemistry; Faculty of Science; Ankara University; 06100 Beşevler Ankara Turkey
| | - Betül Küçüköz
- Department of Engineering Physics; Faculty of Engineering; Ankara University; 06100 Beşevler, Ankara Turkey
| |
Collapse
|
40
|
Machida T, Dutt S, Winssinger N. Allosterically Regulated Phosphatase Activity from Peptide-PNA Conjugates Folded Through Hybridization. Angew Chem Int Ed Engl 2016; 55:8595-8. [PMID: 27320214 DOI: 10.1002/anie.201602751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/10/2016] [Indexed: 01/17/2023]
Abstract
The importance of spatial organization in short peptide catalysts is well recognized. We synthesized and screened a library of peptides flanked by peptide nucleic acids (PNAs) such that the peptide would be constrained in a hairpin loop upon hybridization. A screen for phosphatase activity led to the discovery of a catalyst with >25-fold rate acceleration over the linear peptide. We demonstrated that the hybridization-enforced folding of the peptide is necessary for activity, and designed a catalyst that is allosterically controlled using a complementary PNA sequence.
Collapse
Affiliation(s)
- Takuya Machida
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Som Dutt
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland.
| |
Collapse
|
41
|
Machida T, Dutt S, Winssinger N. Allosterically Regulated Phosphatase Activity from Peptide–PNA Conjugates Folded Through Hybridization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Takuya Machida
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva Quai Ernest Ansermet 30 1211 Geneva Switzerland
| | - Som Dutt
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva Quai Ernest Ansermet 30 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva Quai Ernest Ansermet 30 1211 Geneva Switzerland
| |
Collapse
|
42
|
Sadhu KK, Lindberg E, Winssinger N. In cellulo protein labelling with Ru-conjugate for luminescence imaging and bioorthogonal photocatalysis. Chem Commun (Camb) 2015; 51:16664-6. [PMID: 26426098 DOI: 10.1039/c5cc05405b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Labelling of proteins with a luminescent ruthenium complex enables the direct visualization and photocatalytic reduction of aryl azide in live cells. The confinement of catalysis to the labeled proteins was visualized using an azide-based immolative linker releasing a precipitating dye.
Collapse
Affiliation(s)
- Kalyan K Sadhu
- University of Geneva, School of Chemistry and Biochemsitry, NCCR Chemical Biology, 30 quai Ernest Ansermet, Geneva, Switzerland.
| | | | | |
Collapse
|
43
|
Li G, Zheng W, Chen Z, Zhou Y, Liu Y, Yang J, Huang Y, Li X. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem Sci 2015; 6:7097-7104. [PMID: 28757982 PMCID: PMC5510007 DOI: 10.1039/c5sc02467f] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
We report a method for the preparation and selection of DNA-encoded dynamic libraries (DEDLs). The library is composed of two sets of DNA-linked small molecules that are under dynamic exchange through DNA hybridization. Addition of the protein target shifted the equilibrium, favouring the assembly of high affinity bivalent binders. Notably, we introduced a novel locking mechanism to stop the dynamic exchange and "freeze" the equilibrium, thereby enabling downstream hit isolation and decoding by PCR amplification and DNA sequencing. Our DEDL approach has circumvented the limitation of library size and realized the analysis and selection of large dynamic libraries. In addition, this method also eliminates the requirement for modified and immobilized target proteins.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Wenlu Zheng
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Zitian Chen
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Yu Zhou
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Yu Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Junrui Yang
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Yanyi Huang
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Xiaoyu Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 . .,Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| |
Collapse
|
44
|
Ritter C, Nett N, Acevedo‐Rocha CG, Lonsdale R, Kräling K, Dempwolff F, Hoebenreich S, Graumann PL, Reetz MT, Meggers E. Bioorthogonale enzymatische Aktivierung maskierter Verbindungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cornelia Ritter
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
| | - Nathalie Nett
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
| | - Carlos G. Acevedo‐Rocha
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Deutschland)
- LOEWE‐Zentrum für Synthetische Mikrobiologie (SYNMIKRO), Hans‐Meerwein‐Straße, 35043 Marburg (Deutschland)
- Max‐Planck‐Institut für terrestrische Mikrobiologie, Karl‐von‐Frisch‐Straße 10, 35043 Marburg (Deutschland)
| | - Richard Lonsdale
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Deutschland)
| | - Katja Kräling
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
| | - Felix Dempwolff
- LOEWE‐Zentrum für Synthetische Mikrobiologie (SYNMIKRO), Hans‐Meerwein‐Straße, 35043 Marburg (Deutschland)
| | - Sabrina Hoebenreich
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
| | - Peter L. Graumann
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
- LOEWE‐Zentrum für Synthetische Mikrobiologie (SYNMIKRO), Hans‐Meerwein‐Straße, 35043 Marburg (Deutschland)
| | - Manfred T. Reetz
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Deutschland)
| | - Eric Meggers
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35043 Marburg (Deutschland)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
| |
Collapse
|
45
|
Ritter C, Nett N, Acevedo-Rocha CG, Lonsdale R, Kräling K, Dempwolff F, Hoebenreich S, Graumann PL, Reetz MT, Meggers E. Bioorthogonal Enzymatic Activation of Caged Compounds. Angew Chem Int Ed Engl 2015; 54:13440-3. [PMID: 26356324 DOI: 10.1002/anie.201506739] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/14/2015] [Indexed: 11/06/2022]
Abstract
Engineered cytochrome P450 monooxygenase variants are reported as highly active and selective catalysts for the bioorthogonal uncaging of propargylic and benzylic ether protected substrates, including uncaging in living E. coli. observed selectivity is supported by induced-fit docking and molecular dynamics simulations. This proof-of-principle study points towards the utility of bioorthogonal enzyme/protecting group pairs for applications in the life sciences.
Collapse
Affiliation(s)
- Cornelia Ritter
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany)
| | - Nathalie Nett
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany)
| | - Carlos G Acevedo-Rocha
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany).,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany).,LOEWE Zentrum für Synthetische Mikrobiologie (SYNMIKRO), Hans-Meerwein-Straße, 35043 Marburg (Germany).,Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043 Marburg (Germany)
| | - Richard Lonsdale
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany).,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | - Katja Kräling
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany)
| | - Felix Dempwolff
- LOEWE Zentrum für Synthetische Mikrobiologie (SYNMIKRO), Hans-Meerwein-Straße, 35043 Marburg (Germany)
| | - Sabrina Hoebenreich
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany)
| | - Peter L Graumann
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany).,LOEWE Zentrum für Synthetische Mikrobiologie (SYNMIKRO), Hans-Meerwein-Straße, 35043 Marburg (Germany)
| | - Manfred T Reetz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany). .,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany).
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg (Germany). .,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (P. R. China).
| |
Collapse
|
46
|
Barluenga S, Winssinger N. PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions. Acc Chem Res 2015; 48:1319-31. [PMID: 25947113 DOI: 10.1021/acs.accounts.5b00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The programmability of oligonucleotide hybridization offers an attractive platform for the design of assemblies with emergent properties or functions. Developments in DNA nanotechnologies have transformed our thinking about the applications of nucleic acids. Progress from designed assemblies to functional outputs will continue to benefit from functionalities added to the nucleic acids that can participate in reactions or interactions beyond hybridization. In that respect, peptide nucleic acids (PNAs) are interesting because they combine the hybridization properties of DNA with the modularity of peptides. In fact, PNAs form more stable duplexes with DNA or RNA than the corresponding natural homoduplexes. The high stability achieved with shorter oligomers (an 8-mer is sufficient for a stable duplex at room temperature) typically results in very high sequence fidelity in the hybridization with negligible impact of the ionic strength of the buffer due to the lack of electrostatic repulsion between the duplex strands. The simple peptidic backbone of PNA has been shown to be tolerant of modifications with substitutions that further enhance the duplex stability while providing opportunities for functionalization. Moreover, the metabolic stability of PNAs facilitates their integration into systems that interface with biology. Over the past decade, there has been a growing interest in using PNAs as biosupramolecular tags to program assemblies and reactions. A series of robust templated reactions have been developed with functionalized PNA. These reactions can be used to translate DNA templates into functional polymers of unprecedented complexity, fluorescent outputs, or bioactive small molecules. Furthermore, cellular nucleic acids (mRNA or miRNA) have been harnessed to promote assemblies and reactions in live cells. The tolerance of PNA synthesis also lends itself to the encoding of small molecules that can be further assembled on the basis of their nucleic acid sequences. It is now well-established that hybridization-based assemblies displaying two or more ligands can interact synergistically with a target biomolecule. These assemblies have now been shown to be functional in vivo. Similarly, PNA-tagged macromolecules have been used to prepare bioactive assemblies and three-dimensional nanostructures. Several technologies based on DNA-templated synthesis of sequence-defined polymers or DNA-templated display of ligands have been shown to be compatible with reiterative cycles of selection/amplification starting with large libraries of DNA templates, bringing the power of in vitro evolution to synthetic molecules and offering the possibility of exploring uncharted molecular diversity space with unprecedented scope and speed.
Collapse
Affiliation(s)
- Sofia Barluenga
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
47
|
Biomolecule-compatible chemical bond-formation and bond-cleavage reactions induced by visible light. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Zhang Y, Li Y, Zhang X, Jiang X. Sulfide synthesis through copper-catalyzed C–S bond formation under biomolecule-compatible conditions. Chem Commun (Camb) 2015; 51:941-4. [DOI: 10.1039/c4cc08367a] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here an efficient, mild and biomolecule-compatible method for constructing C–S bonds.
Collapse
Affiliation(s)
- Yonghong Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Yiming Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xiaomei Zhang
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
49
|
Völker T, Dempwolff F, Graumann PL, Meggers E. Fortschritt in Richtung bioorthogonaler Katalyse mit Organometallverbindungen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404547] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Völker T, Dempwolff F, Graumann PL, Meggers E. Progress towards bioorthogonal catalysis with organometallic compounds. Angew Chem Int Ed Engl 2014; 53:10536-40. [PMID: 25138780 DOI: 10.1002/anie.201404547] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 01/20/2023]
Abstract
The catalysis of bioorthogonal transformations inside living organisms is a formidable challenge--yet bears great potential for future applications in chemical biology and medicinal chemistry. We herein disclose highly active organometallic ruthenium complexes for bioorthogonal catalysis under biologically relevant conditions and inside living cells. The catalysts uncage allyl carbamate protected amines with unprecedented high turnover numbers of up to 270 cycles in the presence of water, air, and millimolar concentrations of thiols. By live-cell imaging of HeLa cells and with the aid of a caged fluorescent probe we could reveal a rapid development of intense fluorescence within the cellular cytoplasm and therefore support the proposed bioorthogonality of the catalysts. In addition, to illustrate the manifold applications of bioorthogonal catalysis, we developed a method for catalytic in-cell activation of a caged anticancer drug, which efficiently induced apoptosis in HeLa cells.
Collapse
Affiliation(s)
- Timo Völker
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg (Germany)
| | | | | | | |
Collapse
|