1
|
Dale HJA, Leach AG, Lloyd-Jones GC. Heavy-Atom Kinetic Isotope Effects: Primary Interest or Zero Point? J Am Chem Soc 2021; 143:21079-21099. [PMID: 34870970 DOI: 10.1021/jacs.1c07351] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemists have many options for elucidating reaction mechanisms. Global kinetic analysis and classic transition-state probes (e.g., LFERs, Eyring) inevitably form the cornerstone of any strategy, yet their application to increasingly sophisticated synthetic methodologies often leads to a wide range of indistinguishable mechanistic proposals. Computational chemistry provides powerful tools for narrowing the field in such cases, yet wholly simulated mechanisms must be interpreted with great caution. Heavy-atom kinetic isotope effects (KIEs) offer an exquisite but underutilized method for reconciling the two approaches, anchoring the theoretician in the world of calculable observables and providing the experimentalist with atomistic insights. This Perspective provides a personal outlook on this synergy. It surveys the computation of heavy-atom KIEs and their measurement by NMR spectroscopy, discusses recent case studies, highlights the intellectual reward that lies in alignment of experiment and theory, and reflects on the changes required in chemical education in the area.
Collapse
Affiliation(s)
- Harvey J A Dale
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G Leach
- School of Health Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
2
|
Hui X, Zhu BR, Wu LL, Gao WY, Li YM, Jia Q, Li H. Inhibitory Activity of Proanthocyanidins Against Escherichia coli 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme in the methylerythritol phosphate pathway for terpenoid biosynthesis. Furthermore, it is an ideal target for the screening of novel antibiotics because it is present in causative organisms, but absent from humans. To identify more lipophilic DXR inhibitors from natural resources, we tested the DXR inhibitory activity of five proanthocyanidins in this study. The results indicated that all these compounds specifically restrained the activity of DXR, with procyanid B2 exhibiting a relatively low effect against DXR (IC50 ∼ 305 μM) and procyanid C1 displaying moderate activity (IC50 75.1 μM). The other three compounds cinnamtannin A2, cinnamtannin B1, and cinnamtannin D1 (IC50 ∼ 89.3, 105.0, and 97.8 μM, respectively) showed DXR inhibitory effects that were slightly weaker than that of procyanid C1. In addition, based on the initial characterization, the structure–activity relationship of this series of compounds against DXR is discussed.
Collapse
Affiliation(s)
- Xian Hui
- Northwest University, Xi’an, China
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo-Rong Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Long Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Li
- Northwest University, Xi’an, China
| |
Collapse
|
3
|
Benz S, Murkin AS. α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions. Beilstein J Org Chem 2021; 17:2570-2584. [PMID: 34760025 PMCID: PMC8551875 DOI: 10.3762/bjoc.17.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
In the presence of a suitable acid or base, α-hydroxyaldehydes, ketones, and imines can undergo isomerization that features the 1,2-shift of an alkyl or aryl group. In the process, the hydroxy group is converted to a carbonyl and the aldehyde/ketone or imine is converted to an alcohol or amine. Such α-ketol/α-iminol rearrangements are used in a wide variety of synthetic applications including asymmetric synthesis, tandem reactions, and the total synthesis and biosynthesis of natural products. This review explores the use of α-ketol rearrangements in these contexts over the past two decades.
Collapse
Affiliation(s)
- Scott Benz
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Andrew S Murkin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
4
|
Kozuch J, Schneider SH, Boxer SG. Biosynthetic Incorporation of Site-Specific Isotopes in β-Lactam Antibiotics Enables Biophysical Studies. ACS Chem Biol 2020; 15:1148-1153. [PMID: 32175720 DOI: 10.1021/acschembio.9b01054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A biophysical understanding of the mechanistic, chemical, and physical origins underlying antibiotic action and resistance is vital to the discovery of novel therapeutics and the development of strategies to combat the growing emergence of antibiotic resistance. The site-specific introduction of stable-isotope labels into chemically complex natural products is particularly important for techniques such as NMR, IR, mass spectrometry, imaging, and kinetic isotope effects. Toward this goal, we developed a biosynthetic strategy for the site-specific incorporation of 13C labels into the canonical β-lactam carbonyl of penicillin G and cefotaxime, the latter via cephalosporin C. This was achieved through sulfur-replacement with 1-13C-l-cysteine, resulting in high isotope incorporations and milligram-scale yields. Using 13C NMR and isotope-edited IR difference spectroscopy, we illustrate how these molecules can be used to interrogate interactions with their protein targets, e.g., TEM-1 β-lactamase. This method provides a feasible route to isotopically labeled penicillin and cephalosporin precursors for future biophysical studies.
Collapse
Affiliation(s)
- Jacek Kozuch
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Samuel H. Schneider
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
5
|
Inhibitory Activity of Plant Essential Oils against E. coli 1-Deoxy-d-xylulose-5-phosphate reductoisomerase. Molecules 2019; 24:molecules24142518. [PMID: 31295807 PMCID: PMC6681031 DOI: 10.3390/molecules24142518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
The rate-limiting enzyme of the 2-methyl-d-erythritol-4-phosphate (MEP) terpenoid biosynthetic pathway, 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), provides the perfect target for screening new antibacterial substances. In this study, we tested the DXR inhibitory effect of 35 plant essential oils (EOs), which have long been recognized for their antimicrobial properties. The results show that the EOs of Zanbthoxylum bungeanum (ZB), Schizonepetae tenuifoliae (ST), Thymus quinquecostatus (TQ), Origanum vulgare (OV), and Eugenia caryophyllata (EC) displayed weak to medium inhibitory activity against DXR, with IC50 values of 78 μg/mL, 65 μg/mL, 59 μg/mL, 48 μg/mL, and 37 μg/mL, respectively. GC-MS analyses of the above oils and further DXR inhibitory activity tests of their major components revealed that eugenol (EC) and carvacrol (TQ and OV) possess medium inhibition against the protein (68.3% and 55.6%, respectively, at a concentration of 20 μg/mL), whereas thymol (ST, TQ, and OV), carveol (ZB), and linalool (ZB, ST, and OV) only exhibited weak inhibition against DXR, at 20 μg/mL (23%−26%). The results add more details to the antimicrobial mechanisms of plant EOs, which could be very helpful in the direction of the reasonable use of EOs in the food industry and in the control of phytopathogenic microbials.
Collapse
|
6
|
Barrios Antúnez DJ, Greenhalgh MD, Brueckner AC, Walden DM, Elías-Rodríguez P, Roberts P, Young BG, West TH, Slawin AMZ, Ha-Yeon Cheong P, Smith AD. Catalytic enantioselective synthesis of perfluoroalkyl-substituted β-lactones via a concerted asynchronous [2 + 2] cycloaddition: a synthetic and computational study. Chem Sci 2019; 10:6162-6173. [PMID: 31360423 PMCID: PMC6585878 DOI: 10.1039/c9sc00390h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/27/2019] [Indexed: 11/21/2022] Open
Abstract
The enantioselective preparation of a range of perfluoroalkyl-substituted β-lactones through an isothiourea (HyperBTM) catalysed reaction using symmetric anhydrides as ammonium enolate precursors and perfluoroalkylketones (RF = CF3, C2F5, C4F9) is reported. Following optimisation, high diastereo- and enantioselectivity was observed for β-lactone formation using C2F5- and C4F9-substituted ketones at room temperature (26 examples, up to >95 : 5 dr and >99 : 1 er), whilst -78 °C was necessary for optimal dr and er with CF3-substituted ketones (11 examples, up to >95 : 5 dr and >99 : 1 er). Derivatisation of the β-lactones through ring-opening, as well as a two-step conversion to give perfluoroalkyl-substituted oxetanes, is demonstrated without loss of stereochemical integrity. Density functional theory computations, alongside 13C natural abundance KIE studies, have been used to probe the reaction mechanism with a concerted asynchronous [2 + 2]-cycloaddition pathway favoured over a stepwise aldol-lactonisation process.
Collapse
Affiliation(s)
| | - Mark D Greenhalgh
- EaStCHEM , School of Chemistry , University of St Andrews , North Haugh , St Andrews , KY16 9ST , UK .
| | - Alexander C Brueckner
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97333 , USA .
| | - Daniel M Walden
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97333 , USA .
| | - Pilar Elías-Rodríguez
- EaStCHEM , School of Chemistry , University of St Andrews , North Haugh , St Andrews , KY16 9ST , UK .
| | - Patrick Roberts
- EaStCHEM , School of Chemistry , University of St Andrews , North Haugh , St Andrews , KY16 9ST , UK .
| | - Benjamin G Young
- Department of Chemistry, Physics, and Engineering , Biola University , 315 Lim Center , La Mirada , California 90639 , USA
| | - Thomas H West
- EaStCHEM , School of Chemistry , University of St Andrews , North Haugh , St Andrews , KY16 9ST , UK .
| | - Alexandra M Z Slawin
- EaStCHEM , School of Chemistry , University of St Andrews , North Haugh , St Andrews , KY16 9ST , UK .
| | - Paul Ha-Yeon Cheong
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97333 , USA .
| | - Andrew D Smith
- EaStCHEM , School of Chemistry , University of St Andrews , North Haugh , St Andrews , KY16 9ST , UK .
| |
Collapse
|
7
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
8
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
9
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|
10
|
Lin C, McCarty RM, Liu H. Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chia‐I. Lin
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Reid M. McCarty
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Hung‐wen Liu
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| |
Collapse
|
11
|
Kwan EE, Park Y, Besser HA, Anderson TL, Jacobsen EN. Sensitive and Accurate 13C Kinetic Isotope Effect Measurements Enabled by Polarization Transfer. J Am Chem Soc 2017; 139:43-46. [PMID: 28005341 PMCID: PMC5674980 DOI: 10.1021/jacs.6b10621] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polarization transfer is demonstrated as a sensitive technique for the measurement of isotopic fractionation of protonated carbons at natural abundance. This method allows kinetic isotope effects (KIEs) to be determined with substantially less material or shorter acquisition time compared with traditional experiments. Computations quantitatively reproduce the KIEs in a Diels-Alder reaction and a catalytic glycosylation. The glycosylation is shown to occur by an effectively concerted mechanism.
Collapse
Affiliation(s)
- Eugene E. Kwan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yongho Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Harrison A. Besser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Thayer L. Anderson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Measurement of Kinetic Isotope Effects by Continuously Monitoring Isotopologue Ratios Using NMR Spectroscopy. Methods Enzymol 2017. [DOI: 10.1016/bs.mie.2017.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Antimicrobial mechanism of the major active essential oil compounds and their structure–activity relationship. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1762-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Linscott JA, Kapilashrami K, Wang Z, Senevirathne C, Bothwell IR, Blum G, Luo M. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Proc Natl Acad Sci U S A 2016; 113:E8369-E8378. [PMID: 27940912 PMCID: PMC5206543 DOI: 10.1073/pnas.1609032114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein lysine methyltransferases (PKMTs) catalyze the methylation of protein substrates, and their dysregulation has been linked to many diseases, including cancer. Accumulated evidence suggests that the reaction path of PKMT-catalyzed methylation consists of the formation of a cofactor(cosubstrate)-PKMT-substrate complex, lysine deprotonation through dynamic water channels, and a nucleophilic substitution (SN2) transition state for transmethylation. However, the molecular characters of the proposed process remain to be elucidated experimentally. Here we developed a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method and corresponding mathematic matrix to determine precisely the ratios of isotopically methylated peptides. This approach may be generally applicable for examining the kinetic isotope effects (KIEs) of posttranslational modifying enzymes. Protein lysine methyltransferase SET8 is the sole PKMT to monomethylate histone 4 lysine 20 (H4K20) and its function has been implicated in normal cell cycle progression and cancer metastasis. We therefore implemented the MS-based method to measure KIEs and binding isotope effects (BIEs) of the cofactor S-adenosyl-l-methionine (SAM) for SET8-catalyzed H4K20 monomethylation. A primary intrinsic 13C KIE of 1.04, an inverse intrinsic α-secondary CD3 KIE of 0.90, and a small but statistically significant inverse CD3 BIE of 0.96, in combination with computational modeling, revealed that SET8-catalyzed methylation proceeds through an early, asymmetrical SN2 transition state with the C-N and C-S distances of 2.35-2.40 Å and 2.00-2.05 Å, respectively. This transition state is further supported by the KIEs, BIEs, and steady-state kinetics with the SAM analog Se-adenosyl-l-selenomethionine (SeAM) as a cofactor surrogate. The distinct transition states between protein methyltransferases present the opportunity to design selective transition-state analog inhibitors.
Collapse
Affiliation(s)
- Joshua A Linscott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| | - Kanishk Kapilashrami
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ian R Bothwell
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gil Blum
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| |
Collapse
|
15
|
Tormos JR, Suarez MB, Fitzpatrick PF. 13C kinetic isotope effects on the reaction of a flavin amine oxidase determined from whole molecule isotope effects. Arch Biochem Biophys 2016; 612:115-119. [PMID: 27815088 PMCID: PMC5257176 DOI: 10.1016/j.abb.2016.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
A large number of flavoproteins catalyze the oxidation of amines. Because of the importance of these enzymes in metabolism, their mechanisms have previously been studied using deuterium, nitrogen, and solvent isotope effects. While these results have been valuable for computational studies to distinguish among proposed mechanisms, a measure of the change at the reacting carbon has been lacking. We describe here the measurement of a 13C kinetic isotope effect for a representative amine oxidase, polyamine oxidase. The isotope effect was determined by analysis of the isotopic composition of the unlabeled substrate, N, N'-dibenzyl-1,4-diaminopropane, to obtain a pH-independent value of 1.025. The availability of a 13C isotope effect for flavoprotein-catalyzed amine oxidation provides the first measure of the change in bond order at the carbon involved in this carbon-hydrogen bond cleavage and will be of value to understanding the transition state structure for this class of enzymes.
Collapse
Affiliation(s)
- José R Tormos
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX 78228, United States
| | - Marina B Suarez
- Department of Geological Sciences, University of Texas-San Antonio, San Antonio, TX 78249, United States
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, United States.
| |
Collapse
|
16
|
Offenbacher AR, Zhu H, Klinman JP. Synthesis of Site-Specifically 13C Labeled Linoleic Acids. Tetrahedron Lett 2016; 57:4537-4540. [PMID: 28260819 DOI: 10.1016/j.tetlet.2016.08.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched 13C isotopologues. In this report, we present synthetic strategies for site-specific 13C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal 13C-labeled alkyne conversion, using 13CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid 13C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.
Collapse
Affiliation(s)
- Adam R Offenbacher
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720; Quantitative Institutes of Biosciences, University of California, Berkeley, Berkeley, California, 94720
| | - Hui Zhu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720; Quantitative Institutes of Biosciences, University of California, Berkeley, Berkeley, California, 94720
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720; Quantitative Institutes of Biosciences, University of California, Berkeley, Berkeley, California, 94720; Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, 94720
| |
Collapse
|
17
|
Wang K, Zhang Z, Chen H, Cai S, Chen Z. High-resolution heteronuclear correlation spectroscopy based on spatial encoding and coherence transfer in inhomogeneous fields. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1022610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Measuring specificity in multi-substrate/product systems as a tool to investigate selectivity in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:70-6. [PMID: 26321598 DOI: 10.1016/j.bbapap.2015.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 01/24/2023]
Abstract
Multiple substrate enzymes present a particular challenge when it comes to understanding their activity in a complex system. Although a single target may be easy to model, it does not always present an accurate representation of what that enzyme will do in the presence of multiple substrates simultaneously. Therefore, there is a need to find better ways to both study these enzymes in complicated systems, as well as accurately describe the interactions through kinetic parameters. This review looks at different methods for studying multiple substrate enzymes, as well as explores options on how to most accurately describe an enzyme's activity within these multi-substrate systems. Identifying and defining this enzymatic activity should help clear the way to using in vitro systems to accurately predicting the behavior of multi-substrate enzymes in vivo. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
|
19
|
Kellerman DL, Simmons KS, Pedraza M, Piccirilli JA, York DM, Harris ME. Determination of hepatitis delta virus ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics. Anal Biochem 2015; 483:12-20. [PMID: 25937290 DOI: 10.1016/j.ab.2015.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2'-O-transphosphorylation by the hepatitis delta virus (HDV) ribozyme is sensitive to the identity of the N(-1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2'O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(-1) nucleobase contributes to HDV catalysis and test the utility of this approach for RNA structure-function studies. Internal competition reactions containing all four substrate sequence variants at the N(-1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed base-pairing interaction. Mutants A78U, A78G, and A79G retain significant catalytic activity but do not alter the specificity for the N(-1) nucleobase. Effects of nucleobase analog substitutions at N(-1) indicate that U is preferred due to the ability to donate an H-bond in the Watson-Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site and illustrate multiple substrate kinetic analyses as a practical approach for characterizing structure-function relationships in RNA reactions.
Collapse
Affiliation(s)
- Daniel L Kellerman
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kandice S Simmons
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mayra Pedraza
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Darrin M York
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Zhou J, Wu R, Wang B, Cao Z, Yan H, Mo Y. Proton-Shuttle-Assisted Heterolytic Carbon–Carbon Bond Cleavage and Formation. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Zexing Cao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Honggao Yan
- Center
for Biological Modeling and Departments of Biochemistry and Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yirong Mo
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
21
|
Kholodar S, Allen CL, Gulick AM, Murkin AS. The role of phosphate in a multistep enzymatic reaction: reactions of the substrate and intermediate in pieces. J Am Chem Soc 2015; 137:2748-56. [PMID: 25642788 PMCID: PMC4507815 DOI: 10.1021/ja512911f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/17/2023]
Abstract
Several mechanistically unrelated enzymes utilize the binding energy of their substrate's nonreacting phosphoryl group to accelerate catalysis. Evidence for the involvement of the phosphodianion in transition state formation has come from reactions of the substrate in pieces, in which reaction of a truncated substrate lacking its phosphorylmethyl group is activated by inorganic phosphite. What has remained unknown until now is how the phosphodianion group influences the reaction energetics at different points along the reaction coordinate. 1-Deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase (DXR), which catalyzes the isomerization of DXP to 2-C-methyl-D-erythrose 4-phosphate (MEsP) and subsequent NADPH-dependent reduction, presents a unique opportunity to address this concern. Previously, we have reported the effect of covalently linked phosphate on the energetics of DXP turnover. Through the use of chemically synthesized MEsP and its phosphate-truncated analogue, 2-C-methyl-D-glyceraldehyde, the current study revealed a loss of 6.1 kcal/mol of kinetic barrier stabilization upon truncation, of which 4.4 kcal/mol was regained in the presence of phosphite dianion. The activating effect of phosphite was accompanied by apparent tightening of its interactions within the active site at the intermediate stage of the reaction, suggesting a role of the phosphodianion in disfavoring intermediate release and in modulation of the on-enzyme isomerization equilibrium. The results of kinetic isotope effect and structural studies indicate rate limitation by physical steps when the covalent linkage is severed. These striking differences in the energetics of the natural reaction and the reactions in pieces provide a deeper insight into the contribution of enzyme-phosphodianion interactions to the reaction coordinate.
Collapse
Affiliation(s)
- Svetlana
A. Kholodar
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, United States
| | - C. Leigh Allen
- Hauptman-Woodward
Institute and Department of Structural Biology, University at Buffalo, Buffalo, New York 14203-1102, United States
| | - Andrew M. Gulick
- Hauptman-Woodward
Institute and Department of Structural Biology, University at Buffalo, Buffalo, New York 14203-1102, United States
| | - Andrew S. Murkin
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
22
|
Cheng GJ, Zhang X, Chung LW, Xu L, Wu YD. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J Am Chem Soc 2015; 137:1706-25. [PMID: 25568962 DOI: 10.1021/ja5112749] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | | | | | | | | |
Collapse
|
23
|
Mechanism and inhibition of 1-deoxy-d-xylulose-5-phosphate reductoisomerase. Bioorg Chem 2014; 57:171-185. [DOI: 10.1016/j.bioorg.2014.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
|
24
|
Lin HC, Yandek LE, Gjermeni I, Harris ME. Determination of relative rate constants for in vitro RNA processing reactions by internal competition. Anal Biochem 2014; 467:54-61. [PMID: 25173512 DOI: 10.1016/j.ab.2014.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Studies of RNA recognition and catalysis typically involve measurement of rate constants for reactions of individual RNA sequence variants by fitting changes in substrate or product concentration to exponential or linear functions. A complementary approach is determination of relative rate constants by internal competition, which involves quantifying the time-dependent changes in substrate or product ratios in reactions containing multiple substrates. Here, we review approaches for determining relative rate constants by analysis of both substrate and product ratios and illustrate their application using the in vitro processing of precursor transfer RNA (tRNA) by ribonuclease P as a model system. The presence of inactive substrate populations is a common complicating factor in analysis of reactions involving RNA substrates, and approaches for quantitative correction of observed rate constants for these effects are illustrated. These results, together with recent applications in the literature, indicate that internal competition offers an alternate method for analyzing RNA processing kinetics using standard molecular biology methods that directly quantifies substrate specificity and may be extended to a range of applications.
Collapse
Affiliation(s)
- Hsuan-Chun Lin
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lindsay E Yandek
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ino Gjermeni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
25
|
Chan J, Sannikova N, Tang A, Bennet AJ. Transition-State Structure for the Quintessential SN2 Reaction of a Carbohydrate: Reaction of α-Glucopyranosyl Fluoride with Azide Ion in Water. J Am Chem Soc 2014; 136:12225-8. [DOI: 10.1021/ja506092h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jefferson Chan
- Chemistry Department, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Natalia Sannikova
- Chemistry Department, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Ariel Tang
- Chemistry Department, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J. Bennet
- Chemistry Department, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
26
|
Sathyamoorthy B, Parish DM, Montelione GT, Xiao R, Szyperski T. Spatially selective heteronuclear multiple-quantum coherence spectroscopy for biomolecular NMR studies. Chemphyschem 2014; 15:1872-9. [PMID: 24789578 PMCID: PMC4121990 DOI: 10.1002/cphc.201301232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 01/02/2023]
Abstract
Spatially selective heteronuclear multiple-quantum coherence (SS HMQC) NMR spectroscopy is developed for solution studies of proteins. Due to "time-staggered" acquisitioning of free induction decays (FIDs) in different slices, SS HMQC allows one to use long delays for longitudinal nuclear spin relaxation at high repetition rates. To also achieve high intrinsic sensitivity, SS HMQC is implemented by combining a single spatially selective (1)H excitation pulse with nonselective (1) H 180° pulses. High-quality spectra were obtained within 66 s for a 7.6 kDa uniformly (13) C,(15) N-labeled protein, and within 45 and 90 s for, respectively, two proteins with molecular weights of 7.5 and 43 kDa, which were uniformly (2)H,(13) C,(15) N-labeled, except for having protonated methyl groups of isoleucine, leucine and valine residues.
Collapse
Affiliation(s)
| | - David M. Parish
- Department of Chemistry, The State University of New York at Buffalo, Buffalo NY 14260, U.S.A
| | - Gaetano T. Montelione
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry; Department of Biochemistry The State University of New Jersey; Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey Piscataway, New Jersey 08854, U.S.A
| | - Rong Xiao
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry; Department of Biochemistry The State University of New Jersey; Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey Piscataway, New Jersey 08854, U.S.A
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, Buffalo NY 14260, U.S.A
| |
Collapse
|
27
|
Kholodar SA, Tombline G, Liu J, Tan Z, Allen CL, Gulick AM, Murkin AS. Alteration of the flexible loop in 1-deoxy-D-xylulose-5-phosphate reductoisomerase boosts enthalpy-driven inhibition by fosmidomycin. Biochemistry 2014; 53:3423-31. [PMID: 24825256 PMCID: PMC4045324 DOI: 10.1021/bi5004074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR),
which catalyzes the first committed step in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis
used by Mycobacterium tuberculosis and other infectious
microorganisms, is absent in humans and therefore an attractive drug
target. Fosmidomycin is a nanomolar inhibitor of DXR, but despite
great efforts, few analogues with comparable potency have been developed.
DXR contains a strictly conserved residue, Trp203, within a flexible
loop that closes over and interacts with the bound inhibitor. We report
that while mutation to Ala or Gly abolishes activity, mutation to
Phe and Tyr only modestly impacts kcat and Km. Moreover, pre-steady-state kinetics
and primary deuterium kinetic isotope effects indicate that while
turnover is largely limited by product release for the wild-type enzyme,
chemistry is significantly more rate-limiting for W203F and W203Y.
Surprisingly, these mutants are more sensitive to inhibition by fosmidomycin,
resulting in Km/Ki ratios up to 19-fold higher than that of wild-type DXR. In
agreement, isothermal titration calorimetry revealed that fosmidomycin
binds up to 11-fold more tightly to these mutants. Most strikingly,
mutation strongly tips the entropy–enthalpy balance of total
binding energy from 50% to 75% and 91% enthalpy in W203F and W203Y,
respectively. X-ray crystal structures suggest that these enthalpy
differences may be linked to differences in hydrogen bond interactions
involving a water network connecting fosmidomycin’s phosphonate
group to the protein. These results confirm the importance of the
flexible loop, in particular Trp203, in ligand binding and suggest
that improved inhibitor affinity may be obtained against the wild-type
protein by introducing interactions with this loop and/or the surrounding
structured water network.
Collapse
Affiliation(s)
- Svetlana A Kholodar
- Department of Chemistry, University at Buffalo , Buffalo, New York 14260-3000, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Xiang S, Meyer MP. A general approach to mechanism in multiproduct reactions: product-specific intermolecular kinetic isotope effects. J Am Chem Soc 2014; 136:5832-5. [PMID: 24721128 DOI: 10.1021/ja412827c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report a general method for the measurement of (13)C kinetic isotope effects at natural abundance for reactions that yield two or more products concurrently. We use, as an example, a recently reported Co-catalyzed reaction between cyclopentene and 1-phenyl-1-propyne. High-precision intermolecular (13)C isotope effects are reported for both the formal [2+2] cycloaddition (major) and Alder-ene (minor) reaction products. Mechanistic possibilities that are in accord with observed isotope effect measurements are discussed.
Collapse
Affiliation(s)
- Shuhuai Xiang
- Department of Chemistry and Biochemistry, University of California , Merced, California 95343, United States
| | | |
Collapse
|
29
|
Li H, Tian J, Sun W, Qin W, Gao WY. Mechanistic insights into 1-deoxy-d-xylulose 5-phosphate reductoisomerase, a key enzyme of the MEP terpenoid biosynthetic pathway. FEBS J 2013; 280:5896-905. [DOI: 10.1111/febs.12516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education); College of Life Sciences; Northwest University; Xi'an China
| | - Jie Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education); College of Life Sciences; Northwest University; Xi'an China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education); School of Chemistry and Materials Science; Northwest University; Xi'an China
| | - Wei Qin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education); College of Life Sciences; Northwest University; Xi'an China
| | - Wen-Yun Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education); College of Life Sciences; Northwest University; Xi'an China
| |
Collapse
|
30
|
Advances in kinetic isotope effect measurement techniques for enzyme mechanism study. Molecules 2013; 18:9278-92. [PMID: 23917115 PMCID: PMC6270257 DOI: 10.3390/molecules18089278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022] Open
Abstract
Kinetic isotope effects (KIEs) are a very powerful tool for investigating enzyme mechanisms. Precision of measurement is the most important factor for KIE determinations, especially for small heavy atom KIEs. Internal competition is commonly used to measure small KIEs on V/K. Several methods, including such as liquid scintillation counting, mass spectrometry, nuclear magnetic resonance spectroscopy and polarimetry have been used to determine KIEs. In this paper, which does not aspire to be an exhaustive review, we briefly review different experimental approaches for the measurement of KIEs on enzymatic reaction with an emphasis on newer techniques employing mass spectrometry and nuclear magnetic resonance spectrometry as well as some corresponding examples.
Collapse
|
31
|
Kholodar SA, Murkin AS. DXP reductoisomerase: reaction of the substrate in pieces reveals a catalytic role for the nonreacting phosphodianion group. Biochemistry 2013; 52:2302-8. [PMID: 23473304 DOI: 10.1021/bi400092n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of the nonreacting phosphodianion group of 1-deoxy-d-xylulose-5-phosphate (DXP) in catalysis by DXP reductoisomerase (DXR) was investigated for the reaction of the "substrate in pieces". The truncated substrate 1-deoxy-l-erythrulose is converted by DXR to 2-C-methylglycerol with a kcat/Km that is 10(6)-fold lower than that for DXP. Phosphite dianion was found to be a nonessential activator, providing 3.2 kcal/mol of transition state stabilization for the truncated substrate. These results implicate a phosphate-driven conformational change involving loop closure over the DXR active site to generate an environment poised for catalysis.
Collapse
Affiliation(s)
- Svetlana A Kholodar
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|