1
|
Dong J, Willner I. Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis. J Am Chem Soc 2025; 147:2216-2227. [PMID: 39740143 PMCID: PMC11744759 DOI: 10.1021/jacs.4c16829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis. A second system introduces photochemical triggering of a reaction circuit consisting of two coupled transcription machineries, leading to the temporally oscillatory formation and depletion of an intermediate reaction product. The concept is applied to develop a photochemically triggered transcription circuit that, in the presence of RNase H, leads to the oscillatory generation of an intermediate anti-thrombin aptamer-modified product. The oscillating aptamer-modified product induces the rhythmic inhibition of thrombin, accompanied by the cyclic activation and deactivation of the fibrinogenesis process. The operation of the transient and oscillatory-modulated transcription machinery reaction circuits is accompanied by computational kinetic models, allowing to predict the dynamic behaviors of the system under different auxiliary conditions. The phototriggered transient transcription machinery and oscillatory circuit-guided fibrinogenesis is examined under physiological-like conditions and within a human plasma environment.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Jain N, Singh A, Bhatia D. DNA-amphiphilic nanostructures: synthesis, characterization and applications. NANOSCALE 2024; 17:18-52. [PMID: 39560070 DOI: 10.1039/d4nr03236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
DNA's extraordinary potential reaches far beyond its role as a carrier of genetic information. It serves as a remarkably adaptable structural foundation for constructing intricate nanostructures with a diverse range of functionalities. This inherent programmability sets DNA apart from other biomolecules like peptides, proteins, and small molecules. By covalently attaching DNA to synthetic hydrophobic moieties, researchers create DNA amphiphiles capable of interacting with artificial lipid bilayers and cell membranes. These hybrid structures have rapidly gained prominence due to their promising potential in the medical field. This review provides a comprehensive overview of the latest advancements in the synthesis of DNA amphiphiles and their assembly into well-defined nanostructures. It explores the diverse applications of these nanostructures across various medical domains, including targeted drug delivery, innovative immunotherapies, and gene-silencing techniques. Moreover, the review delves into the current challenges and prospects of this rapidly evolving field, highlighting the potential of DNA hybrid materials to revolutionize medical treatments and diagnostics. By addressing the limitations and exploring new avenues of research, scientists aim to unlock the full potential of DNA nanotechnology for the benefit of human health.
Collapse
Affiliation(s)
- Nishkarsh Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Prem Nagar, Patiala, Punjab 147004, India
| | - Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
3
|
Zhou P, Zhang S, Li L, Zhang R, Guo G, Zhang Y, Wang R, Liu M, Wang Z, Zhao H, Yang G, Xie S, Ran J. Targeted degradation of VEGF with bispecific aptamer-based LYTACs ameliorates pathological retinal angiogenesis. Theranostics 2024; 14:4983-5000. [PMID: 39267779 PMCID: PMC11388081 DOI: 10.7150/thno.98467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Neovascular ocular diseases (NODs) represent the leading cause of visual impairment globally. Despite significant advances in anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF), persistent challenges remain prevalent. As a proof-of-concept study, we herein demonstrate the effectiveness of targeted degradation of VEGF with bispecific aptamer-based lysosome-targeting chimeras (referred to as VED-LYTACs). Methods: VED-LYTACs were constructed with three distinct modules: a mannose-6-phosphate receptor (M6PR)-binding motif containing an M6PR aptamer, a VEGF-binding module with an aptamer targeting VEGF, and a linker essential for bridging and stabilizing the two-aptamer structure. The degradation efficiency of VED-LYTACs via the autophagy-lysosome system was examined using an enzyme-linked immunosorbent assay (ELISA) and immunofluorescence staining. Subsequently, the anti-angiogenic effects of VED-LYTACs were evaluated using in vitro wound healing assay, tube formation assay, three-dimensional sprouting assay, and ex vivo aortic ring sprouting assay. Finally, the potential therapeutic effects of VED-LYTACs on pathological retinal neovascularization and vascular leakage were tested by employing mouse models of NODs. Results: The engineered VED-LYTACs promote the interaction between M6PR and VEGF, consequently facilitating the translocation and degradation of VEGF through the lysosome. Our data show that treatment with VED-LYTACs significantly suppresses VEGF-induced angiogenic activities both in vitro and ex vivo. In addition, intravitreal injection of VED-LYTACs remarkably ameliorates abnormal vascular proliferation and leakage in mouse models of NODs. Conclusion: Our findings present a novel strategy for targeting VEGF degradation with an aptamer-based LYTAC system, effectively ameliorating pathological retinal angiogenesis. These results suggest that VED-LYTACs have potential as therapeutic agents for managing NODs.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Sai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Renshuai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guizhi Guo
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yufei Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Runa Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Miaoyuan Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhiyi Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Sun H, Zhao D, He Y, Meng H, Li Z. Aptamer-Based DNA Allosteric Switch for Regulation of Protein Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402531. [PMID: 38864341 PMCID: PMC11321679 DOI: 10.1002/advs.202402531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Allostery is a fundamental way to regulate the function of biomolecules playing crucial roles in cell metabolism and proliferation and is deemed the second secret of life. Given the limited understanding of the structure of natural allosteric molecules, the development of artificial allosteric molecules brings a huge opportunity to transform the allosteric mechanism into practical applications. In this study, the concept of bionics is introduced into the design of artificial allosteric molecules and an allosteric DNA switch with an activity site and an allosteric site based on two aptamers for selective inhibition of thrombin activity. Compared with the single aptamer, the allosteric switch possesses a significantly enhanced inhibition ability, which can be precisely regulated by converting the switch states. Moreover, the dynamic allosteric switch is further subjected to the control of the DNA threshold circuit for realizing automatic concentration determination and activity inhibition of thrombin. These compelling results confirm that this allosteric switch equipped with self-sensing and information-processing modules puts a new slant on the research of allosteric mechanisms and further application of allosteric tactics in chemical and biomedical fields.
Collapse
Affiliation(s)
- Hongzhi Sun
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Di Zhao
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Yating He
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Hong‐Min Meng
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Zhaohui Li
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| |
Collapse
|
5
|
Cui S, Liu X, Zhang X, Shi P, Zheng Y, Wang B, Zhang Q. Engineering Modular DNA Reaction Networks for Signal Processing. Chemistry 2024; 30:e202400740. [PMID: 38623910 DOI: 10.1002/chem.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Diversified molecular information-processing methods have significant implications for nanoscale manipulation and control, monitoring and disease diagnosis of organisms, and direct intervention in biological activities. However, as an effective approach for implementing multifunctional molecular information processing, DNA reaction networks (DRNs) with numerous functionally specialized molecular structures have challenged them on scale design, leading to increased network complexity, further causing problems such as signal leakage, attenuation, and cross-talk in network reactions. Our study developed a strategy for performing various signal-processing tasks through engineering modular DRNs. This strategy is based on a universal core unit with signal selection capability, and a time-adjustable signal self-resetting module is achieved by combing the core unit and self-resetting unit, which improves the time controllability of modular DRNs. In addition, multi-input and -output signal cross-catalytic and continuously adjustable signal delay modules were realized by combining core and threshold units, providing a flexible, precise method for modular DRNs to process the signal. The strategy simplifies the design of DRNs, helps generate design ideas for large-scale integrated DRNs with multiple functions, and provides prospects in biocomputing, gene regulation, and biosensing.
Collapse
Affiliation(s)
- Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Wang
- School of Software Engineering, Dalian University, Dalian, 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
7
|
Wang Y, Liu Y, Wang LL, Zhang QL, Xu L. Integrating Ligands into Nucleic Acid Systems. Chembiochem 2023; 24:e202300292. [PMID: 37401635 DOI: 10.1002/cbic.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Signal transduction from non-nucleic acid ligands (small molecules and proteins) to structural changes of nucleic acids plays a crucial role in both biomedical analysis and cellular regulations. However, how to bridge between these two types of molecules without compromising the expandable complexity and programmability of the nucleic acid nanomachines is a critical challenge. Compared with the previously most widely applied transduction strategies, we review the latest advances of a kinetically controlled approach for ligand-oligonucleotide transduction in this Concept article. This new design works through an intrinsic conformational alteration of the nucleic acid aptamer upon the ligand binding as a governing factor for nucleic acid strand displacement reactions. The functionalities and applications of this transduction system as a ligand converter on biosensing and DNA computation are described and discussed. Furthermore, we propose some potential scenarios for utilization of this ligand transduction design to regulate gene expression through synthetic RNA switches in the cellular contexts. Finally, future perspectives regarding this ligand-oligonucleotide transduction platform are also discussed.
Collapse
Affiliation(s)
- Yang Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering, School of Medicine, Shenzhen, 518060, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiu-Long Zhang
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, Fujian, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Ahmad K, Javed A, Lanphere C, Coveney PV, Orlova EV, Howorka S. Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations. Nat Commun 2023; 14:3630. [PMID: 37336895 DOI: 10.1038/s41467-023-38681-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023] Open
Abstract
DNA can be folded into rationally designed, unique, and functional materials. To fully realise the potential of these DNA materials, a fundamental understanding of their structure and dynamics is necessary, both in simple solvents as well as more complex and diverse anisotropic environments. Here we analyse an archetypal six-duplex DNA nanoarchitecture with single-particle cryo-electron microscopy and molecular dynamics simulations in solvents of tunable ionic strength and within the anisotropic environment of biological membranes. Outside lipid bilayers, the six-duplex bundle lacks the designed symmetrical barrel-type architecture. Rather, duplexes are arranged in non-hexagonal fashion and are disorted to form a wider, less elongated structure. Insertion into lipid membranes, however, restores the anticipated barrel shape due to lateral duplex compression by the bilayer. The salt concentration has a drastic impact on the stability of the inserted barrel-shaped DNA nanopore given the tunable electrostatic repulsion between the negatively charged duplexes. By synergistically combining experiments and simulations, we increase fundamental understanding into the environment-dependent structural dynamics of a widely used nanoarchitecture. This insight will pave the way for future engineering and biosensing applications.
Collapse
Affiliation(s)
- Katya Ahmad
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK
| | - Abid Javed
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Conor Lanphere
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK
| | - Peter V Coveney
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK.
- Advanced Research Computing Centre, University College London, London, WC1H 0AJ, UK.
- Informatics Institute, University of Amsterdam, Amsterdam, 1090 GH, The Netherlands.
| | - Elena V Orlova
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK.
| |
Collapse
|
9
|
Kieffer C, Genot AJ, Rondelez Y, Gines G. Molecular Computation for Molecular Classification. Adv Biol (Weinh) 2023; 7:e2200203. [PMID: 36709492 DOI: 10.1002/adbi.202200203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Indexed: 01/30/2023]
Abstract
DNA as an informational polymer has, for the past 30 years, progressively become an essential molecule to rationally build chemical reaction networks endowed with powerful signal-processing capabilities. Whether influenced by the silicon world or inspired by natural computation, molecular programming has gained attention for diagnosis applications. Of particular interest for this review, molecular classifiers have shown promising results for disease pattern recognition and sample classification. Because both input integration and computation are performed in a single tube, at the molecular level, this low-cost approach may come as a complementary tool to molecular profiling strategies, where all biomarkers are quantified independently using high-tech instrumentation. After introducing the elementary components of molecular classifiers, some of their experimental implementations are discussed either using digital Boolean logic or analog neural network architectures.
Collapse
Affiliation(s)
- Coline Kieffer
- Laboratoire Gulliver, UMR 7083, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, IRL 2820, University of Tokyo, Tokyo, 153-8505, Japan
| | - Yannick Rondelez
- Laboratoire Gulliver, UMR 7083, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France
| | - Guillaume Gines
- Laboratoire Gulliver, UMR 7083, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France
| |
Collapse
|
10
|
He S, Ding L, Yuan H, Zhao G, Yang X, Wu Y. A review of sensors for classification and subtype discrimination of cancer: Insights into circulating tumor cells and tumor-derived extracellular vesicles. Anal Chim Acta 2023; 1244:340703. [PMID: 36737145 DOI: 10.1016/j.aca.2022.340703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Liquid biopsy can reflect the state of tumors in vivo non-invasively, thus providing a strong basis for the early diagnosis, individualized treatment monitoring and prognosis of tumors. Circulating tumor cells (CTCs) and tumor-derived extracellular vesicles (tdEVs) contain information-rich components, such as nucleic acids and proteins, and they are essential markers for liquid biopsies. Their capture and analysis are of great importance for the study of disease occurrence and development and, consequently, have been the subject of many reviews. However, both CTCs and tdEVs carry the biological characteristics of their original tissue, and few reviews have focused on their function in the staging and classification of cancer. In this review, we focus on state-of-the-art sensors based on the simultaneous detection of multiple biomarkers within CTCs and tdEVs, with clinical applications centered on cancer classification and subtyping. We also provide a thorough discussion of the current challenges and prospects for novel sensors with the ultimate goal of cancer classification and staging. It is hoped that these most advanced technologies will bring new insights into the clinical practice of cancer screening and diagnosis.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huijie Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Zhang M, Sun Y. DNA-based customized functional modules for signal transformation. Front Chem 2023; 11:1140022. [PMID: 36864900 PMCID: PMC9971431 DOI: 10.3389/fchem.2023.1140022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Information on the temporal and spatial scale of cellular molecules in biological systems is crucial for estimating life processes and may be conducive to an improved understanding of disease progression. This intracellular and extracellular information is often difficult to obtain at the same time due to the limitations of accessibility and sensing throughput. DNA is an excellent material for in vivo and in vitro applications, and can be used to build functional modules that can transform bio-information (input) into ATCG sequence information (output). Due to their small volume and highly amenable programming, DNA-based functional modules provide an opportunity to monitor a range of information, from transient molecular events to dynamic biological processes. Over the past two decades, with the advent of customized strategies, a series of functional modules based on DNA networks have been designed to gather different information about molecules, including the identity, concentration, order, duration, location, and potential interactions; the action of these modules are based on the principle of kinetics or thermodynamics. This paper summarizes the available DNA-based functional modules that can be used for biomolecular signal sensing and transformation, reviews the available designs and applications of these modules, and assesses current challenges and prospects.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
12
|
Using CIVT-SELEX to Select Aptamers as Genetic Parts to Regulate Gene Circuits in a Cell-Free System. Int J Mol Sci 2023; 24:ijms24032833. [PMID: 36769156 PMCID: PMC9917220 DOI: 10.3390/ijms24032833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The complexity of genetic circuits has not seen a significant increase over the last decades, even with the rapid development of synthetic biology tools. One of the bottlenecks is the limited number of orthogonal transcription factor-operator pairs. Researchers have tried to use aptamer-ligand pairs as genetic parts to regulate transcription. However, most aptamers selected using traditional methods cannot be directly applied in gene circuits for transcriptional regulation. To that end, we report a new method called CIVT-SELEX to select DNA aptamers that can not only bind to macromolecule ligands but also undergo significant conformational changes, thus affecting transcription. The single-stranded DNA library with affinity to our example ligand human thrombin protein is first selected and enriched. Then, these ssDNAs are inserted into a genetic circuit and tested in the in vitro transcription screening to obtain the ones with significant inhibitory effects on downstream gene transcription when thrombins are present. These aptamer-thrombin pairs can inhibit the transcription of downstream genes, demonstrating the feasibility and robustness of their use as genetic parts in both linear DNAs and plasmids. We believe that this method can be applied to select aptamers of any target ligands and vastly expand the genetic part library for transcriptional regulation.
Collapse
|
13
|
Zhang QL, Wang Y, Wang LL, Xie F, Wu RY, Ma XY, Li H, Liu Y, Yao S, Xu L. Programming Non-Nucleic Acid Molecules into Computational Nucleic Acid Systems. Angew Chem Int Ed Engl 2023; 62:e202214698. [PMID: 36373715 DOI: 10.1002/anie.202214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid (NA) computation has been widely developed in the past years to solve kinds of logic and mathematic issues in both information technologies and biomedical analysis. However, the difficulty to integrate non-NA molecules limits its power as a universal platform for molecular computation. Here, we report a versatile prototype of hybridized computation integrated with both nucleic acids and non-NA molecules. Employing the conformationally controlled ligand converters, we demonstrate that non-NA molecules, including both small molecules and proteins, can be computed as nucleic acid strands to construct the circuitry with increased complexity and scalability, and can be even programmed to solve arithmetical calculations within the computational nucleic acid system. This study opens a new door for molecular computation in which all-NA circuits can be expanded with integration of various ligands, and meanwhile, ligands can be precisely programmed by the nuclei acid computation.
Collapse
Affiliation(s)
- Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruo-Yue Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xu-Yang Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Han Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shunchun Yao
- School of Electric Power Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Snider DM, Pandit S, Coffin ML, Ebrahimi SB, Samanta D. DNA-Mediated Control of Protein Function in Semi-Synthetic Systems. Chembiochem 2022; 23:e202200464. [PMID: 36058885 DOI: 10.1002/cbic.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Indexed: 01/25/2023]
Abstract
The development of strategies for controlling protein function in a precise and predictable manner has the potential to revolutionize catalysis, diagnostics, and medicine. In this regard, the use of DNA has emerged as a powerful approach for modulating protein activity. The programmable nature of DNA allows for constructing sophisticated architectures wherein proteins can be placed with control over position, orientation, and stoichiometry. This ability is especially useful considering that the properties of proteins can be influenced by their local environment or their proximity to other functional molecules. Here, we chronicle the different strategies that have been developed to interface DNA with proteins in semi-synthetic systems. We further delineate the unique applications unlocked by the unprecedented level of structural control that DNA affords. We end by outlining outstanding challenges in the area and discuss future research directions towards potential solutions.
Collapse
Affiliation(s)
- Dylan M Snider
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Mackenzie L Coffin
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Wang D, Yang Y, Chen F, Lyu Y, Tan W. Network topology-directed design of molecular CPU for cell-like dynamic information processing. SCIENCE ADVANCES 2022; 8:eabq0917. [PMID: 35947658 PMCID: PMC9365278 DOI: 10.1126/sciadv.abq0917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Natural cells (NCs) can automatically and continuously respond to fluctuant external information and distinguish meaningful stimuli from weak noise depending on their powerful genetic and protein networks. We herein report a network topology-directed design of dynamic molecular processing system (DMPS) as a molecular central processing unit that powers an artificial cell (AC) able to process fluctuant information in its immediate environment similar to NCs. By constructing a mixed cell community, ACs and NCs have synchronous response to fluctuant extracellular stimuli under physiological condition and in a blood vessel-mimic circulation system. We also show that fluctuant bioinformation released by NCs can be received and processed by ACs. The molecular design of DMPS-powered AC is expected to allow a profound understanding of biological systems, advance the construction of intelligent molecular systems, and promote more elegant bioengineering applications.
Collapse
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yani Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Fan D, Wang J, Han J, Wang E, Dong S. Engineering DNA logic systems with non-canonical DNA-nanostructures: basic principles, recent developments and bio-applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1131-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Chen L, Chen W, Liu G, Li J, Lu C, Li J, Tan W, Yang H. Nucleic acid-based molecular computation heads towards cellular applications. Chem Soc Rev 2021; 50:12551-12575. [PMID: 34604889 DOI: 10.1039/d0cs01508c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids, with the advantages of programmability and biocompatibility, have been widely used to design different kinds of novel biocomputing devices. Recently, nucleic acid-based molecular computing has shown promise in making the leap from the test tube to the cell. Such molecular computing can perform logic analysis within the confines of the cellular milieu with programmable modulation of biological functions at the molecular level. In this review, we summarize the development of nucleic acid-based biocomputing devices that are rationally designed and chemically synthesized, highlighting the ability of nucleic acid-based molecular computing to achieve cellular applications in sensing, imaging, biomedicine, and bioengineering. Then we discuss the future challenges and opportunities for cellular and in vivo applications. We expect this review to inspire innovative work on constructing nucleic acid-based biocomputing to achieve the goal of precisely rewiring, even reconstructing cellular signal networks in a prescribed way.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
18
|
Wang C, Han C, Du X, Guo W. Versatile CRISPR-Cas12a-Based Biosensing Platform Modulated with Programmable Entropy-Driven Dynamic DNA Networks. Anal Chem 2021; 93:12881-12888. [PMID: 34521192 DOI: 10.1021/acs.analchem.1c01597] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In addition to their roles as revolutionary genome engineering tools, CRISPR-Cas systems are also highly promising candidates in the construction of biosensing systems and diagnostic devices, which have attracted significant attention recently. However, the CRISPR-Cas system cannot be directly applied in the sensing of non-nucleic acid targets, and the needs of synthesizing and storing different vulnerable guide RNA for different targets also increase the application and storage costs of relevant biosensing systems, and therefore restrict their widespread applications. To tackle these barriers, in this work, a versatile CRISPR-Cas12a-based biosensing platform was developed through the introduction of an enzyme-free and robust DNA reaction network, the entropy-driven dynamic DNA network. By programming the sequences of the system, the entropy-driven catalysis-based dynamic DNA network can respond to different types of targets, such as nucleic acids or proteins, and then activate the CRISPR-Cas12a to generate amplified signals. As a proof of concept, both nucleic acid targets (a DNA target with random sequence, T, and an RNA target, microRNA-21 (miR-21)) and a non-nucleic acid target (a protein target, thrombin) were chosen as model analytes to address the feasibility of the designed sensing platform, with detection limits at the pM level for the nucleic acid analytes (7.4 pM for the DNA target T and 25.5 pM for miR-21) and 0.4 nM for thrombin. In addition, the detection of miR-21 or thrombin in human serum samples further demonstrated the applicability of the proposed biosensing platform in real sample analysis.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Chemistry, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, P. R. China
| | - Cuiyan Han
- College of Chemistry, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoxue Du
- College of Chemistry, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, P. R. China
| | - Weiwei Guo
- College of Chemistry, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
Zhang QL, Wang LL, Liu Y, Lin J, Xu L. A kinetically controlled platform for ligand-oligonucleotide transduction. Nat Commun 2021; 12:4654. [PMID: 34341342 PMCID: PMC8329073 DOI: 10.1038/s41467-021-24962-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Ligand-oligonucleotide transduction provides the critical pathway to integrate non-nucleic acid molecules into nucleic acid circuits and nanomachines for a variety of strand-displacement related applications. Herein, a general platform is constructed to convert the signals of ligands into desired oligonucleotides through a precise kinetic control. In this design, the ligand-aptamer binding sequence with an engineered duplex stem is introduced between the toehold and displacement domains of the invading strand to regulate the strand-displacement reaction. Employing this platform, we achieve efficient transduction of both small molecules and proteins orthogonally, and more importantly, establish logical and cascading operations between different ligands for versatile transduction. Besides, this platform is capable of being directly coupled with the signal amplification systems to further enhance the transduction performance. This kinetically controlled platform presents unique features with designing simplicity and flexibility, expandable complexity and system compatibility, which may pave a broad road towards nucleic acid-based developments of sophisticated transduction networks.
Collapse
Affiliation(s)
- Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
20
|
Abstract
DNA-based Boolean logic gates (for example, AND, OR, and NOT) can be assembled into complex computational circuits that generate an output signal in response to specific patterns of oligonucleotide inputs. However, the fundamental nature of NOT gates, which convert the absence of an input into an output, makes their implementation within DNA-based circuits difficult. Premature execution of a NOT gate before completion of its upstream computation introduces an irreversible error into the circuit. By utilizing photocaging groups, we developed a novel DNA gate design that prevents gate function until irradiation at a certain time point. Optical activation provides temporal control over circuit performance by preventing premature computation and is orthogonal to all other components of DNA computation devices. Using this approach, we designed NAND and NOR logic gates that respond to synthetic microRNA sequences. We further demonstrate the utility of the NOT gate within multilayer circuits in response to a specific pattern of four microRNAs.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Miao Y, Gao Q, Mao M, Zhang C, Yang L, Yang Y, Han D. Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanyan Miao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Qianqian Gao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Menghan Mao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Chao Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Liqun Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
22
|
Miao Y, Gao Q, Mao M, Zhang C, Yang L, Yang Y, Han D. Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes. Angew Chem Int Ed Engl 2021; 60:11267-11271. [PMID: 33634555 DOI: 10.1002/anie.202102170] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/12/2022]
Abstract
The ability to regulate membrane protein abundance offers great opportunities for developing therapeutic sites for various diseases. Herein, we describe a platform for the targeted degradation of membrane-associated proteins using bispecific aptamer chimeras that bind both the cell-surface lysosome-shuttling receptor (IGFIIR) and the targeted membrane-bound proteins of interest. We demonstrate that the aptamer chimeras can efficiently and quickly shuttle the therapeutically relevant membrane proteins of Met and PTK-7 to lysosomes and degrade them through the lysosomal protein degradation machinery. We anticipate that our method will provide a universal platform for the use of readily synthesized aptamer materials for biochemical research and potential therapeutics.
Collapse
Affiliation(s)
- Yanyan Miao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qianqian Gao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Menghan Mao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chao Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liqun Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
23
|
Kitamura Y, Yoshimura K, Kuramoto R, Katsuda Y, Ihara T. Catalytic Amplification of Electrochemical Signal in Homogeneous Solution Using an Entropy-driven DNA Circuit. ANAL SCI 2021; 37:533-537. [PMID: 33162418 DOI: 10.2116/analsci.20scn04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The electrochemical signal from ferrocene on a DNA probe was successfully modulated in a homogeneous solution by the template-directed formation and dissociation of an inclusion complex with β-cyclodextrin on another probe. The electrochemical response was amplified by combining with a DNA circuit, in which the target DNA served as a catalyst. This system did not require any modification of a complementary DNA with the ferrocene-modified probe on the electrode surface to separate the bound/free probe for the detection of 200 nM target DNA.
Collapse
Affiliation(s)
- Yusuke Kitamura
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Keisuke Yoshimura
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Ryo Kuramoto
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Yousuke Katsuda
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| | - Toshihiro Ihara
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University
| |
Collapse
|
24
|
Shang J, Li C, Li F, Wang Q, Yuan B, Wang F. Construction of an Enzyme-Free Initiator-Replicated Hybridization Chain Reaction Circuit for Amplified Methyltransferase Evaluation and Inhibitor Assay. Anal Chem 2021; 93:2403-2410. [DOI: 10.1021/acs.analchem.0c04356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chunxiao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bifeng Yuan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
25
|
Vieira DKS, Guterres MV, Marks RA, Oliveira PAC, Fonte Boa MCO, Vilela Neto OP. DNAr: An R Package to Simulate and Analyze CRN and DSD Networks. ACS Synth Biol 2020; 9:3416-3421. [PMID: 33283498 DOI: 10.1021/acssynbio.0c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical reaction networks (CRNs) have been proposed as an abstraction for molecular computing. DNA strand displacement (DSD) reactions are good candidates to realize this endeavor, since DNA strands can be wired to implement the desired dynamic behavior in a test tube. Specialists use simulators to help them design such chemical systems before experimental implementation. In this sense, we present the DNAr package, an alternative open-source tool, developed in R language, for users from multidisciplinary areas. The current version of our tool offers functions to simulate CRNs, convert a formal CRN into a DSD network, interpret results, export to Visual DSD, and create libraries. Here, we use the consensus CRN to show DNAr features and a neural network model to demonstrate scalability, simulating more than 600 chemical reactions in a few minutes.
Collapse
Affiliation(s)
- Daniel K. S. Vieira
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Marcos V. Guterres
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Renan A. Marks
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Poliana A. C. Oliveira
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Departamento de Computação, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Minas Gerais 30510-000, Brazil
| | - Maria C. O. Fonte Boa
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Omar P. Vilela Neto
- Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
26
|
Fan D, Wang J, Wang E, Dong S. Propelling DNA Computing with Materials' Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001766. [PMID: 33344121 PMCID: PMC7740092 DOI: 10.1002/advs.202001766] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/11/2023]
Abstract
DNA computing is recognized as one of the most outstanding candidates of next-generation molecular computers that perform Boolean logic using DNAs as basic elements. Benefiting from DNAs' inherent merits of low-cost, easy-synthesis, excellent biocompatibility, and high programmability, DNA computing has evoked substantial interests and gained burgeoning advancements in recent decades, and also exhibited amazing magic in smart bio-applications. In this review, recent achievements of DNA logic computing systems using multifarious materials as building blocks are summarized. Initially, the operating principles and functions of different logic devices (common logic gates, advanced arithmetic and non-arithmetic logic devices, versatile logic library, etc.) are elaborated. Afterward, state-of-the-art DNA computing systems based on diverse "toolbox" materials, including typical functional DNA motifs (aptamer, metal-ion dependent DNAzyme, G-quadruplex, i-motif, triplex, etc.), DNA tool-enzymes, non-DNA biomaterials (natural enzyme, protein, antibody), nanomaterials (AuNPs, magnetic beads, graphene oxide, polydopamine nanoparticles, carbon nanotubes, DNA-templated nanoclusters, upconversion nanoparticles, quantum dots, etc.) or polymers, 2D/3D DNA nanostructures (circular/interlocked DNA, DNA tetrahedron/polyhedron, DNA origami, etc.) are reviewed. The smart bio-applications of DNA computing to the fields of intelligent analysis/diagnosis, cell imaging/therapy, amongst others, are further outlined. More importantly, current "Achilles' heels" and challenges are discussed, and future promising directions of this field are also recommended.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Present address:
Institute of ChemistryThe Hebrew University of JerusalemJerusalem91904Israel
| | - Juan Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
27
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
28
|
Agrawal DK, Schulman R. Modular protein-oligonucleotide signal exchange. Nucleic Acids Res 2020; 48:6431-6444. [PMID: 32442276 PMCID: PMC7337525 DOI: 10.1093/nar/gkaa405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
While many methods are available to measure the concentrations of proteins in solution, the development of a method to quantitatively report both increases and decreases in different protein concentrations in real-time using changes in the concentrations of other molecules, such as DNA outputs, has remained a challenge. Here, we present a biomolecular reaction process that reports the concentration of an input protein in situ as the concentration of an output DNA oligonucleotide strand. This method uses DNA oligonucleotide aptamers that bind either to a specific protein selectively or to a complementary DNA oligonucleotide reversibly using toehold-mediated DNA strand-displacement. It is possible to choose the sequence of output strand almost independent of the sensing protein. Using this strategy, we implemented four different exchange processes to report the concentrations of clinically relevant human α-thrombin and vascular endothelial growth factor using changes in concentrations of DNA oligonucleotide outputs. These exchange processes can operate in tandem such that the same or different output signals can indicate changes in concentration of distinct or identical input proteins. The simplicity of our approach suggests a pathway to build devices that can direct diverse output responses in response to changes in concentrations of specific proteins.
Collapse
Affiliation(s)
- Deepak K Agrawal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.,Department of Bioengineering, University of Colorado Medicine, Aurora, CO 80045, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.,Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, USA.,Department of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, USA
| |
Collapse
|
29
|
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Shujuan Xu
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - He Yan
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Xiaowei Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Hoda Safari Yazd
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Xiang Li
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Tong Huang
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute McKnight Brain Institute University of Florida Gainesville Florida 32611 USA
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
- Institute of Molecular Medicine (IMM) Renji Hospital State Key Laboratory of Oncogenes and Related Genes Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
30
|
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem Int Ed Engl 2020; 60:2221-2231. [PMID: 32282107 DOI: 10.1002/anie.202003563] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The advent of SELEX (systematic evolution of ligands by exponential enrichment) technology has shown the ability to evolve artificial ligands with affinity and specificity able to meet growing clinical demand for probes that can, for example, distinguish between the target leukemia cells and other cancer cells within the matrix of heterogeneity, which characterizes cancer cells. Though antibodies are the conventional and ideal choice as a molecular recognition tool for many applications, aptamers complement the use of antibodies due to many unique advantages, such as small size, low cost, and facile chemical modification. This Minireview will focus on the novel applications of aptamers and SELEX, as well as opportunities to develop molecular tools able to meet future clinical needs in biomedicine.
Collapse
Affiliation(s)
- Long Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Shujuan Xu
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - He Yan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaowei Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Hoda Safari Yazd
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Xiang Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Tong Huang
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida, 32611, USA.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Yang L, Zhao Y, Xu X, Xu K, Zhang M, Huang K, Kang H, Lin H, Yang Y, Han D. An Intelligent DNA Nanorobot for Autonomous Anticoagulation. Angew Chem Int Ed Engl 2020; 59:17697-17704. [DOI: 10.1002/anie.202007962] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Linlin Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Yumeng Zhao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xuemei Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kangli Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Mingzhi Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kui Huang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huaizhi Kang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Hsiao‐chu Lin
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
32
|
Yang L, Zhao Y, Xu X, Xu K, Zhang M, Huang K, Kang H, Lin H, Yang Y, Han D. An Intelligent DNA Nanorobot for Autonomous Anticoagulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linlin Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Yumeng Zhao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xuemei Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kangli Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Mingzhi Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kui Huang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huaizhi Kang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Hsiao‐chu Lin
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
33
|
Damase TR, Islam MM, Shipley M, Allen PB. Thioflavin T as a noncovalent reporter for a label-free, non-enzymatic, catalytic DNA amplifier. Methods Appl Fluoresc 2020; 8:045001. [DOI: 10.1088/2050-6120/aba357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Aptamer-based optical manipulation of protein subcellular localization in cells. Nat Commun 2020; 11:1347. [PMID: 32165631 PMCID: PMC7067792 DOI: 10.1038/s41467-020-15113-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/14/2020] [Indexed: 01/03/2023] Open
Abstract
Protein-dominant cellular processes cannot be fully decoded without precise manipulation of their activity and localization in living cells. Advances in optogenetics have allowed spatiotemporal control over cellular proteins with molecular specificity; however, these methods require recombinant expression of fusion proteins, possibly leading to conflicting results. Instead of modifying proteins of interest, in this work, we focus on design of a tunable recognition unit and develop an aptamer-based near-infrared (NIR) light-responsive nanoplatform for manipulating the subcellular localization of specific proteins in their native states. Our results demonstrate that this nanoplatform allows photocontrol over the cytoplasmic-nuclear shuttling behavior of the target RelA protein (a member of the NF-κβ family), enabling regulation of RelA-related signaling pathways. With a modular design, this aptamer-based nanoplatform can be readily extended for the manipulation of different proteins (e.g., lysozyme and p53), holding great potential to develop a variety of label-free protein photoregulation strategies for studying complex biological events. Optogenetic manipulation of protein localisation in cells involves the creation of fusions that can influence activity. Here the authors develop a near-infrared light-responsive aptamer-based system to regulate the nuclear-cytoplasmic shuttling of NF-κB subunit RelA.
Collapse
|
35
|
Berckman EA, Hartzell EJ, Mitkas AA, Sun Q, Chen W. Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annu Rev Chem Biomol Eng 2020; 11:35-62. [PMID: 32155350 DOI: 10.1146/annurev-chembioeng-101519-121526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nature has evolved a wide range of strategies to create self-assembled protein nanostructures with structurally defined architectures that serve a myriad of highly specialized biological functions. With the advent of biological tools for site-specific protein modifications and de novo protein design, a wide range of customized protein nanocarriers have been created using both natural and synthetic biological building blocks to mimic these native designs for targeted biomedical applications. In this review, different design frameworks and synthetic decoration strategies for achieving these functional protein nanostructures are summarized. Key attributes of these designer protein nanostructures, their unique functions, and their impact on biosensing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; .,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Alexander A Mitkas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
36
|
Xiong M, Liu Q, Tang D, Liu L, Kong G, Fu X, Yang C, Lyu Y, Meng HM, Ke G, Zhang XB. “Apollo Program” in Nanoscale: Landing and Exploring Cell-Surface with DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2020; 3:2723-2742. [DOI: 10.1021/acsabm.9b01193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiaoyi Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Chan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
37
|
Song H, Yang Z, Jiang M, Zhang G, Gao Y, Shen Z, Wu ZS, Lou Y. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Talanta 2019; 204:29-35. [DOI: 10.1016/j.talanta.2019.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/02/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
|
38
|
Zhang C, Wang Z, Liu Y, Yang J, Zhang X, Li Y, Pan L, Ke Y, Yan H. Nicking-Assisted Reactant Recycle To Implement Entropy-Driven DNA Circuit. J Am Chem Soc 2019; 141:17189-17197. [DOI: 10.1021/jacs.9b07521] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- College of Medical Technology, Peking University Health Science Center, Beijing 100871, China
| | - Zhiyu Wang
- Huazhong University of Science and Technology, Wuhan 430074, Hubei China
| | | | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinxin Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yifan Li
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Linqiang Pan
- Huazhong University of Science and Technology, Wuhan 430074, Hubei China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
39
|
Chang X, Zhang C, Lv C, Sun Y, Zhang M, Zhao Y, Yang L, Han D, Tan W. Construction of a Multiple-Aptamer-Based DNA Logic Device on Live Cell Membranes via Associative Toehold Activation for Accurate Cancer Cell Identification. J Am Chem Soc 2019; 141:12738-12743. [PMID: 31328519 DOI: 10.1021/jacs.9b05470] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability to accurately identify and isolate cells is the cornerstone of precise disease diagnosis and therapies. A single-step cell identification method based on logic analysis of multiple surface markers will have unique advantages because of its accuracy and efficacy. Herein, using multiple DNA aptamers for cancer biomarker recognition and associative toehold activation for signal integration and amplification as two molecular keys, we have successfully operated a cell-surface device that can perform AND Boolean logic analysis of multiple biomarkers and precisely label the target cell subtype in large populations of similar cells via the presence or absence of different biomarkers. Our approach can achieve single-step cancer cell identification and isolation with excellent sensitivity and accuracy and thus will have broad applications in biological science, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Xu Chang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Chao Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Cheng Lv
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Yang Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Yumeng Zhao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Linlin Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China.,Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
40
|
Yang L, Meng L, Song J, Xiao Y, Wang R, Kang H, Han D. Dynamic colloidal nanoparticle assembly triggered by aptamer-receptor interactions on live cell membranes. Chem Sci 2019; 10:7466-7471. [PMID: 31489169 PMCID: PMC6713859 DOI: 10.1039/c9sc02693b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Cells use dynamic systems such as enzyme cascades and signaling networks to control cellular functions. Synthetic dynamic systems that can be target-responsive have great potential to be applied for biomedical applications but the operation of such dynamic systems in complex cellular environments remains challenging. Here, we engineered an aptamer and DNA displacement reaction-based dynamic system that can transform its nanostructure in response to the epithelial cell adhesion molecule (EpCAM) on live cell membranes. The dynamic system consisted of a core nanoparticle and small satellite nanoparticles. With the modifications of different DNA hairpin strands and swing arm strands partially hybridized with an aptamer that specifically recognizes the EpCAM, the two separated particles can dynamically assemble into a core-satellite assembly by aptamer-receptor interactions on the cell membrane surface. The structural change of the system from separated particles to a core-satellite assembly generated plasmonic coupled hot spots for surface-enhanced Raman scattering (SERS) for sensitively capturing the dynamic structural change of the nanoassembly in the cellular environment. These concepts provide strategies for engineering dynamic nanotechnology systems for biological and biomedical applications in complex biological environments.
Collapse
Affiliation(s)
- Linlin Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology , Xiamen University , Xiamen , Fujian 361005 , China .
| | - Lingyan Meng
- College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , China
| | - Jiaying Song
- Pen-Tung Sah Institute of Micro-Nano Science and Technology , Xiamen University , Xiamen , Fujian 361005 , China .
| | - Yue Xiao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology , Xiamen University , Xiamen , Fujian 361005 , China .
| | - Ruowen Wang
- Institute of Molecular Medicine , Renji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China .
| | - Huaizhi Kang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology , Xiamen University , Xiamen , Fujian 361005 , China . .,Institute of Molecular Medicine , Renji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China .
| | - Da Han
- Institute of Molecular Medicine , Renji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China .
| |
Collapse
|
41
|
Kitamura Y, Nozaki A, Ozaki R, Katsuda Y, Ihara T. Catalytic Formation of Luminescent Complex Clusters Based on Autonomous Strand Exchange Reaction of DNA. ACS APPLIED BIO MATERIALS 2019; 2:2988-2993. [DOI: 10.1021/acsabm.9b00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yusuke Kitamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Akihiro Nozaki
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Rie Ozaki
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yousuke Katsuda
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Toshihiro Ihara
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
42
|
Sun H, Yang L, Thompson MP, Schara S, Cao W, Choi W, Hu Z, Zang N, Tan W, Gianneschi NC. Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies. Bioconjug Chem 2019; 30:1889-1904. [PMID: 30969752 DOI: 10.1021/acs.bioconjchem.9b00166] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, the field of polymer-oligonucleotide nanomaterials has flourished because of the development of synthetic techniques, particularly living polymerization technologies, which provide access to polymers with well-defined architectures, precise molecular weights, and terminal or side-chain functionalities. Various "living" polymerization methods have empowered chemists with the ability to prepare functional polymer-oligonucleotide conjugates yielding a library of architectures, including linear diblock, comb, star, hyperbranched star, and gel morphologies. Since oligonucleotides are hydrophilic and synthetic polymers can be tailored with hydrophobicity, these amphiphilic polymer-oligonucleotide conjugates are capable of self-assembling into nanostructures with different shapes, leading to many high-value-added biomedical applications, such as drug delivery systems, gene regulation, and 3D-bioprinting. This review aims to highlight the main living polymerization approaches to polymer-oligonucleotide conjugates, including ring-opening metathesis polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer polymerization (RAFT), and ring-opening polymerization of cyclic esters and N-carboxyanhydride. The self-assembly properties and resulting applications of polymer-DNA hybrid materials are highlighted as well.
Collapse
Affiliation(s)
- Hao Sun
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Lu Yang
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| | - Matthew P Thompson
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Steve Schara
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Wei Cao
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Wonmin Choi
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Ziying Hu
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Nanzhi Zang
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Weihong Tan
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, and Biomedical Engineering, International Institute for Nanotechnology, and Simpson Querrey Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
43
|
Li F, Xiao M, Pei H. DNA‐Based Chemical Reaction Networks. Chembiochem 2019; 20:1105-1114. [DOI: 10.1002/cbic.201800721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Fan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen University Nanhai Avenue 3688 518060 Shenzhen Guangzhou P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| |
Collapse
|
44
|
Abstract
Proteins are not designed to be standalone entities and must coordinate their collective action for optimum performance. Nature has developed through evolution the ability to colocalize the functional partners of a cascade enzymatic reaction in order to ensure efficient exchange of intermediates. Inspired by these natural designs, synthetic scaffolds have been created to enhance the overall biological pathway performance. In this chapter, we describe several DNA- and protein-based scaffold approaches to assemble artificial enzyme cascades for a wide range of applications. We highlight the key benefits and drawbacks of these approaches to provide insights on how to choose the appropriate scaffold for different cascade systems.
Collapse
Affiliation(s)
- Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
45
|
Damase TR, Allen PB. Designed and Evolved Nucleic Acid Nanotechnology: Contrast and Complementarity. Bioconjug Chem 2019; 30:2-12. [PMID: 30561987 DOI: 10.1021/acs.bioconjchem.8b00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this review, we explore progress on DNA aptamers (evolved DNA), DNA circuits (designed DNA), and the newest projects that integrate both. Designed DNA nanotechnology includes static nanostructures, dynamic nanodevices, and reaction networks (sometimes called DNA circuits). DNA circuits are dynamic DNA reactions that perform computations and sequence-specific amplification. Directed evolution can be used to produce DNA that can recognize specific targets. Aptamers are evolved nucleic acids; they are produced artificially with an in vitro selection process. DNA aptamers are molecular recognition elements made of single-stranded DNA (ssDNA) with the potential to interact with proteins, small molecules, viruses, and even cells. Designed molecular structures can incorporate aptamers for applications with immediate practical impact.
Collapse
Affiliation(s)
- Tulsi Ram Damase
- Department of Chemistry , University of Idaho , 001 Renfrew Hall, 875 Perimeter Drive , Moscow , Idaho 83844-2343 , United States
| | - Peter B Allen
- Department of Chemistry , University of Idaho , 001 Renfrew Hall, 875 Perimeter Drive , Moscow , Idaho 83844-2343 , United States
| |
Collapse
|
46
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
47
|
Hu P, Li M, Wei X, Yang B, Li Y, Li CY, Du J. Cooperative Toehold: A Mechanism To Activate DNA Strand Displacement and Construct Biosensors. Anal Chem 2018; 90:9751-9760. [PMID: 30040891 DOI: 10.1021/acs.analchem.8b01202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toehold-mediated DNA strand displacement has proven powerful in the construction of various DNA circuits, DNA machines, and biosensors. So far, many new toehold activation mechanisms have been developed to achieve programmed DNA strand displacement behaviors. However, almost all those toeholds are inflexible via either a covalently attached manner or a complementary hybridization strategy, which limit the versatility of DNA devices. To solve this problem, we developed a new toehold, named "cooperative toehold", to activate DNA strand displacement. On the basis of a base stacking mechanism, the cooperative toehold is comprised of two moieties with completely independent DNA sequences between each other. The cooperative toehold enabled one to continuously tune the rate of DNA strand displacement, as well as more sophisticated strand displacement reactions. The cooperative toehold has also been employed as a universal signal translator for biosensors to qualitatively determine RNA and ATP. Moreover, as a novel specific PCR monitoring system, cooperative toehold-mediated DNA strand displacement can detect the pUC18 plasmid in genomic DNA samples with an aM detection limit.
Collapse
Affiliation(s)
- Pan Hu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Mengmeng Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Xijiao Wei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Ye Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Chun-Yan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Jun Du
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| |
Collapse
|
48
|
Lai W, Ren L, Tang Q, Qu X, Li J, Wang L, Li L, Fan C, Pei H. Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS NANO 2018; 12:7093-7099. [PMID: 29906089 DOI: 10.1021/acsnano.8b02864] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.
Collapse
Affiliation(s)
- Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Lei Ren
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| |
Collapse
|
49
|
Wang G, Li Z, Ma N. Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors. ACS Chem Biol 2018; 13:1705-1713. [PMID: 29257662 DOI: 10.1021/acschembio.7b00887] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-functionalized quantum dots (DNA-QDs) have found considerable application in biosensing and bioimaging. Different from the first generation (I-G) DNA-QDs prepared via conventional bioconjugation chemistry, the second generation (II-G) DNA-QDs prepared via one-step DNA-templated QD synthesis features a defined number of DNA valencies (usually monovalency), which is preferable for controlled assembly and biological targeting. In this review, we summarize recent progress in designing QD probes based on II-G DNA-QDs for advanced sensing and imaging applications. It opens up new avenues for highly sensitive and intelligent sensing of a range of disease-relevant biomolecules in vitro and in living cells.
Collapse
Affiliation(s)
- Ganglin Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhi Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Nan Ma
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
50
|
Lyu Y, Wu C, Heinke C, Han D, Cai R, Teng IT, Liu Y, Liu H, Zhang X, Liu Q, Tan W. Constructing Smart Protocells with Built-In DNA Computational Core to Eliminate Exogenous Challenge. J Am Chem Soc 2018; 140:6912-6920. [PMID: 29746121 PMCID: PMC6442726 DOI: 10.1021/jacs.8b01960] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A DNA reaction network is like a biological algorithm that can respond to "molecular input signals", such as biological molecules, while the artificial cell is like a microrobot whose function is powered by the encapsulated DNA reaction network. In this work, we describe the feasibility of using a DNA reaction network as the computational core of a protocell, which will perform an artificial immune response in a concise way to eliminate a mimicked pathogenic challenge. Such a DNA reaction network (RN)-powered protocell can realize the connection of logical computation and biological recognition due to the natural programmability and biological properties of DNA. Thus, the biological input molecules can be easily involved in the molecular computation and the computation process can be spatially isolated and protected by artificial bilayer membrane. We believe the strategy proposed in the current paper, i.e., using DNA RN to power artificial cells, will lay the groundwork for understanding the basic design principles of DNA algorithm-based nanodevices which will, in turn, inspire the construction of artificial cells, or protocells, that will find a place in future biomedical research.
Collapse
Affiliation(s)
- Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cuichen Wu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Charles Heinke
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - I-Ting Teng
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yuan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|