1
|
Wiest MC. A quantum microtubule substrate of consciousness is experimentally supported and solves the binding and epiphenomenalism problems. Neurosci Conscious 2025; 2025:niaf011. [PMID: 40342554 PMCID: PMC12060853 DOI: 10.1093/nc/niaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Recent experimental evidence, briefly reviewed here, points to intraneuronal microtubules as a functional target of inhalational anesthetics. This finding is consistent with the general hypothesis that the biophysical substrate of consciousness is a collective quantum state of microtubules and is specifically predicted by the Orchestrated Objective Reduction theory of Penrose and Hameroff. I also review experimental evidence that functionally relevant quantum effects occur in microtubules at room temperature, and direct physical evidence of a macroscopic quantum entangled state in the living human brain that is correlated with the conscious state and working memory performance. Having established the physical and biological plausibility of quantum microtubule states related to consciousness, I turn to consider potential practical advantages of a quantum brain and enormous theoretical advantages of a quantum consciousness model. In particular, I explain how the quantum model makes panprotopsychism a viable solution to physicalism's hard problem by solving the phenomenal binding or combination problem. Postulating a quantum physical substrate of consciousness solves the binding problem in principle but appears to leave us with an epiphenomenalism problem, meaning that consciousness seems to have no causal power to confer a fitness advantage, so its evolution remains as an inexplicable mystery. I propose that, contrary to a certain (zombie) intuition, the quantum approach can also solve this problem in a nontrivial way. The Orchestrated Objective Reduction (Orch OR) theory of Penrose and Hameroff embodies these advantages of a quantum model and also accounts for nonalgorithmic human understanding and the psychological arrow of time.
Collapse
Affiliation(s)
- Michael C Wiest
- Department of Neuroscience, Wellesley College, 106 Central St., Wellesley, MA, United States
| |
Collapse
|
2
|
Li N, You Z, Ren Y, Kim HH, Yang J, Li G, Doheny JT, Ding W, Xia S, Wang S, Zhou X, Wu X, Shen S, Dong Y, Xie Z, Chen L, Mao J, Martyn JAJ. Microtubule-modulating drugs alter sensitivity to isoflurane in mice. BMC Anesthesiol 2025; 25:109. [PMID: 40021968 PMCID: PMC11869693 DOI: 10.1186/s12871-025-02956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Microtubules (MTs) have been postulated as one of the molecular targets underlying loss of consciousness induced by inhalational anesthetics. Microtubule-targeting chemotherapy drugs and opioids affect MT stability and function. However, the impact of prolonged administration of these drugs on anesthetic potency and anesthesia induction and emergence times remain unelucidated. METHODS Epothilone D, paclitaxel, vinblastine or opioid morphine were administered alone for a prolonged period (> 2 weeks) to male CD1 mice and their sensitivity to incremental concentrations of isoflurane were examined using loss of righting reflex (LORR) response as a measure of sensivity. The induction and emergence time after administration and termination of fixed concentration of isoflurance (1.2%) were also assessed. RESULTS Compared with saline treatment, epothilone D and vinblastine induced a leftward (more sensitive) shift of LORR response curves (95% confidence intervals for EC50: epothilone D, 0.75[0.73, 0.77] vs. saline, 0.97[0.96, 0.98]; vinblastine, 0.74[0.73, 0.75] vs. saline, 0.98[0.97, 0.99]). In contrast, morphine caused a rightward (more resistant) LORR response curve (morphine, 1.16[1.15, 1.17] vs. saline, 0.97[0.96, 0.98]), while paclitaxel produced a marginal but significant rightward shift of LORR (paclitaxel, 1.05[1.03, 1.06] vs. saline, 0.98[0.97, 0.99]). At concentration of 1.2% isoflurane, morphine treatment prolonged (275 ± 50) and vinblastine treatment reduced (96.5 ± 26) the anesthetic induction latency (in second) relative to saline treatment (211 ± 39). The latency of emergence from anesthesia was shorter in morphine (58 ± 20) and vinblastine-treated (98 ± 43) mice compared to saline (176 ± 50) treatment. The induction or emergence latencies of epothilone D or paclitaxel treatment did not differ from saline treatment between groups. CONCLUSIONS Microtubule-modulating drugs can affect not only sensitivity but also induction and emergence times to inhalational anesthetic isoflurane in mice. This study highlights a possible role of MTDs in modulating anesthetic effects in disparate directions, which has implications for anesthetic concentrations that should be used for induction, maintenance and emergence of anesthesia. These findings in rodents may have relevance to the perioperative care of cancer patients who receive MT-targeting chemotherapy drugs or even opioids for pain for prolonged periods.
Collapse
Affiliation(s)
- Na Li
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, USA
| | - Yang Ren
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, USA
| | - Hyung Hwan Kim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ge Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jason T Doheny
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Suyun Xia
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shiyu Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xue Zhou
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xinbo Wu
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, USA.
- Clinical and Biochemical Pharmacology Laboratory, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Pavlovič A. Touch, light, wounding: how anaesthetics affect plant sensing abilities. PLANT CELL REPORTS 2024; 43:293. [PMID: 39580775 PMCID: PMC11586303 DOI: 10.1007/s00299-024-03369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
KEY MESSAGE Anaesthetics affect not only humans and animals but also plants. Plants exposed to certain anaesthetics lose their ability to respond adequately to various stimuli such as touch, injury or light. Available results indicate that anaesthetics modulate ion channel activities in plants, e.g. Ca2+ influx. The word anaesthesia means loss of sensation. Plants, as all living creatures, can also sense their environment and they are susceptible to anaesthesia. Although some anaesthetics are often known as drugs with well-defined target to their animal/human receptors, some other are promiscuous in their binding. Both have effects on plants. Application of general volatile anaesthetics (GVAs) inhibits plant responses to different stimuli but also induces strong cellular response. Of particular interest is the ability of GVAs inhibit long-distance electrical and Ca2+ signalling probably through inhibition of GLUTAMATE RECEPTOR-LIKE proteins (GLRs), the effect which is surprisingly very similar to inhibition of nerve impulse transmission in animals or human. However, GVAs act also as a stressor for plants and can induce their own Ca2+ signature, which strongly reprograms gene expression . Down-regulation of genes encoding enzymes of chlorophyll biosynthesis and pigment-protein complexes are responsible for inhibited de-etiolation and photomorphogenesis. Vesicle trafficking, germination, and circumnutation movement of climbing plants are also strongly inhibited. On the other hand, other cellular processes can be upregulated, for example, heat shock response and generation of reactive oxygen species (ROS). Upregulation of stress response by GVAs results in preconditioning/priming and can be helpful to withstand abiotic stresses in plants. Thus, anaesthetic drugs may become a useful tool for scientists studying plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Khan S, Huang Y, Timuçin D, Bailey S, Lee S, Lopes J, Gaunce E, Mosberger J, Zhan M, Abdelrahman B, Zeng X, Wiest MC. Microtubule-Stabilizer Epothilone B Delays Anesthetic-Induced Unconsciousness in Rats. eNeuro 2024; 11:ENEURO.0291-24.2024. [PMID: 39147581 PMCID: PMC11363512 DOI: 10.1523/eneuro.0291-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Volatile anesthetics are currently believed to cause unconsciousness by acting on one or more molecular targets including neural ion channels, receptors, mitochondria, synaptic proteins, and cytoskeletal proteins. Anesthetic gases including isoflurane bind to cytoskeletal microtubules (MTs) and dampen their quantum optical effects, potentially contributing to causing unconsciousness. This possibility is supported by the finding that taxane chemotherapy consisting of MT-stabilizing drugs reduces the effectiveness of anesthesia during surgery in human cancer patients. In order to experimentally assess the contribution of MTs as functionally relevant targets of volatile anesthetics, we measured latencies to loss of righting reflex (LORR) under 4% isoflurane in male rats injected subcutaneously with vehicle or 0.75 mg/kg of the brain-penetrant MT-stabilizing drug epothilone B (epoB). EpoB-treated rats took an average of 69 s longer to become unconscious as measured by latency to LORR. This was a statistically significant difference corresponding to a standardized mean difference (Cohen's d) of 1.9, indicating a "large" normalized effect size. The effect could not be accounted for by tolerance from repeated exposure to isoflurane. Our results suggest that binding of the anesthetic gas isoflurane to MTs causes unconsciousness and loss of purposeful behavior in rats (and presumably humans and other animals). This finding is predicted by models that posit consciousness as a property of a quantum physical state of neural MTs.
Collapse
Affiliation(s)
- Sana Khan
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Yixiang Huang
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Derin Timuçin
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Shantelle Bailey
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Sophia Lee
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Jessica Lopes
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Emeline Gaunce
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Jasmine Mosberger
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Michelle Zhan
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | | | - Xiran Zeng
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Michael C Wiest
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| |
Collapse
|
5
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
6
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
7
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
8
|
Hameroff S. Consciousness, Cognition and the Neuronal Cytoskeleton - A New Paradigm Needed in Neuroscience. Front Mol Neurosci 2022; 15:869935. [PMID: 35782391 PMCID: PMC9245524 DOI: 10.3389/fnmol.2022.869935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Viewing the brain as a complex computer of simple neurons cannot account for consciousness nor essential features of cognition. Single cell organisms with no synapses perform purposeful intelligent functions using their cytoskeletal microtubules. A new paradigm is needed to view the brain as a scale-invariant hierarchy extending both upward from the level of neurons to larger and larger neuronal networks, but also downward, inward, to deeper, faster quantum and classical processes in cytoskeletal microtubules inside neurons. Evidence shows self-similar patterns of conductive resonances repeating in terahertz, gigahertz, megahertz, kilohertz and hertz frequency ranges in microtubules. These conductive resonances apparently originate in terahertz quantum dipole oscillations and optical interactions among pi electron resonance clouds of aromatic amino acid rings of tryptophan, phenylalanine and tyrosine within each tubulin, the component subunit of microtubules, and the brain's most abundant protein. Evidence from cultured neuronal networks also now shows that gigahertz and megahertz oscillations in dendritic-somatic microtubules regulate specific firings of distal axonal branches, causally modulating membrane and synaptic activities. The brain should be viewed as a scale-invariant hierarchy, with quantum and classical processes critical to consciousness and cognition originating in microtubules inside neurons.
Collapse
Affiliation(s)
- Stuart Hameroff
- Department of Anesthesiology, The University of Arizona, Tucson, AZ, United States
- Department of Psychology, The University of Arizona, Tucson, AZ, United States
- Center for Consciousness Studies, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Hong JY, Cassel J, Yang J, Lin H, Weiser BP. High-Throughput Screening Identifies Ascorbyl Palmitate as a SIRT2 Deacetylase and Defatty-Acylase Inhibitor. ChemMedChem 2021; 16:3484-3494. [PMID: 34382754 DOI: 10.1002/cmdc.202100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Indexed: 11/10/2022]
Abstract
Small-molecule inhibitors of the human sirtuin SIRT2 are being developed because of their therapeutic potential in a variety of diseases. Here, we developed a high-throughput screen to identify novel SIRT2 inhibitors using a fluorescent SIRT2 probe, 1-aminoanthracene (AMA). AMA has high fluorescence when bound to SIRT2, and its fluorescence reduces >10-fold when it is displaced from SIRT2 by other ligands. We used this property of AMA to screen a library of known bioactive compounds for SIRT2 binding and discovered two known pharmaceutical compounds that bind SIRT2 with Kd values in the low μM range, ascorbyl palmitate and pictilisib. Both compounds inhibit the deacetylase and defatty-acylase activities of SIRT2. While pictilisib has selectivity for SIRT2, ascorbyl palmitate also inhibits the enzymatic activities of SIRT1 and SIRT6. Finally, we show that ascorbyl palmitate inhibits SIRT2 deacetylase and defatty-acylase activities in cells, and SIRT2 inhibition by ascorbyl palmitate contributes to the cytotoxicity of the compound. Our work discovered novel SIRT2 deacylase inhibitors and presents a screening approach that can be applied on a larger scale.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Joel Cassel
- Molecular Screening & Protein Expression Facility, Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jie Yang
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| |
Collapse
|
10
|
Ludeña EV, Tapia O. On interpretations of quantum mechanics and a novel nonrepresentational framework. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Abstract
The 'Orch OR' theory attributes consciousness to quantum computations in microtubules inside brain neurons. Quantum computers process information as superpositions of multiple possibilities (quantum bits or qubits) which, in Orch OR, are alternative collective dipole oscillations orchestrated ('Orch') by microtubules. These orchestrated oscillations entangle, compute, and terminate ('collapse of the wavefunction') by Penrose objective reduction ('OR'), resulting in sequences of Orch OR moments with orchestrated conscious experience (metaphorically more like music than computation). Each Orch OR event selects microtubule states which govern neuronal functions. Orch OR has broad explanatory power, and is easily falsifiable.
Collapse
Affiliation(s)
- Stuart Hameroff
- Departments of Anesthesiology and Psychology, Banner-University Medical Center,Center for Consciousness Studies, The University of Arizona, Tucson AZ, AZ
| |
Collapse
|
12
|
Bi D, Yang J, Hong JY, Parikh P, Hinds N, Infanti J, Lin H, Weiser BP. Substrate-Dependent Modulation of SIRT2 by a Fluorescent Probe, 1-Aminoanthracene. Biochemistry 2020; 59:3869-3878. [PMID: 32941003 PMCID: PMC7880049 DOI: 10.1021/acs.biochem.0c00564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sirtuin isoform 2 (SIRT2) is an enzyme that catalyzes the removal of acyl groups from lysine residues. SIRT2's catalytic domain has a hydrophobic tunnel where its substrate acyl groups bind. Here, we report that the fluorescent probe 1-aminoanthracene (AMA) binds within SIRT2's hydrophobic tunnel in a substrate-dependent manner. AMA's interaction with SIRT2 was characterized by its enhanced fluorescence upon protein binding (>10-fold). AMA interacted weakly with SIRT2 alone in solution (Kd = 37 μM). However, when SIRT2 was equilibrated with a decanoylated peptide substrate, AMA's affinity for SIRT2 was enhanced ∼10-fold (Kd = 4 μM). The peptide's decanoyl chain and AMA co-occupied SIRT2's hydrophobic tunnel when bound to the protein. In contrast, binding of AMA to SIRT2 was competitive with a myristoylated substrate whose longer acyl chain occluded the entire tunnel. AMA competitively inhibited SIRT2 demyristoylase activity with an IC50 of 21 μM, which was significantly more potent than its inhibition of other deacylase activities. Finally, binding and structural analysis suggests that the AMA binding site in SIRT2's hydrophobic tunnel was structurally stabilized when SIRT2 interacted with a decanoylated or 4-oxononanoylated substrate, but AMA's binding site was less stable when SIRT2 was bound to an acetylated substrate. Our use of AMA to explore changes in SIRT2's hydrophobic tunnel that are induced by interactions with specific acylated substrates has implications for developing ligands that modulate SIRT2's substrate specificity.
Collapse
Affiliation(s)
- David Bi
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Jie Yang
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Prashit Parikh
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Nicole Hinds
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Joseph Infanti
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Howard Hughes Medical Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| |
Collapse
|
13
|
Abstract
General anesthesia serves a critically important function in the clinical care of human patients. However, the anesthetized state has foundational implications for biology because anesthetic drugs are effective in organisms ranging from paramecia, to plants, to primates. Although unconsciousness is typically considered the cardinal feature of general anesthesia, this endpoint is only strictly applicable to a select subset of organisms that are susceptible to being anesthetized. We review the behavioral endpoints of general anesthetics across species and propose the isolation of an organism from its environment - both in terms of the afferent arm of sensation and the efferent arm of action - as a generalizable definition. We also consider the various targets and putative mechanisms of general anesthetics across biology and identify key substrates that are conserved, including cytoskeletal elements, ion channels, mitochondria, and functionally coupled electrical or neural activity. We conclude with a unifying framework related to network function and suggest that general anesthetics - from single cells to complex brains - create inefficiency and enhance modularity, leading to the dissociation of functions both within an organism and between the organism and its surroundings. Collectively, we demonstrate that general anesthesia is not restricted to the domain of modern medicine but has broad biological relevance with wide-ranging implications for a diverse array of species.
Collapse
Affiliation(s)
- Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Translational Research Laboratories, 125 S. 31st St., Philadelphia, PA 19104-3403, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Hameroff SR. Cognitive Changes After Surgery in Clinical Practice. Anesth Analg 2020. [DOI: 10.1213/ane.0000000000004591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Li T, Tang H, Zhu J, Zhang JH. The finer scale of consciousness: quantum theory. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:585. [PMID: 31807566 DOI: 10.21037/atm.2019.09.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Consciousness is a multidisciplinary problem that has puzzled all human beings since the origin of human life. Being defined in various pointcuts by philosophers, biologists, physicists, and neuroscientists, the definitive explanation of consciousness is still suspending. The nature of consciousness has taken great evolution by centering on the behavioral and neuronal correlates of perception and cognition, for example, the theory of Neural Correlates of Consciousness, the Global Workspace Theory, the Integrated Information Theory. While tremendous progress has been achieved, they are not enough if we are to understand even basic facts-how and where does the consciousness emerge. The Quantum mechanics, a thriving branch of physics, has an inseparable relationship with consciousness (e.g., observer effect) since Planck created this subject and its derived quantum consciousness theory can perfectly fill this gap. In this review, we briefly introduce some consciousness hypotheses derived from quantum mechanics and focus on the framework of orchestrated objective reduction (Orch-OR), including its principal points and practicality.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hailiang Tang
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jianhong Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - John H Zhang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
16
|
Bundles of Brain Microtubules Generate Electrical Oscillations. Sci Rep 2018; 8:11899. [PMID: 30093720 PMCID: PMC6085364 DOI: 10.1038/s41598-018-30453-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Microtubules (MTs) are long cylindrical structures of the cytoskeleton that control cell division, intracellular transport, and the shape of cells. MTs also form bundles, which are particularly prominent in neurons, where they help define axons and dendrites. MTs are bio-electrochemical transistors that form nonlinear electrical transmission lines. However, the electrical properties of most MT structures remain largely unknown. Here we show that bundles of brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. Under intracellular-like conditions, voltage-clamped MT bundles displayed electrical oscillations with a prominent fundamental frequency at 39 Hz that progressed through various periodic regimes. The electrical oscillations represented, in average, a 258% change in the ionic conductance of the MT structures. Interestingly, voltage-clamped membrane-permeabilized neurites of cultured mouse hippocampal neurons were also capable of both, generating electrical oscillations, and conducting the electrical signals along the length of the structure. Our findings indicate that electrical oscillations are an intrinsic property of brain MT bundles, which may have important implications in the control of various neuronal functions, including the gating and regulation of cytoskeleton-regulated excitable ion channels and electrical activity that may aid and extend to higher brain functions such as memory and consciousness.
Collapse
|
17
|
|
18
|
Fluorescent Anesthetics. Methods Enzymol 2018; 603:93-101. [PMID: 29673536 DOI: 10.1016/bs.mie.2018.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methods for using exogenous fluorophore and general anesthetic 1-aminoanthracene (1-AMA) and its photoactive derivative 1-azidoanthracene (1-AZA) are provided. 1-AMA potentiates GABAA chloride currents and immobilizes Xenopus laevis tadpoles. Cellular and tissue anesthetic distribution can be imaged for quantifying "on-pathway" and "off-pathway" targets. 1-AZA shares targets with 1-AMA and offers further optoanesthetic spatial and temporal control upon near-UV laser irradiation. Furthermore, 1-AZA adduction provides screening of possible relevant anesthetic protein targets and binding site characterization. We highlight several useful imaging and binding assays to demonstrate utility of 1-AMA and its derivative 1-AZA.
Collapse
|
19
|
Abstract
The precise mechanism by which propofol enhances GABAergic transmission remains unclear, but much progress has been made regarding the underlying structural and dynamic mechanisms. Furthermore, it is now clear that propofol has additional molecular targets, many of which are functionally influenced at concentrations achieved clinically. Focusing primarily on molecular targets, this brief review attempts to summarize some of this recent progress while pointing out knowledge gaps and controversies. It is not intended to be comprehensive but rather to stimulate further thought, discussion, and study on the mechanisms by which propofol produces its pleiotropic effects.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
20
|
Craddock TJA, Kurian P, Preto J, Sahu K, Hameroff SR, Klobukowski M, Tuszynski JA. Anesthetic Alterations of Collective Terahertz Oscillations in Tubulin Correlate with Clinical Potency: Implications for Anesthetic Action and Post-Operative Cognitive Dysfunction. Sci Rep 2017; 7:9877. [PMID: 28852014 PMCID: PMC5575257 DOI: 10.1038/s41598-017-09992-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022] Open
Abstract
Anesthesia blocks consciousness and memory while sparing non-conscious brain activities. While the exact mechanisms of anesthetic action are unknown, the Meyer-Overton correlation provides a link between anesthetic potency and solubility in a lipid-like, non-polar medium. Anesthetic action is also related to an anesthetic's hydrophobicity, permanent dipole, and polarizability, and is accepted to occur in lipid-like, non-polar regions within brain proteins. Generally the protein target for anesthetics is assumed to be neuronal membrane receptors and ion channels, however new evidence points to critical effects on intra-neuronal microtubules, a target of interest due to their potential role in post-operative cognitive dysfunction (POCD). Here we use binding site predictions on tubulin, the protein subunit of microtubules, with molecular docking simulations, quantum chemistry calculations, and theoretical modeling of collective dipole interactions in tubulin to investigate the effect of a group of gases including anesthetics, non-anesthetics, and anesthetic/convulsants on tubulin dynamics. We found that these gases alter collective terahertz dipole oscillations in a manner that is correlated with their anesthetic potency. Understanding anesthetic action may help reveal brain mechanisms underlying consciousness, and minimize POCD in the choice and development of anesthetics used during surgeries for patients suffering from neurodegenerative conditions with compromised cytoskeletal microtubules.
Collapse
Affiliation(s)
- Travis J A Craddock
- Departments of Psychology & Neuroscience, Computer Science, and Clinical Immunology, and the Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Philip Kurian
- National Human Genome Center and Department of Medicine, Howard University College of Medicine, and Computational Physics Laboratory, Howard University, Washington, DC, USA
| | - Jordane Preto
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Kamlesh Sahu
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Stuart R Hameroff
- Departments of Anesthesiology and Psychology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | | | - Jack A Tuszynski
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Woll KA, Dailey WP, Brannigan G, Eckenhoff RG. Shedding Light on Anesthetic Mechanisms: Application of Photoaffinity Ligands. Anesth Analg 2017; 123:1253-1262. [PMID: 27464974 DOI: 10.1213/ane.0000000000001365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anesthetic photoaffinity ligands have had an increasing presence within anesthesiology research. These ligands mimic parent general anesthetics and allow investigators to study anesthetic interactions with receptors and enzymes; identify novel targets; and determine distribution within biological systems. To date, nearly all general anesthetics used in medicine have a corresponding photoaffinity ligand represented in the literature. In this review, we examine all aspects of the current methodologies, including ligand design, characterization, and deployment. Finally we offer points of consideration and highlight the future outlook as more photoaffinity ligands emerge within the field.
Collapse
Affiliation(s)
- Kellie A Woll
- From the Departments of *Anesthesiology and Critical Care and †Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; ‡Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania; and §Department of Physics, Rutgers University, Camden, New Jersey
| | | | | | | |
Collapse
|
22
|
Common general anesthetic propofol impairs kinesin processivity. Proc Natl Acad Sci U S A 2017; 114:E4281-E4287. [PMID: 28484025 DOI: 10.1073/pnas.1701482114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Propofol is the most widely used i.v. general anesthetic to induce and maintain anesthesia. It is now recognized that this small molecule influences ligand-gated channels, including the GABAA receptor and others. Specific propofol binding sites have been mapped using photoaffinity ligands and mutagenesis; however, their precise target interaction profiles fail to provide complete mechanistic underpinnings for the anesthetic state. These results suggest that propofol and other common anesthetics, such as etomidate and ketamine, may target additional protein networks of the CNS to contribute to the desired and undesired anesthesia end points. Some evidence for anesthetic interactions with the cytoskeleton exists, but the molecular motors have received no attention as anesthetic targets. We have recently discovered that propofol inhibits conventional kinesin-1 KIF5B and kinesin-2 KIF3AB and KIF3AC, causing a significant reduction in the distances that these processive kinesins can travel. These microtubule-based motors are highly expressed in the CNS and the major anterograde transporters of cargos, such as mitochondria, synaptic vesicle precursors, neurotransmitter receptors, cell signaling and adhesion molecules, and ciliary intraflagellar transport particles. The single-molecule results presented show that the kinesin processive stepping distance decreases 40-60% with EC50 values <100 nM propofol without an effect on velocity. The lack of a velocity effect suggests that propofol is not binding at the ATP site or allosteric sites that modulate microtubule-activated ATP turnover. Rather, we propose that a transient propofol allosteric site forms when the motor head binds to the microtubule during stepping.
Collapse
|
23
|
Naylor JC, Kilts JD, Szabo ST, Dunn CE, Keefe FJ, Tupler LA, Shampine LJ, Morey RA, Strauss JL, Hamer RM, Wagner HR, Marx CE. Allopregnanolone Levels Are Inversely Associated with Self-Reported Pain Symptoms in U.S. Iraq and Afghanistan-Era Veterans: Implications for Biomarkers and Therapeutics. PAIN MEDICINE 2016; 17:25-32. [PMID: 26176345 DOI: 10.1111/pme.12860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Pain symptoms are common among Iraq/Afghanistan-era veterans, many of whom continue to experience persistent pain symptoms despite multiple pharmacological interventions. Preclinical data suggest that neurosteroids such as allopregnanolone demonstrate pronounced analgesic properties, and thus represent logical biomarker candidates and therapeutic targets for pain. Allopregnanolone is also a positive GABAA receptor modulator with anxiolytic, anticonvulsant, and neuroprotective actions in rodent models. We previously reported inverse associations between serum allopregnanolone levels and self-reported pain symptom severity in a pilot study of 82 male veterans. METHODS The current study investigates allopregnanolone levels in a larger cohort of 485 male Iraq/Afghanistan-era veterans to attempt to replicate these initial findings. Pain symptoms were assessed by items from the Symptom Checklist-90-R (SCL-90-R) querying headache, chest pain, muscle soreness, and low back pain over the past 7 days. Allopregnanolone levels were quantified by gas chromatography/mass spectrometry. RESULTS Associations between pain ratings and allopregnanolone levels were examined with Poisson regression analyses, controlling for age and smoking. Bivariate nonparametric Mann–Whitney analyses examining allopregnanolone levels across high and low levels of pain were also conducted. Allopregnanolone levels were inversely associated with muscle soreness [P = 0.0028], chest pain [P = 0.032], and aggregate total pain (sum of all four pain items) [P = 0.0001]. In the bivariate analyses, allopregnanolone levels were lower in the group reporting high levels of muscle soreness [P = 0.001]. CONCLUSIONS These findings are generally consistent with our prior pilot study and suggest that allopregnanolone may function as an endogenous analgesic. Thus, exogenous supplementation with allopregnanolone could have therapeutic potential. The characterization of neurosteroid profiles may also have biomarker utility.
Collapse
|
24
|
Affiliation(s)
| | - Ivan J. Dmochowski
- Department of Chemistry University of Pennsylvania 231 S. 34thSt. Philadelphia PA 19104
| |
Collapse
|
25
|
Cantero MDR, Perez PL, Smoler M, Villa Etchegoyen C, Cantiello HF. Electrical Oscillations in Two-Dimensional Microtubular Structures. Sci Rep 2016; 6:27143. [PMID: 27256791 PMCID: PMC4891677 DOI: 10.1038/srep27143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022] Open
Abstract
Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K(+) (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton.
Collapse
Affiliation(s)
- María del Rocío Cantero
- Cátedra de Biofísica, Facultad de Odontología. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula L. Perez
- Cátedra de Biofísica, Facultad de Odontología. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Smoler
- Cátedra de Biofísica, Facultad de Odontología. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Villa Etchegoyen
- Cátedra de Biofísica, Facultad de Odontología. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Horacio F. Cantiello
- Cátedra de Biofísica, Facultad de Odontología. Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
26
|
Barlow PW. The natural history of consciousness, and the question of whether plants are conscious, in relation to the Hameroff-Penrose quantum-physical 'Orch OR' theory of universal consciousness. Commun Integr Biol 2015; 8:e1041696. [PMID: 26478778 PMCID: PMC4594572 DOI: 10.1080/19420889.2015.1041696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/28/2015] [Accepted: 04/13/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences; University of Bristol; Bristol Life Sciences Building; Bristol, UK
| |
Collapse
|
27
|
Linganna RE, Levy WJ, Dmochowski IJ, Eckenhoff RG, Speck RM. Taxane modulation of anesthetic sensitivity in surgery for nonmetastatic breast cancer. J Clin Anesth 2015; 27:481-5. [PMID: 26036970 DOI: 10.1016/j.jclinane.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/19/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022]
Abstract
STUDY OBJECTIVE AND DESIGN The mechanism of action of commonly used general anesthetics is largely unknown. One hypothesized mechanism is through modulation of microtubule stability. Taxanes, a subset of chemotherapeutic drugs known to alter microtubule stability and commonly used to treat breast cancer, offer a natural experiment to test our hypothesis that patients exposed to taxanes prior to surgery, as compared to after surgery, would have a partial resistance to general anesthetics. SETTING, PATIENTS, AND MEASUREMENTS The anesthetic record of adult women with nonmetastatic breast cancer was used to obtain changes in heart rate and blood pressure surrounding incision, and the amount of inhaled anesthetic agent, induction, and rescue drugs administered. MAIN RESULTS Change in blood pressure in response to incision was significantly higher in the neoadjuvant group (P = .03), whereas change in heart rate was not (P = .53). A greater amount of morphine was administered in the neoadjuvant group (26.3 vs 15.5 mg, P = .02), although not a higher concentration of inhaled anesthetics (P = .15). CONCLUSION These results suggest that the alteration of microtubule stability is one of a number of mechanisms of inhaled anesthetics.
Collapse
Affiliation(s)
| | - Warren J Levy
- University of Pennsylvania, Department of Anesthesiology.
| | | | | | - Rebecca M Speck
- University of Pennsylvania, Department of Anesthesiology; Evidera, Outcomes Research.
| |
Collapse
|
28
|
Weiser BP, Eckenhoff RG. Propofol inhibits SIRT2 deacetylase through a conformation-specific, allosteric site. J Biol Chem 2015; 290:8559-68. [PMID: 25666612 DOI: 10.1074/jbc.m114.620732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
meta-Azi-propofol (AziPm) is a photoactive analog of the general anesthetic propofol. We photolabeled a myelin-enriched fraction from rat brain with [(3)H]AziPm and identified the sirtuin deacetylase SIRT2 as a target of the anesthetic. AziPm photolabeled three SIRT2 residues (Tyr(139), Phe(190), and Met(206)) that are located in a single allosteric protein site, and propofol inhibited [(3)H]AziPm photolabeling of this site in myelin SIRT2. Structural modeling and in vitro experiments with recombinant human SIRT2 determined that propofol and [(3)H]AziPm only bind specifically and competitively to the enzyme when co-equilibrated with other substrates, which suggests that the anesthetic site is either created or stabilized in enzymatic conformations that are induced by substrate binding. In contrast to SIRT2, specific binding of [(3)H]AziPm or propofol to recombinant human SIRT1 was not observed. Residues that line the propofol binding site on SIRT2 contact the sirtuin co-substrate NAD(+) during enzymatic catalysis, and assays that measured SIRT2 deacetylation of acetylated α-tubulin revealed that propofol inhibits enzymatic function. We conclude that propofol inhibits the mammalian deacetylase SIRT2 through a conformation-specific, allosteric protein site that is unique from the previously described binding sites of other inhibitors. This suggests that propofol might influence cellular events that are regulated by protein acetylation state.
Collapse
Affiliation(s)
- Brian P Weiser
- From the Departments of Anesthesiology and Critical Care and Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
29
|
Pagano T, Carcamo N, Kenny JE. Investigation of the fluorescence quenching of 1-aminoanthracene by dissolved oxygen in cyclohexane. J Phys Chem A 2014; 118:11512-20. [PMID: 25427103 DOI: 10.1021/jp5094806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study provides a detailed investigation of the fluorescence quenching mechanisms of the fluorophore, 1-aminoanthracene, by dissolved oxygen in cyclohexane. Dynamic/collisional quenching dominates in the system studied, but there is also a small component of static quenching. Stern-Volmer plots revealed that the dynamic quenching constant is 0.445 ± 0.014 mM(-1) and represents ∼95% of total quenching in the system. The static quenching rate constant is 0.024 ± 0.001 mM(-1), and mechanisms by complex formation and "sphere of action" static quenching were examined. Compensation of steady-state fluorescence data for solvent loss during the gradual deoxygenation period of the experiment was found to be important in order to conduct a thorough evaluation of the different quenching mechanisms of the system. The enhancement factors, (F(o)/F) and (τ(o)/τ), for 1-aminoanthracene were determined to be 2.20 ± 0.01 and 2.08 ± 0.01, respectively, and the diffusion-controlled bimolecular rate constant was found to be 2.1 × 10(10) ± 0.2 × 10(10) M(-1) s(-1). The work involved the development of a novel instrumental setup that simultaneously measures several important spectroscopic parameters (steady-state fluorescence intensity, absorbance, fluorescence lifetime, and dissolved oxygen concentration) for the careful study of oxygen quenching mechanisms of 1-aminoanthracene in a cyclohexane solution.
Collapse
Affiliation(s)
- Todd Pagano
- Department of Science & Mathematics/Laboratory Science Technology program, Rochester Institute of Technology/National Technical Institute for the Deaf , Rochester, New York 14623, United States
| | | | | |
Collapse
|
30
|
Weiser BP, Bu W, Wong D, Eckenhoff RG. Sites and functional consequence of VDAC-alkylphenol anesthetic interactions. FEBS Lett 2014; 588:4398-403. [PMID: 25448677 DOI: 10.1016/j.febslet.2014.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/10/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
General anesthetics have previously been shown to bind mitochondrial VDAC. Here, using a photoactive analog of the anesthetic propofol, we determined that alkylphenol anesthetics bind to Gly56 and Val184 on rat VDAC1. By reconstituting rat VDAC into planar bilayers, we determined that propofol potentiates VDAC gating with asymmetry at the voltage polarities; in contrast, propofol does not affect the conductance of open VDAC. Additional experiments showed that propofol also does not affect gramicidin A properties that are sensitive to lipid bilayer mechanics. Together, this suggests propofol affects VDAC function through direct protein binding, likely at the lipid-exposed channel surface, and that gating can be modulated by ligand binding to the distal ends of VDAC β-strands where Gly56 and Val184 are located.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - David Wong
- Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
31
|
Weiser BP, Salari R, Eckenhoff RG, Brannigan G. Computational investigation of cholesterol binding sites on mitochondrial VDAC. J Phys Chem B 2014; 118:9852-60. [PMID: 25080204 PMCID: PMC4141696 DOI: 10.1021/jp504516a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
mitochondrial voltage-dependent anion channel (VDAC) allows
passage of ions and metabolites across the mitochondrial outer membrane.
Cholesterol binds mammalian VDAC, and we investigated the effects
of binding to human VDAC1 with atomistic molecular dynamics simulations
that totaled 1.4 μs. We docked cholesterol to specific sites
on VDAC that were previously identified with NMR, and we tested the
reliability of multiple docking results in each site with simulations.
The most favorable binding modes were used to build a VDAC model with
cholesterol occupying five unique sites, and during multiple 100 ns
simulations, cholesterol stably and reproducibly remained bound to
the protein. For comparison, VDAC was simulated in systems with identical
components but with cholesterol initially unbound. The dynamics of
loops that connect adjacent β-strands were most affected by
bound cholesterol, with the averaged root-mean-square fluctuation
(RMSF) of multiple residues altered by 20–30%. Cholesterol
binding also stabilized charged residues inside the channel and localized
the surrounding electrostatic potentials. Despite this, ion diffusion
through the channel was not significantly affected by bound cholesterol,
as evidenced by multi-ion potential of mean force measurements. Although
we observed modest effects of cholesterol on the open channel, our
model will be particularly useful in experiments that investigate
how cholesterol affects VDAC function under applied electrochemical
forces and also how other ligands and proteins interact with the channel.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology and Critical Care and ‡Department of Pharmacology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
32
|
Hameroff S, Penrose R. Reply to criticism of the ‘Orch OR qubit’ – ‘Orchestrated objective reduction’ is scientifically justified. Phys Life Rev 2014. [DOI: 10.1016/j.plrev.2013.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
van Swinderen B, Kottler B. Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. Bioessays 2014; 36:372-81. [PMID: 24449137 DOI: 10.1002/bies.201300154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several general anesthetics produce their sedative effect by activating endogenous sleep pathways. We propose that general anesthesia is a two-step process targeting sleep circuits at low doses, and synaptic release mechanisms across the entire brain at the higher doses required for surgery. Our hypothesis synthesizes data from a variety of model systems, some which require sleep (e.g. rodents and adult flies) and others that probably do not sleep (e.g. adult nematodes and cultured cell lines). Non-sleeping systems can be made insensitive (or hypersensitive) to some anesthetics by modifying a single pre-synaptic protein, syntaxin1A. This suggests that the synaptic release machinery, centered on the highly conserved SNARE complex, is an important target of general anesthetics in all animals. A careful consideration of SNARE architecture uncovers a potential mechanism for general anesthesia, which may be the primary target in animals that do not sleep, but a secondary target in animals that sleep.
Collapse
Affiliation(s)
- Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
34
|
Weiser BP, Woll KA, Dailey WP, Eckenhoff RG. Mechanisms revealed through general anesthetic photolabeling. CURRENT ANESTHESIOLOGY REPORTS 2013; 4:57-66. [PMID: 24563623 DOI: 10.1007/s40140-013-0040-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
General anesthetic photolabels are used to reveal molecular targets and molecular binding sites of anesthetic ligands. After identification, the relevance of anesthetic substrates or binding sites can be tested in biological systems. Halothane and photoactive analogs of isoflurane, propofol, etomidate, neurosteroids, anthracene, and long chain alcohols have been used in anesthetic photolabeling experiments. Interrogated protein targets include the nicotinic acetylcholine receptor, GABAA receptor, tubulin, leukocyte function-associated antigen-1, and protein kinase C. In this review, we summarize insights revealed by photolabeling these targets, as well as general features of anesthetics, such as their propensity to partition to mitochondria and bind voltage-dependent anion channels. The theory of anesthetic photolabel design and the experimental application of photoactive ligands are also discussed.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Kellie A Woll
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, 231 S. 34th Street, Philadelphia, PA 19104
| | - Roderic G Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
35
|
Consciousness in the universe: a review of the 'Orch OR' theory. Phys Life Rev 2013; 11:39-78. [PMID: 24070914 DOI: 10.1016/j.plrev.2013.08.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
The nature of consciousness, the mechanism by which it occurs in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990's that consciousness depends on biologically 'orchestrated' coherent quantum processes in collections of microtubules within brain neurons, that these quantum processes correlate with, and regulate, neuronal synaptic and membrane activity, and that the continuous Schrödinger evolution of each such process terminates in accordance with the specific Diósi-Penrose (DP) scheme of 'objective reduction' ('OR') of the quantum state. This orchestrated OR activity ('Orch OR') is taken to result in moments of conscious awareness and/or choice. The DP form of OR is related to the fundamentals of quantum mechanics and space-time geometry, so Orch OR suggests that there is a connection between the brain's biomolecular processes and the basic structure of the universe. Here we review Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We also introduce a novel suggestion of 'beat frequencies' of faster microtubule vibrations as a possible source of the observed electro-encephalographic ('EEG') correlates of consciousness. We conclude that consciousness plays an intrinsic role in the universe.
Collapse
|