1
|
Ali S, Rinshad VA, Mukherjee PS. Solvent- and Concentration-Induced Topological Transformation of a Ruthenium(II)-Based Trigonal Prism to a Triply Interlocked [2] Catenane. Inorg Chem 2024; 63:21423-21429. [PMID: 39463351 DOI: 10.1021/acs.inorgchem.4c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Synthesis of interlocked supramolecular cages has been a growing field of interest due to their structural diversity. Herein, we report the template-free synthesis of a Ru(II) triply interlocked [2] catenane using coordination-driven self-assembly. The self-assembly of a triazine-based tripyridyl donor L (2,4,6-tris(5-(pyridin-4-yl)thiophen-3-yl)-1,3,5-triazine) with a dinuclear Ru(II) acceptor M (Ru2(dhnq)(η6-p-cymene)2)(CF3SO3)2) yielded two distinct structures depending on the solvent and concentration. In methanol, a triply interlocked metalla [2] catenane (MC2) was formed, whereas in nitromethane, a non-interlocked cage (MC1) was obtained. The non-interlocked cage MC1 was gradually converted to MC2 in nitromethane by the increase in the concentration of cage MC1 from 0.5 to 9 mM. The interlocked cage (MC2) was stable after formation and was unaffected by the change in concentration. Notably, the free cage (MC1) exhibited host-guest interactions with polycyclic aromatic aldehydes, stabilizing the non-interlocked structure even at higher concentrations. In contrast, the triply interlocked [2] catenane (MC2) remains stable due to self-penetration and does not encapsulate guest molecules. This work showcases the stimuli-induced irreversible structural transformation of a triangular prismatic cage to its triply interlocked [2] catenane by employing metal-ligand coordination chemistry.
Collapse
Affiliation(s)
- Shamsad Ali
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Wang B, Liu Y, Chen X, Liu XT, Liu Z, Lu C. Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications. Chem Soc Rev 2024; 53:10189-10215. [PMID: 39229831 DOI: 10.1039/d3cs00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and in vitro and in vivo imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.
Collapse
Affiliation(s)
- Beibei Wang
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuhao Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Ting Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhongyi Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Chao Lu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Shi J, Li K, Yu H, Han N, Yang T, Jiang X, Hao XQ, Chen Z, Wu G, Zhang H, Li B, Wang M. Ultra-High Metal-Ion Selectivity Induced by Intramolecular Cation-π Interactions for the One-Pot Synthesis of Precise Heterometallic Architectures. Angew Chem Int Ed Engl 2024:e202416150. [PMID: 39325549 DOI: 10.1002/anie.202416150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Heterometallic supramolecules, known for their unique synergistic effects, have shown broad applications in photochemistry, host-guest chemistry, and catalysis. However, there are great challenges to precisely construct heterometallic supramolecules rather than a statistical mixture, due to the limited metal-ion selectivity of coordination units. In particular, heterometallic architectures precisely encoded with different metal ions usually fail to form in a one-pot method when only one type of coordinated motif exists due to its poor metal-ion selectivity. Herein, we propose an effective intramolecular cation-π (ICπ) strategy and successfully constructed the heterometallic supramolecule Zn2Cu4L34 by the one-pot self-assembly of tritopic terpyridyl ligand L3 with Zn(II) and Cu(II), following a clear self-assembly mechanism in which only thermodynamic dimers ZnL12 and Cu2L22 were constructed with model ligands L1, L2, Zn(II) and Cu(II) with perfect self-sorting and an ultra-high metal-selectivity feature. The successful construction of the heterometallic supramolecule Zn2Cu4L34, in which the definite sequence of metal ions Zn(II) and Cu(II) is encoded in the one-pot method, will offer a novel approach to precisely construct heterometallic architectures.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Tianyi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 637553, Singapore
| | - Xin-Qi Hao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
4
|
Hua PP, Bai JH, Feng HJ, Wang JW, Zhang LF, Jin GX. The Topological Transformation of 4 1 Knot to 4 12 Link through Supramolecular Fusion. J Am Chem Soc 2024; 146:26427-26434. [PMID: 39241233 DOI: 10.1021/jacs.4c09385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Realizing topological transformation through supramolecular fusion is particularly challenging, as the self-assembly of disparate components often results in the orthogonal assembly of building blocks into distinct structures rather than the formation of a heteroleptic architecture. This study introduces a topological transformation, transitioning from a figure-eight knot (41 knot) to a Solomon link (412 link) through a supramolecular fusion process. By employing two structurally similar amino acid ligands (L1 and L3) of varying lengths as bridge ligands, we obtained figure-eight knot 1 and a molecular tweezer-like compound 3 when individually complexed with binuclear Cp*Rh acceptor B1. Our results revealed that subtle modifications to bridge ligands can lead to dramatic changes in their structures and recognition properties. Moreover, we successfully achieved the targeted formation of a heteroleptic Solomon link 4 by blending figure-eight knot 1 and compound 3 in a 1:1 ratio without the need for templates. This procedure effortlessly converted the 41 knot into a 412 link, thus marking a significant advancement in the topological transformation. This work not only marks the construction of the first heteroleptic Solomon link comprising two distinct metallamacrocycles but also demonstrates a process of supramolecular fusion-based topological transformation involving three distinct topological structures.
Collapse
Affiliation(s)
- Pan-Pan Hua
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Hua Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Hui-Jun Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Wen Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Li-Fang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Yan M, Bao Y, Li S, Liao S, Yin S. Thermal-Sensitive Supramolecular Coordination Complex Formed by Orthogonal Metal Coordination and Host-Guest Interactions for an Electrical Thermometer. ACS Macro Lett 2024; 13:834-840. [PMID: 38913020 DOI: 10.1021/acsmacrolett.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Supramolecular coordination complexes (SCCs) are popular for their structural diversity and functional adaptability, which make them suitable for a wide range of applications. Photophysical and mechanical performance of SCCs are the most attractive characteristics, yet their ionically conductive behavior and potential in electrical sensing have been rarely investigated. This study reports a well-designed SCC that integrates orthogonal metal coordination and host-guest interactions to achieve sensitive electrical thermal sensing. Owing to the thermodynamic nature of the host-guest interaction, the SCC encounters thermally induced disassembly, leading to significantly enhanced ion mobility and thus allowing for the precise detection of minor temperature variation. The SCC-based thermometer is then fabricated with the assistance of 3D printing and demonstrates good accuracy and reliability in monitoring human skin temperature and real-time temperature changes of mouse during the whole anesthesia and recovery process. Our findings provide an innovative strategy for developing electrical thermometers and expand the current application scope of SCCs in electrical sensing.
Collapse
Affiliation(s)
- Miaomiao Yan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yinglong Bao
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Sen Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shenglong Liao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
6
|
Bao SJ, Zou Y, Zhang HN, Jin GX. The codriven assembly of molecular metalla-links ([Formula: see text], [Formula: see text]) and metalla-knots ([Formula: see text], [Formula: see text]) via coordination and noncovalent interactions. Proc Natl Acad Sci U S A 2024; 121:e2407570121. [PMID: 38941275 PMCID: PMC11228484 DOI: 10.1073/pnas.2407570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
Although mechanically interlocked molecules (MIMs) display unique properties and functions associated with their intricate connectivity, limited assembly strategies are available for their synthesis. Herein, we presented a synergistic assembly strategy based on coordination and noncovalent interactions (π-π stacking and CH⋯π interactions) to selectively synthesize molecular closed three-link chains ([Formula: see text] links), highly entangled figure-eight knots ([Formula: see text] knots), trefoil knot ([Formula: see text] knot), and Borromean ring ([Formula: see text] link). [Formula: see text] links can be created by the strategic assembly of nonlinear multicurved ligands incorporating a furan or phenyl group with the long binuclear half-sandwich organometallic Cp*RhIII (Cp* = η5-pentamethylcyclopentadienyl) clip. However, utilizing much shorter binuclear Cp*RhIII units for union with the 2,6-naphthyl-containing ligand led to a [Formula: see text] knot because of the increased π-π stacking interactions between four consecutive stacked layers and CH⋯π interactions. Weakening such π-π stacking interactions resulted in a [Formula: see text] knot. The universality of this synergistic assembly strategy for building [Formula: see text] knots was verified by utilizing a 1,5-naphthyl-containing ligand. Quantitative conversion between the [Formula: see text] knot and the simple macrocycle species was accomplished by adjusting the concentrations monitored by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Furthermore, increasing the stiff π-conjugated area of the binuclear unit afforded molecular Borromean ring, and this topology is a topological isomer of the [Formula: see text] link. These artificial metalla-links and metalla-knots were confirmed by single-crystal X-ray diffraction, NMR and ESI-MS. The results offer a potent strategy for building higher-order MIMs and emphasize the critical role that noncovalent interactions play in creating sophisticated topologies.
Collapse
Affiliation(s)
- Shu-Jin Bao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Yan Zou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| |
Collapse
|
7
|
Sakata Y, Nakamura R, Hibi T, Akine S. Speed Tuning of the Formation/Dissociation of a Metallorotaxane. Angew Chem Int Ed Engl 2023; 62:e202217048. [PMID: 36628483 DOI: 10.1002/anie.202217048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Switching between the formation/dissociation of rotaxanes is important to control the function of various types of rotaxane-based materials. We have developed a convenient and simple strategy, the so-called "accelerator addition", to make a static rotaxane dynamic without apparently affecting the chemical structure. As an interlocked molecule that enables tuning of the formation/dissociation speed, a metallorotaxane was quantitatively generated by the complexation of a triptycene-based dumbbell-shaped mononuclear complex, [PdL2 ]2+ (L=2,3-diaminotriptycene), with 27C9. As a result of the inertness of the Pd2+ -based coordination structure, the metallorotaxane was slowly formed (the static state). This rotaxane formation was accelerated 27 times simply by adding Br- as an accelerator (the dynamic state). A similar drastic acceleration was also demonstrated during the dissociation process when Cs+ was added to the metallorotaxane to form the free axle [PdL2 ]2+ and the 27C9-Cs+ complex.
Collapse
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ryosuke Nakamura
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshihiro Hibi
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
8
|
Peuronen A, Taponen AI, Kalenius E, Lehtonen A, Lahtinen M. Charge-Assisted Halogen Bonding in an Ionic Cavity of a Coordination Cage Based on a Copper(I) Iodide Cluster. Angew Chem Int Ed Engl 2023; 62:e202215689. [PMID: 36515462 PMCID: PMC10108208 DOI: 10.1002/anie.202215689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
The design of molecular containers capable of selectively binding specific guest molecules presents an interesting synthetic challenge in supramolecular chemistry. Here, we report the synthesis and structure of a coordination cage assembled from Cu3 I4 - clusters and tripodal cationic N-donor ligands. Owing to the localized permanent charges in the ligand core the cage binds iodide anions in specific regions within the cage through ionic interactions. This allows the selective binding of bromomethanes as secondary guest species within the cage promoted by halogen bonding, which was confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Anssi Peuronen
- Department of Chemistry, University of Turku, 20014, Turku, Finland
| | - Anni I Taponen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014, Jyvaskyla, Finland
| | - Elina Kalenius
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014, Jyvaskyla, Finland
| | - Ari Lehtonen
- Department of Chemistry, University of Turku, 20014, Turku, Finland
| | - Manu Lahtinen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014, Jyvaskyla, Finland
| |
Collapse
|
9
|
Cui Z, Mu QS, Gao X, Jin GX. Stereoselective Construction of Chiral Linear [3]Catenanes and [2]Catenanes. J Am Chem Soc 2023; 145:725-731. [PMID: 36550680 DOI: 10.1021/jacs.2c12027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have successfully constructed a chiral linear [3]catenane stereoselectively by coordination-driven self-assembly using a ditopic monodentate ligand containing l-valine residues with a binuclear half-sandwich organometallic rhodium(III) unit. Furthermore, by increasing the steric hindrance of the amino acid residues in the ligand, a chiral [2]catenane was obtained, which can be regarded as the factor catenane of the chiral linear [3]catenane from a topological viewpoint. Notably, the resulting molecular catenanes all exhibit complex coconformational mechanical helical chirality and planar chirality ascribed to the point chirality of the ligands. Linear [3]catenanes and [2]catenanes with the opposite chirality can be obtained by using ligands containing the corresponding d-amino acid residues, which have been confirmed by single-crystal X-ray diffraction, NMR, mass spectrometry, and circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiu-Shui Mu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Gao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Matviyishyn M, Białońska A, Szyszko B. Crownphyrins: Metal-Mediated Transformations of the Porphyrin-Crown Ether Hybrids. Angew Chem Int Ed Engl 2022; 61:e202211671. [PMID: 36214485 PMCID: PMC10098552 DOI: 10.1002/anie.202211671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Crownphyrins are hybrid macrocycles combining structural features of porphyrin and crown ethers. The molecular architecture renders them an intriguing class of hosts capable of binding neutral, and ionic guests. The presence of dynamic covalent imine linkages connecting the dipyrrin segment with the ether chain enables unusual coordination behavior of crownphyrins, as demonstrated by the formation of two classes of strikingly different complexes. The remarkable metal-mediated expansion to the helical [2+2] macrocyclic complex is reversible. The reaction of the figure-eight mercury(II) assembly with [2.2.2]cryptand results in ring contraction providing the metal-free crownphyrin macrocycle.
Collapse
Affiliation(s)
- Maksym Matviyishyn
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| | - Agata Białońska
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| | - Bartosz Szyszko
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| |
Collapse
|
11
|
Huang X, Chen L, Jin J, Kim H, Chen L, Zhang Z, Yu L, Li S, Stang PJ. Host–Guest Encapsulation to Promote the Formation of a Multicomponent Trigonal-Prismatic Metallacage. Inorg Chem 2022; 61:20237-20242. [DOI: 10.1021/acs.inorgchem.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Xuechun Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Luyi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jianan Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hyunuk Kim
- Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | - Luyao Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zibin Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ling Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Divya D, Govindarajan R, Nagarajaprakash R, Fayzullin RR, Vidhyapriya P, Sakthivel N, Manimaran B. Multicomponent Self-Assembly of Diaminobenzoquinonato-Bridged Manganese(I) Metallosupramolecular Rectangles: Host–Guest Interactions, Anticancer Activity, and Visible-Light-Induced CO Releasing Studies. Inorg Chem 2022; 61:15377-15391. [DOI: 10.1021/acs.inorgchem.2c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhanaraj Divya
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Ramamurthy Nagarajaprakash
- Chemical Sciences Research Group, Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala. Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
13
|
Zhang Z, Yao Y, He L, Hong T, Li S, Huang F, Stang PJ. Coordination-driven self-assembly of dibenzo-18-crown-6 functionalized Pt(II) metallacycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Ding Y, Tong Z, Jin L, Ye B, Zhou J, Sun Z, Yang H, Hong L, Huang F, Wang W, Mao Z. An NIR Discrete Metallacycle Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imaging-Guided Cancer Radio-Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106388. [PMID: 34821416 DOI: 10.1002/adma.202106388] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/17/2021] [Indexed: 06/13/2023]
Abstract
To promote the clinical theranostic performances of platinum-based anticancer drugs, imaging capability is urgently desired, and their chemotherapeutic efficacy needs to be upgraded. Herein, a theranostic metallacycle (M) is developed for imaging-guided cancer radio-chemotherapy using perylene bisimide fluorophore (PPy) and tetraphenylethylene-based di-Pt(II) organometallic precursor (TPE-Pt) as building blocks. The formation of this discrete supramolecular coordination complex facilitates the encapsulation of M by a glutathione (GSH)-responsive amphiphilic block copolymer to prepare M-loaded nanoparticles (MNPs). TPE-Pt acts as a chemotherapeutic drug and also an excellent radiosensitizer, thus incorporating radiotherapy into the nanomedicine to accelerate the therapeutic efficacy and overcome drug resistance. The NIR-emission of PPy is employed to detect the intracellular delivery and tissue distribution of MNPs in real time. In vitro and in vivo investigations demonstrate the excellent anticancer efficacy combining chemotherapy and radiotherapy; the administration of this nanomedicine effectively inhibits the tumor growth and greatly extends the survival rate of cisplatin-resistant A2780CIS-tumor-bearing mice. Guided by in vivo fluorescence imaging, radio-chemotherapy is precisely carried out, which facilitates boosting of the therapeutic outcomes and minimizing undesired side effects. The success of this theranostic system brings new hope to supramolecular nanomedicines for their potential clinical translations.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zongrui Tong
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
15
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 702] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
16
|
Zhang L, Lin YJ, Li ZH, Fraser Stoddart J, Jin GX. Coordination-Driven Selective Formation of D 2 Symmetric Octanuclear Organometallic Cages. Chemistry 2021; 27:9524-9528. [PMID: 33882176 DOI: 10.1002/chem.202101204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/09/2022]
Abstract
The coordination-driven self-assembly of organometallic half-sandwich iridium(III)- and rhodium(III)-based building blocks with asymmetric ambidentate pyridyl-carboxylate ligands is described. Despite the potential for obtaining a statistical mixture of multiple products, D2 symmetric octanuclear cages were formed selectively by taking advantage of the electronic effects emanating from the two types of chelating sites - (O,O') and (N,N') - on the tetranuclear building blocks. The metal sources and the lengths of bridging ligands influence the selectivity of the self-assembly. Experimental observations, supported by computational studies, suggest that the D2 symmetric cages are the thermodynamically favored products. Overall, the results underline the importance of electronic effects on the selectivity of coordination-driven self-assembly, and demonstrate that asymmetric ambidentate ligands can be used to control the design of discrete supramolecular coordination complexes.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China.,Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310021, P.R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| |
Collapse
|
17
|
Zhang Z, Shao Y, Tang J, Jiang J, Wang L, Li S. Supramolecular asymmetric catalysis mediated by crown ethers and related recognition systems. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
18
|
Li Y, Rajasree SS, Lee GY, Yu J, Tang JH, Ni R, Li G, Houk KN, Deria P, Stang PJ. Anthracene–Triphenylamine-Based Platinum(II) Metallacages as Synthetic Light-Harvesting Assembly. J Am Chem Soc 2021; 143:2908-2919. [DOI: 10.1021/jacs.0c12853] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanrong Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Sreehari Surendran Rajasree
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Jian-Hong Tang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Ruidong Ni
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Kendall. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Non‐Covalent Interaction‐Directed Coordination‐Driven Self‐Assembly of Non‐Trivial Supramolecular Topologies. CHEM REC 2021; 21:574-593. [DOI: 10.1002/tcr.202000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/07/2022]
|
20
|
Crawley MR, Zhang D, Oldacre AN, Beavers CM, Friedman AE, Cook TR. Tuning the Reactivity of Cofacial Porphyrin Prisms for Oxygen Reduction Using Modular Building Blocks. J Am Chem Soc 2021; 143:1098-1106. [PMID: 33377787 DOI: 10.1021/jacs.0c11895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We assembled eight cofacial porphyrin prisms using MTPyP (M = Co(II) or Zn(II), TPyP = 4-tetrapyridylporphyrin) and functionalized ruthenium-based "molecular clips" using coordination-driven self-assembly. Our approach allows for the rapid synthesis of these architectures in isolated yields as high as 98% for the assembly step. Structural and reactivity studies provided a deeper understanding of the role of the building blocks on the oxygen reduction reaction (ORR). Catalytic efficacy was probed by using cyclic and hydrodynamic voltammetry on heterogeneous catalyst inks in aqueous media. The reported prisms showed outstanding selectivity (>98%) for the kinetically hindered 4e-/4H+ reduction of O2 to H2O over the kinetically more accessible 2e-/2H+ reduction to H2O2. Furthermore, we have demonstrated significant cofacial enhancement in the observed catalytic rate constant ks (∼5 orders of magnitude) over the mononuclear analogue. We conclude that the steric bulk of the clip plays an important role in the structural dynamics of these prisms, which in turn modulates the ORR reactivity with respect to selectivity and kinetics.
Collapse
Affiliation(s)
- Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Amanda N Oldacre
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christine M Beavers
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alan E Friedman
- Department of Materials, Design, and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
21
|
Shao YG, He L, Mao QQ, Hong T, Ying XW, Zhang Z, Li S, Stang PJ. Efficient one-pot synthesis of [3]catenanes based on Pt( ii) metallacycles with a flexible building block. Org Chem Front 2021. [DOI: 10.1039/d1qo00910a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three [3]catenanes were fabricated in high efficiency through the self-assembly of a 90° platinum(ii) receptor, a flexible bis(4,4′-bipyridinium) donor and a crown ether (DB24C8 or DB30C10).
Collapse
Affiliation(s)
- Yuan-Guang Shao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lang He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian-Qian Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Wen Ying
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
22
|
Zhang Z, Hong T, Li S, Crawley MR, Cook TR, Huang XC, Pollock JB, Stang PJ. Multicomponent Coordination-Driven Self-Assembly of Fused C3v Polygons. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Matthew R. Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Xue-Chun Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - J. Bryant Pollock
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
23
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
24
|
Gao WX, Feng HJ, Guo BB, Lu Y, Jin GX. Coordination-Directed Construction of Molecular Links. Chem Rev 2020; 120:6288-6325. [PMID: 32558562 DOI: 10.1021/acs.chemrev.0c00321] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the emergence of the concept of chemical topology, interlocked molecular assemblies have graduated from academic curiosities and poorly defined species to become synthetic realities. Coordination-directed synthesis provides powerful, diverse, and increasingly sophisticated protocols for accessing interlocked molecules. Originally, metal ions were employed solely as templates to gather and position building blocks in entwined or threaded arrangements. Recently, metal centers have increasingly featured within the backbones of the integral structural elements, which in turn use noncovalent interactions to self-assemble into intricate topologies. By outlining ingenious recent examples as well as seminal classic cases, this Review focuses on the role of metal-ligand paradigms in assembling molecular links. In addition, the ever-evolving approaches to efficient assembly, the structural features of the resulting architectures, and their prospects for the future are also presented.
Collapse
Affiliation(s)
- Wen-Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
25
|
Abstract
Catenated cages represent chemistry’s challenging synthetic targets because a three-dimensional assembly is necessary for their formation. Herein, a cyclic bis[2]catenane is constructed through the coordination-driven self-assembly of the interlocked bis-metallacage, by the 90° Pt(II) heteroligation of the endo-functionalized double-bridged tweezer bearing pyridyl moieties and the tetra-carboxylated linker. NMR spectrometry, X-ray crystallography and mass spectrometry confirm the formation of a cyclic bis[2]catenane with “∞”-shaped topology via a 14-component self-assembly. Particularly, reversibly responsive transformation between the bis[2]catenane and the bis-metallacage can be realized by guest exchange, concentration effect and solvent effect. This work represents a novel example of a cyclic cage-based [2]catenane oligomer. Catenated cages are challenging synthetic targets in chemistry. Here, the authors employ a multi-component coordination strategy using a Pt(II) heteroligation to construct a cyclic bis[2]catenane metallacage, which could be reversibly transformed between the catenated structure and the bis-metallacage.
Collapse
|
26
|
Wang S, Bai D, Wang Y, Fu J, Zhu J, Fang X. Hierarchical self-assembly of helical coordination polymers and formation of a lamellar structure via the cooperativity of two-step Ag(i) coordination and π-π interactions. NANOSCALE 2020; 12:10972-10976. [PMID: 32419004 DOI: 10.1039/d0nr00299b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical self-assembly from a V-shaped ligand 2,9-di(pyridin-4-yl)-1,10-phenanthroline (DPP) to an initial interlocked dimer, further to a coordination polymer with an alternate linear and interlocked helical configuration and finally to a lamellar structure with an undulating surface was precisely achieved in sequence via the cooperativity of two-step Ag (i) coordination and π-π interactions for the first time.
Collapse
Affiliation(s)
- Shi Wang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Dongya Bai
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanbo Wang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiya Fu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Junyan Zhu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiaomin Fang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
27
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020; 59:13516-13520. [DOI: 10.1002/anie.202004112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
28
|
Hong T, Zhang Z, Sun Y, Tao JJ, Tang JD, Xie C, Wang M, Chen F, Xie SS, Li S, Stang PJ. Chiral Metallacycles as Catalysts for Asymmetric Conjugate Addition of Styrylboronic Acids to α,β-Enones. J Am Chem Soc 2020; 142:10244-10249. [DOI: 10.1021/jacs.0c01563] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Jia-Ju Tao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Dong Tang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunsong Xie
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Min Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Fang Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shang-Shu Xie
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
30
|
Singh J, Kim DH, Kim EH, Kim H, Hadiputra R, Jung J, Chi KW. The First Quantitative Synthesis of a Closed Three-Link Chain (613) Using Coordination and Noncovalent Interactions-Driven Self-Assembly. J Am Chem Soc 2020; 142:9327-9336. [DOI: 10.1021/jacs.0c01406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipments, Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Rizky Hadiputra
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| |
Collapse
|
31
|
Kumar A, Mukherjee PS. Multicomponent Self‐Assembly of Pd
II
/Pt
II
Interlocked Molecular Cages: Cage‐to‐Cage Conversion and Self‐Sorting in Aqueous Medium. Chemistry 2020; 26:4842-4849. [DOI: 10.1002/chem.202000122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Atul Kumar
- Inorganic and Physical Chemistry DepartmentIndian Institute of Science Bangalore 560012 India
| | | |
Collapse
|
32
|
Li P, Xu S, Yu C, Li Z, Xu J, Li Z, Zou L, Leng X, Gao S, Liu Z, Liu X, Zhang S. De Novo Construction of Catenanes with Dissymmetric Cages by Space‐Discriminative Post‐Assembly Modification. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pan Li
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shijun Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of EducationEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chunyang Yu
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Ying Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of EducationEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jianping Xu
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Mu Li
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lingyi Zou
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xuebing Leng
- State Key Laboratory of Organometallic ChemistryShanghai, Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| | - Shan Gao
- Neurological Department, Shanghai Jiao Tong University Affiliated Sixth People's HospitalSouth Campus Shanghai 200240 China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral ChemicalsZhejiang University of Technology Hangzhou 310014 China
| | - Xiaoyun Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of EducationEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Shaodong Zhang
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
33
|
Li P, Xu S, Yu C, Li Z, Xu J, Li Z, Zou L, Leng X, Gao S, Liu Z, Liu X, Zhang S. De Novo Construction of Catenanes with Dissymmetric Cages by Space‐Discriminative Post‐Assembly Modification. Angew Chem Int Ed Engl 2020; 59:7113-7121. [DOI: 10.1002/anie.202000442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Pan Li
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shijun Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chunyang Yu
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Ying Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jianping Xu
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Mu Li
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lingyi Zou
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry Shanghai, Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Shan Gao
- Neurological Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus Shanghai 200240 China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 China
| | - Xiaoyun Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Shaodong Zhang
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
34
|
Hierarchical self-assembly of 3D amphiphilic discrete organoplatinum(II) metallacage in water. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Liu D, Lu Y, Lin Y, Jin G. Donor–Acceptor [2]‐ and [3]Catenanes Assembled from Versatile Pre‐Organized Cp*Rh/Ir‐Directed Pseudorotaxane Tectons. Chemistry 2019; 25:14785-14789. [DOI: 10.1002/chem.201904082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Dong Liu
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Ye Lu
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Science 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
36
|
Zhou J, Yu G, Li Y, Shen J, Wang M, Li Z, Wei P, Tang J, Huang F. [2]Pseudorotaxane‐Based Supramolecular Optical Indicator for the Visual Detection of Cellular Cyanide Excretion. Chemistry 2019; 25:14447-14453. [DOI: 10.1002/chem.201903577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical EngineeringCenter for Chemistry of High-Performance & Novel MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Guocan Yu
- State Key Laboratory of Chemical EngineeringCenter for Chemistry of High-Performance & Novel MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Yang Li
- Department of ChemistryInstitute of Chemical Biology and Pharmaceutical ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Jie Shen
- School of MedicineZhejiang University City College Hangzhou 310015 P. R. China
| | - Mengbin Wang
- State Key Laboratory of Chemical EngineeringCenter for Chemistry of High-Performance & Novel MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical EngineeringCenter for Chemistry of High-Performance & Novel MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Peifa Wei
- State Key Laboratory of Chemical EngineeringCenter for Chemistry of High-Performance & Novel MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of, Biomass Chemical Engineering of Ministry of EducationCollege of, Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical EngineeringCenter for Chemistry of High-Performance & Novel MaterialsDepartment of ChemistryZhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
37
|
Acharyya K, Bhattacharyya S, Sepehrpour H, Chakraborty S, Lu S, Shi B, Li X, Mukherjee PS, Stang PJ. Self-Assembled Fluorescent Pt(II) Metallacycles as Artificial Light-Harvesting Systems. J Am Chem Soc 2019; 141:14565-14569. [PMID: 31479260 DOI: 10.1021/jacs.9b08403] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light-harvesting is one of the key steps in photosynthesis, but developing artificial light-harvesting systems (LHSs) with high energy transfer efficiencies has been a challenging task. Here we report fluorescent hexagonal Pt(II) metallacycles as a new platform to fabricate artificial LHSs. The metallacycles (4 and 5) are easily accessible by coordination-driven self-assembly of a triphenylamine-based ditopic ligand 1 with di-platinum acceptors 2 and 3, respectively. They possess good fluorescence properties both in solution and in the solid state. Notably, the metallacycles show aggregation-induced emission enhancement (AIEE) characteristics in a DMSO-H2O solvent system. In the presence of the fluorescent dye Eosin Y (ESY), the emission intensities of the metallacycles decrease but the emission intensity of ESY increases. The absorption spectrum of ESY and the emission spectra of the metallacycles show a considerable overlap, suggesting the possibility of energy transfer from the metallacycles to ESY, with an energy transfer efficiency as high as 65% in the 4a+ESY system.
Collapse
Affiliation(s)
- Koushik Acharyya
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Hajar Sepehrpour
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Shubhadip Chakraborty
- Institut de Physique de Rennes , UMR CNRS 6251, Université de Rennes 1 , Campus de Beaulieu , 35042 Rennes Cedex, France
| | - Shuai Lu
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Bingbing Shi
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
38
|
|
39
|
Shan W, Lin Y, Hahn FE, Jin G. Selektive Synthese von Iridium(III)‐Metalla[2]catenanen durch Präorganisation der Komponenten über π‐π‐Wechselwirkungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei‐Long Shan
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 V. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 V. R. China
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Deutschland
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 V. R. China
| |
Collapse
|
40
|
Shan W, Lin Y, Hahn FE, Jin G. Highly Selective Synthesis of Iridium(III) Metalla[2]catenanes through Component Pre‐Orientation by π⋅⋅⋅π Stacking. Angew Chem Int Ed Engl 2019; 58:5882-5886. [DOI: 10.1002/anie.201900556] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Wei‐Long Shan
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| |
Collapse
|
41
|
Siddiqui MM, Saha R, Mukherjee PS. Ruthenium(II) Metalla[2]catenanes and Macrocycles via Donor-Dependent Self-Assembly. Inorg Chem 2019; 58:4491-4499. [DOI: 10.1021/acs.inorgchem.9b00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mujahuddin M. Siddiqui
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
42
|
Li P, Xu YM, Deng W, Yao ZJ. Self-assembly of supramolecular coordination complexes based on half-sandwich metal corner with tunable host cavities. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Zhang L, Stephens AJ, Lemonnier JF, Pirvu L, Vitorica-Yrezabal IJ, Robinson CJ, Leigh DA. Coordination Chemistry of a Molecular Pentafoil Knot. J Am Chem Soc 2019; 141:3952-3958. [PMID: 30742430 PMCID: PMC6438588 DOI: 10.1021/jacs.8b12548] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The binding of Zn(II) cations to
a pentafoil (51) knotted
ligand allows the synthesis of otherwise inaccessible metalated molecular
pentafoil knots via transmetalation, affording the corresponding “first-sphere”
coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good
yields (≥85%). Each of the knot complexes was characterized
by mass spectrometry, the diamagnetic (zinc) knot complex was characterized
by 1H and 13C NMR spectroscopy, and the zinc,
cobalt, and nickel pentafoil knots afforded single crystals whose
structures were determined by X-ray crystallography. Lehn-type circular
helicates generally only form with tris-bipy ligand strands and Fe(II)
(and, in some cases, Ni(II) and Zn(II)) salts, so such architectures
become accessible for other metal cations only through the use of
knotted ligands. The different metalated knots all exhibit “second-sphere”
coordination of a single chloride ion within the central cavity of
the knot through CH···Cl– hydrogen
bonding and electrostatic interactions. The chloride binding affinities
were determined in MeCN by isothermal titration calorimetry, and the
strength of binding was shown to vary over 3 orders of magnitude for
the different metal-ion–knotted-ligand second-sphere coordination
complexes.
Collapse
Affiliation(s)
- Liang Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Alexander J Stephens
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Lucian Pirvu
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Christopher J Robinson
- SYNBIOCHEM, Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , United Kingdom
| | - David A Leigh
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
44
|
Chang X, Zhou Z, Shang C, Wang G, Wang Z, Qi Y, Li ZY, Wang H, Cao L, Li X, Fang Y, Stang PJ. Coordination-Driven Self-Assembled Metallacycles Incorporating Pyrene: Fluorescence Mutability, Tunability, and Aromatic Amine Sensing. J Am Chem Soc 2019; 141:1757-1765. [PMID: 30608681 DOI: 10.1021/jacs.8b12749] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Constructing polycyclic aromatics-based, highly emissive fluorophores with good solubility and tunable aggregated structures and properties is of great importance for film fabrication, solution processing, and relevant functionality studies. Herein, we describe a general strategy to endow conventional organic fluorophores with enhanced solubility and modulated fluorescent properties via their incorporation into coordination-driven self-assembled metallacycles. A widely used fluorophore, pyrene, was decorated with two pyridyl groups to yield functionalized pyrene 4. Mixing 4 with three aromatic dicarboxylates with different lengths and a 90° Pt(II) metal acceptor in a 2:2:4 stoichiometric ratio resulted in the formation of three metallacycles, 1, 2, and 3. The metallacycles display good solubility in polar organic solvents, highly aggregation-dependent fluorescence, and size-dependent emissions at higher concentrations. Moreover, metallacycle 2-based, silica-gel-supported film as fabricated not only is more emissive than the ligand 4-based one but also displays much improved sensing properties for amines in the vapor state, as demonstrated by significantly increased response speed and decreased recovery time. The enhanced solubility, unique fluorescence behavior, and multi-factor modulation character show that coordination-driven self-assembly can be utilized for the development of new fluorophores through simple modification of conventional fluorophores. The fluorophores synthesized this way possess not only complex topological structures but also good modularity and tunability in fluorescence behavior, which are important for grafting multi-stage energy-transfer systems necessary for the development of high-performance sensing materials.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China.,Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Zhixuan Zhou
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yanyu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhong-Yu Li
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Heng Wang
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Liping Cao
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
45
|
Wang Y, Cai Y, Cao L, Cen M, Chen Y, Zhang R, Chen T, Dai H, Hu L, Yao Y. An amphiphilic metallaclip with enhanced fluorescence emission in water: synthesis and controllable self-assembly into multi-dimensional micro-structures. Chem Commun (Camb) 2019; 55:10132-10134. [DOI: 10.1039/c9cc04809j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new amphiphilic organoplatinum(ii) metallaclip with enhanced fluorescence emission in water and multi-dimensional well-defined micro-structures in CH3OH–H2O mixture was designed and fabricated successfully.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Yan Cai
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Leyu Cao
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Moupan Cen
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Yanmei Chen
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Runmiao Zhang
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Tingting Chen
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Lanping Hu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| |
Collapse
|
46
|
Singh J, Kim DH, Kim EH, Singh N, Kim H, Hadiputra R, Jung J, Chi KW. Selective and quantitative synthesis of a linear [3]catenane by two component coordination-driven self-assembly. Chem Commun (Camb) 2019; 55:6866-6869. [DOI: 10.1039/c9cc03336j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coordination-driven self-assembly and synergistic non-covalent intercycler interactions (π–π, CH–π and CH–N) for the selective formation of a linear [3]catenane.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Eun-Hee Kim
- Protein Structure Group
- Korea Basic Science Institute
- Ochang
- Chungbuk 28119
- Republic of Korea
| | - Nem Singh
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory
- Korea Institute of Energy Research
- Daejeon 34129
- Republic of Korea
| | - Rizky Hadiputra
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| |
Collapse
|
47
|
Singh K, Kumari S, Jana A, Bhowmick S, Das P, Das N. Self-assembled neutral [2+2] platinacycles showing minimal DNA interactions. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.09.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Xia D, Lv X, Chen K, Wang P. A [2]pseudorotaxane based on a pillar[6]arene and its application in the construction of a metallosupramolecular polymer. Dalton Trans 2019; 48:9954-9958. [DOI: 10.1039/c9dt01713e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel metallosupramolecular polypseudorotaxane was constructed by pillar[6]arene-based host–guest recognition and metal coordination.
Collapse
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiaoqing Lv
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Kexian Chen
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- PR China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Taiyuan 030024
- P.R. China
| |
Collapse
|
49
|
Hu Y, Zhang X, Xu L, Yang H. Coordination‐Driven Self‐Assembly of Functionalized Supramolecular Metallacycles: Highlighted Research during 2010–2018. Isr J Chem 2018. [DOI: 10.1002/ijch.201800102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yi‐Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Rd. 200062 Shanghai P. R. China
| | - Xiangyi Zhang
- Department of Chemical and Materials EngineeringChinese Culture University Taipei China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Rd. 200062 Shanghai P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Rd. 200062 Shanghai P. R. China
| |
Collapse
|
50
|
Yao Y, Zhao R, Shi Y, Cai Y, Chen J, Sun S, Zhang W, Tang R. 2D amphiphilic organoplatinum(ii) metallacycles: their syntheses, self-assembly in water and potential application in photodynamic therapy. Chem Commun (Camb) 2018; 54:8068-8071. [PMID: 29968880 DOI: 10.1039/c8cc04423f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two 2D amphiphilic organoplatinum(ii) metallacycles with a porphyrin unit as the core and hydrophilic glycol units as the tail were designed and fabricated successfully through a new method called "coordination-driven self-assembly". They can self-assemble into micelles in water and have potential applications in photodynamic therapy.
Collapse
Affiliation(s)
- Yong Yao
- College of Chemistry and Chemical Engineer, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|