1
|
Donnelly K, Singh A, Tuttle T, Baumann M. [3+2]-Cycloaddition Reactions of gem-Difluorocyclopropenes with Azomethine Ylides - Access to Novel Fluorinated Scaffolds. Chemistry 2023; 29:e202301861. [PMID: 37402163 DOI: 10.1002/chem.202301861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
The introduction of fluorinated moieties into drugs as well as the increase of their overall three-dimensionality have become key strategies amongst medicinal chemists to generate sets of compounds with favorable drug-like properties. However, the introduction of fluorinated cyclopropane ring systems which combines both strategies is not widely exploited to date. This paper reports synthetic strategies exploiting the reactivity of gem-difluorocyclopropenes in dipolar cycloaddition reactions with azomethine ylides to afford sets of new fluorine-containing 3-azabicyclo[3.1.0]hexanes. In addition, the unexpected formation of complex trifluorinated scaffolds arising from proline esters and gem-difluorocyclopropenes is highlighted along with computational studies to elucidate the underlying mechanism. This study presents new avenues towards pharmaceutically relevant fluorinated 3-azabicyclo[3.1.0]hexanes that are accessible via robust and short synthetic sequences.
Collapse
Affiliation(s)
- Kian Donnelly
- School of Chemistry, University College Dublin, Belfield, D04 N2E2, Ireland
| | - Amritpal Singh
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Tell Tuttle
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Belfield, D04 N2E2, Ireland
| |
Collapse
|
2
|
Hu W, Wang X, Wang X, Xu Y, Li R, Zhao L, Ren W, Teng Y. Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130697. [PMID: 36599277 DOI: 10.1016/j.jhazmat.2022.130697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Biological nitrogen fixation (BNF) driven by diazotrophs is a major means of increasing available nitrogen (N) in paddy soil, in addition to anthropogenic fertilization. However, the influence of long-term polychlorinated biphenyl (PCB) contamination on the diazotrophic community and nitrogen fixation in paddy soil is poorly understood. In this study, samples were collected from paddy soil subjected to > 30 years of PCB contamination, and the soil diazotrophic community and N2 fixation rate were evaluated by Illumina MiSeq sequencing and acetylene reduction assays, respectively. The results indicated that high PCB contamination increased diazotrophic abundance and the N2 fixation rate, and altered diazotrophic community structure in the paddy soil. The random forest model demonstrated that the β-diversity of the diazotrophic community was the most significant predictor of the N2 fixation rate. Structure equation modeling identified a specialized keystone diazotrophic ecological cluster, predominated by Bradyrhizobium, Desulfomonile, and Cyanobacteria, as the key driver of N2 fixation. Overall, our findings indicated that long-term PCB contamination enhanced the N2 fixation rate by altering diazotrophic community abundance and structure, which may deepen our understanding of the ecological function of diazotrophs in organic-contaminated soil.
Collapse
Affiliation(s)
- Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Xu H, Fang XJ, Huang WS, Xu Z, Li L, Ye F, Cao J, Xu LW. Catalytic regio- and stereoselective silicon–carbon bond formations on unsymmetric gem-difluorocyclopropenes by capture of silyl metal species. Org Chem Front 2022. [DOI: 10.1039/d2qo00943a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly regioselective silylation of unsymmetric gem-difluorocyclopropenes was achieved by the capture of in-situ formed silyl metal intermediates, which gave structurally diverse silyldifluorocyclopropanes with good yields and stereoselectivity.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
4
|
Study of properties of 3-fluorinated cyclopropene derivatives. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Wang X, Teng Y, Tu C, Luo Y, Greening C, Zhang N, Dai S, Ren W, Zhao L, Li Z. Coupling between Nitrogen Fixation and Tetrachlorobiphenyl Dechlorination in a Rhizobium-Legume Symbiosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2217-2224. [PMID: 29363956 DOI: 10.1021/acs.est.7b05667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Legume-rhizobium symbioses have the potential to remediate soils contaminated with chlorinated organic compounds. Here, the model symbiosis between Medicago sativa and Sinorhizobium meliloti was used to explore the relationships between symbiotic nitrogen fixation and transformation of tetrachlorobiphenyl PCB 77 within this association. 45-day-old seedlings in vermiculite were pretreated with 5 mg L-1 PCB 77 for 5 days. In PCB-supplemented nodules, addition of the nitrogenase enhancer molybdate significantly stimulated dechlorination by 7.2-fold and reduced tissue accumulation of PCB 77 (roots by 96% and nodules by 93%). Conversely, dechlorination decreased in plants exposed to a nitrogenase inhibitor (nitrate) or harboring nitrogenase-deficient symbionts (nifA mutant) by 29% and 72%, respectively. A range of dechlorinated products (biphenyl, methylbiphenyls, hydroxylbiphenyls, and trichlorobiphenyl derivatives) were detected within nodules and roots under nitrogen-fixing conditions. Levels of nitrogenase-derived hydrogen and leghemoglobin expression correlated positively with nodular dechlorination rates, suggesting a more reducing environment promotes PCB dechlorination. Our findings demonstrate for the first time that symbiotic nitrogen fixation acts as a driving force for tetrachlorobiphenyl dechlorination. In turn, this opens new possibilities for using rhizobia to enhance phytoremediation of halogenated organic compounds.
Collapse
Affiliation(s)
- Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Chen Tu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences, Yantai 264003, P.R. China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences, Yantai 264003, P.R. China
| | - Chris Greening
- School of Biological Sciences, Monash University , Clayton, Victoria 3800, Australia
| | - Ning Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Shixiang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences, Nanjing 210008, P.R. China
| |
Collapse
|
6
|
Kuppuswamy S, Wofford JD, Joseph C, Xie ZL, Ali AK, Lynch VM, Lindahl PA, Rose MJ. Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation. Inorg Chem 2017; 56:5998-6012. [PMID: 28441025 DOI: 10.1021/acs.inorgchem.7b00741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syntheses, interconversions, and spectroscopic properties of a set of iron carbonyl clusters containing an interstitial carbide are reported. This includes the low temperature X-ray structures of the six-iron clusters (Y)2[Fe6(μ6-C)(μ2-CO)4(CO)12] (1a-c; where Y = NMe4, NEt4, PPh4); the five-iron cluster [Fe5(μ5-C)(CO)15] (3); and the novel formulation of the five-iron cluster (NMe4)2[Fe5(μ5-C)(μ2-CO)(CO)13] (4). Also included in this set is the novel charge-neutral cluster, [Fe6(μ6-C)(CO)18] (2), for which we were unable to obtain a crystallographic structure. As synthetic proof for the identity of 2, we performed a closed loop of interconversions within a family of crystallographically defined species (1, 3, and 4): [Fe6]2- → [Fe6]0 → [Fe5]0 → [Fe5]2- → [Fe6]2-. The structural, spectroscopic, and electronic properties of this "missing link" cluster 2 were investigated by IR, Raman, XPS, and Mössbauer spectroscopies-as well as by DFT calculations. A single νCO feature (1965 cm-1) in the IR spectrum of 2, as well as a prominent Raman feature (νsymm = 1550 cm-1), are consistent with the presence of terminal carbonyls and a {(μ6-C)Fe6} arrangement of iron centers around the central carbide. The XPS of 2 exhibits a higher energy Fe 2p3/2 feature (707.4 eV) as compared to that of 1 (705.5 eV), consistent with the two-electron oxidation induced by treatment of 1 with two equivalents of [Fc](PF6) under CO atmosphere (for the two added CO ligands). DFT calculations indicate two axial and four equatorial Fe sites in 1, all of which have the same or similar oxidation states, for example, two Fe(0) and four Fe(+0.5). These assignments are supported by Mössbauer spectra for 1, which exhibit two closely spaced quadrupole doublets with δ = 0.076 and 0.064 mm s-1. The high-field Mössbauer spectrum of 2 (4.2 K) exhibits three prominent quadrupole doublets with δ = -0.18, -0.11, and +0.41 mm s-1. This indicates three pairs of chemically equivalent Fe sites. The first two pairs arise from irons of a similar oxidation state, while the last pair arises from irons in a different oxidation state, indicating a mixed-valent cluster. Variable field Mössbauer spectra for 2 were simulated assuming these two groups and a diamagnetic ground state. Taken together, the Mössbauer results and DFT calculations for 2 indicate two axial Fe(II) sites and four equatorial sites of lower valence, probably Fe(0). In the DFT optimized pentagonal bipyramidal structure for 2, the Fe(II)-Ccarbide distances are compressed (∼1.84 Å), while the Fe(0)-Ccarbide distances are elongated (∼2.05 Å). Analysis of the formulations for 1 (closo-square bipyramid) and 2 (nido-pentagonal bipyramid) is considered in the context of the textbook electron-counting rules of 14n+2 and 14n+4 for closo and nido clusters, respectively. This redox-dependent intracluster disproportionation of Fe oxidation states is concluded to arise from changes in bonding to the central carbide. A similar phenomenon may be promoted by the central carbide of the FeMoco cluster of nitrogenase, which may in turn stimulate N2 reduction.
Collapse
Affiliation(s)
- Subramaniam Kuppuswamy
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Joshua D Wofford
- Department of Chemistry, Texas A&M University , College Station, Texas 77840, United States
| | - Chris Joseph
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Zhu-Lin Xie
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Azim K Ali
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University , College Station, Texas 77840, United States
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
7
|
Deoxyfluorination of alcohols with 3,3-difluoro-1,2-diarylcyclopropenes. Nat Commun 2016; 7:13320. [PMID: 27841256 PMCID: PMC5114535 DOI: 10.1038/ncomms13320] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 09/22/2016] [Indexed: 11/08/2022] Open
Abstract
Aromatic cation activation is a useful strategy to promote deoxyfunctionalization; however, the deoxyfluorination of alcohols with cyclopropenium cation remains an unsolved problem due to the weak nucleophilicity of fluoride ion. Here we report the use of 3,3-difluoro-1,2-diarylcyclopropenes (CpFluors) as easily accessible and reactivity-tunable deoxyfluorination reagents. The electronic nature of CpFluors is critical for fluorination of monoalcohols via alkoxycyclopropenium cations, and CpFluors with electron-rich aryl substituents facilitate the transformation with high efficiency; however, selective monofluorination of 1,2- and 1,3-diols, which proceeds via cyclopropenone acetals, is less dependent on the electronic nature of CpFluors. Moreover, CpFluors are more sensitive to the electronic nature of alcohols than many other deoxyfluorination reagents, thus fluorination of longer diols can be achieved selectively at the relatively electron-rich position. This research not only unveils the first example of deoxyfluorination reagents that contain an all-carbon scaffold, but also sheds light on the divergent reactivity of cyclopropenium cation in deoxyfunctionalization of alcohols.
Collapse
|
8
|
Shen Q, Huang YG, Liu C, Xiao JC, Chen QY, Guo Y. Review of recent advances in CF bond activation of aliphatic fluorides. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.07.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Dance I. Misconception of reductive elimination of H2, in the context of the mechanism of nitrogenase. Dalton Trans 2015; 44:9027-37. [DOI: 10.1039/c5dt00771b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calculated atom partial charges reveal misconceptions of reductive elimination of H2.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry
- University of New South Wales
- Sydney 2052
- Australia
| |
Collapse
|
10
|
Ahrens T, Kohlmann J, Ahrens M, Braun T. Functionalization of fluorinated molecules by transition-metal-mediated C-F bond activation to access fluorinated building blocks. Chem Rev 2014; 115:931-72. [PMID: 25347593 DOI: 10.1021/cr500257c] [Citation(s) in RCA: 610] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Theresia Ahrens
- Humboldt-Universität zu Berlin , Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | | | | | | |
Collapse
|