1
|
Winetrout JJ, Kanhaiya K, Kemppainen J, In 't Veld PJ, Sachdeva G, Pandey R, Damirchi B, van Duin A, Odegard GM, Heinz H. Implementing reactivity in molecular dynamics simulations with harmonic force fields. Nat Commun 2024; 15:7945. [PMID: 39261455 PMCID: PMC11391066 DOI: 10.1038/s41467-024-50793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2024] [Indexed: 09/13/2024] Open
Abstract
The simulation of chemical reactions and mechanical properties including failure from atoms to the micrometer scale remains a longstanding challenge in chemistry and materials science. Bottlenecks include computational feasibility, reliability, and cost. We introduce a method for reactive molecular dynamics simulations using a clean replacement of non-reactive classical harmonic bond potentials with reactive, energy-conserving Morse potentials, called the Reactive INTERFACE Force Field (IFF-R). IFF-R is compatible with force fields for organic and inorganic compounds such as IFF, CHARMM, PCFF, OPLS-AA, and AMBER. Bond dissociation is enabled by three interpretable Morse parameters per bond type and zero energy upon disconnect. Use cases for bond breaking in molecules, failure of polymers, carbon nanostructures, proteins, composite materials, and metals are shown. The simulation of bond forming reactions is included via template-based methods. IFF-R maintains the accuracy of the corresponding non-reactive force fields and is about 30 times faster than prior reactive simulation methods.
Collapse
Affiliation(s)
- Jordan J Winetrout
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- Insitute of Physics, Ruhr University Bochum, Universitätstrasse 150, Bochum, Germany
| | - Joshua Kemppainen
- Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | | | - Geeta Sachdeva
- Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Behzad Damirchi
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Adri van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Gregory M Odegard
- Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA.
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29:103981. [PMID: 38614161 DOI: 10.1016/j.drudis.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
Janairo JIB. Sequence rules for gold-binding peptides. RSC Adv 2023; 13:21146-21152. [PMID: 37449032 PMCID: PMC10337651 DOI: 10.1039/d3ra04269c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Metal-binding peptides play a central role in bionanotechnology, wherein they are responsible for directing growth and influencing the resulting properties of inorganic nanomaterials. One of the key advantages of using peptides to create nanomaterials is their versatility, wherein subtle changes in the sequence can have a dramatic effect on the structure and properties of the nanomaterial. However, precisely knowing which position and which amino acid should be modified within a given sequence to enhance a specific property can be a daunting challenge owing to combinatorial complexity. In this study, classification based on association rules was performed using 860 gold-binding peptides. Using a minimum support threshold of 0.035 and confidence of 0.9, 30 rules with confidence and lift values greater than 0.9 and 1, respectively, were extracted that can differentiate high-binding from low-binding peptides. The test performance of these rules for categorizing the peptides was found to be satisfactory, as characterized by accuracy = 0.942, F1 = 0.941, MCC = 0.884. What stands out from the extracted rules are the importance of tryptophan and arginine residues in differentiating peptides with high binding affinity from those with low affinity. In addition, the association rules revealed that positions 2 and 4 within a decapeptide are frequently involved in the rules, thus suggesting their importance in influencing peptide binding affinity to AuNPs. Collectively, this study identified sequence rules that may be used to design peptides with high binding affinity.
Collapse
|
4
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Singh P, Goel VK, Kumar R, Kumar V. Functionalized Peptide-Based Nanoparticles for Targeted Cancer Nanotherapeutics: A State-of-the-Art Review. ACS OMEGA 2022; 7:36092-36107. [PMID: 36278104 PMCID: PMC9583493 DOI: 10.1021/acsomega.2c03974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 10/04/2023]
Abstract
Cancer mortality is increasing at an alarming rate across the globe. Albeit, many therapeutics are available commercially, they are not effective and have no cure up to today. Moreover, the knowledge gap in cancer therapy persists, representing a potential blind spot for the innovation of effective anticancer therapeutics. This review presents an update on current advancements in nanopeptide therapeutics. Herein, a detailed exploration of peptide-functionalized nanoparticles for the development of nanotherapeutics was carried out. Different approaches that include self-assembly nanostructures, solid phase peptide synthesis, ligand exchange, chemical reduction, and conjugation methods for assembling peptides for functionalizing nanodrugs are also highlighted. An outlook on biomedical applications is also reviewed. Additionally, a comprehensive discussion on targeted cancer cell therapy and mechanism of action are provided. The present review reflects the functional novelty of nanodrugs to improve stability, accessibility, bioavailability, and specificity toward cancerous cells. Finally, it summarizes the current challenges and future perspectives on the formulation of these nanodrugs.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi 110021, India
| | - Shikha Jyoti Borah
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi 110067, India
| | - Bhawna
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110007, India
| | - Poonam Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Vijay Kumar Goel
- School of Physical Science, Jawaharlal Nehru University, Delhi 110067, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi 110067, India
| |
Collapse
|
6
|
Jin R, Brljak N, Sangrigoli R, Walsh TR, Knecht MR. Achieving regioselective materials binding using multidomain peptides. NANOSCALE 2022; 14:14113-14121. [PMID: 36073151 DOI: 10.1039/d2nr03169h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to integrate two disparate materials-binding domains into a single ligand to achieve regiospecific binding would be powerful to direct material assembly; however, this has proven challenging to achieve due to cross-materials binding. Accomplishing this goal might be achieved by harnessing the precision of biology to exploit the recognition between peptides and specific nanomaterials. Here, a designed bifunctional molecule termed Biomolecular Exfoliant and Assembly Motifs (BEAM) is introduced, featuring two different materials-binding peptide domains, one for graphene and one for hexagonal boron nitride (h-BN), at each end of the molecule, separated by a fatty acid spacer. The BEAM is demonstrated to bind strongly to both graphene and h-BN surfaces, and in each case the materials-binding peptide domain is shown to preferentially bind its target material. Critically, the two materials-binding domains exhibited limited cross-domain interaction. The BEAM design concept shows substantial potential to eventually guide self-organization of a range of materials in aqueous media.
Collapse
Affiliation(s)
- Ruitao Jin
- Institute for Frontier Materials, Deakin University, Geelong, 3216 VIC, Australia.
| | - Nermina Brljak
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA.
| | - Robert Sangrigoli
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA.
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, 3216 VIC, Australia.
| | - Marc R Knecht
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA.
- Dr J.T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, UM Life Science Technology Building, 1951 NW 7th Ave, Suite 475, Miami, Florida, 33136, USA
| |
Collapse
|
7
|
Polasa A, Mosleh I, Losey J, Abbaspourrad A, Beitle R, Moradi M. Developing a rational approach to designing recombinant proteins for peptide-directed nanoparticle synthesis. NANOSCALE ADVANCES 2022; 4:3161-3171. [PMID: 36132813 PMCID: PMC9417332 DOI: 10.1039/d2na00212d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
The controlled formation of nanoparticles with optimum characteristics and functional aspects has proven successful via peptide-mediated nanoparticle synthesis. However, the effects of the peptide sequence and binding motif on surface features and physicochemical properties of nanoparticles are not well-understood. In this study, we investigate in a comparative manner how a specific peptide known as Pd4 and its two known variants may form nanoparticles both in an isolated state and when attached to a green fluorescent protein (GFPuv). More importantly, we introduce a novel computational approach to predict the trend of the size and activity of the peptide-directed nanoparticles by estimating the binding affinity of the peptide to a single ion. We used molecular dynamics (MD) simulations to explore the differential behavior of the isolated and GFP-fused peptides and their mutants. Our computed palladium (Pd) binding free energies match the typical nanoparticle sizes reported from transmission electron microscope pictures. Stille coupling and Suzuki-Miyaura reaction turnover frequencies (TOFs) also correspond with computationally predicted Pd binding affinities. The results show that while using Pd4 and its two known variants (A6 and A11) in isolation produces nanoparticles of varying sizes, fusing these peptides to the GFPuv protein produces nanoparticles of similar sizes and activity. In other words, GFPuv reduces the sensitivity of the nanoparticles to the peptide sequence. This study provides a computational framework for designing free and protein-attached peptides that helps in the synthesis of nanoparticles with well-regulated properties.
Collapse
Affiliation(s)
- Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
| | - Imann Mosleh
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University Ithaca NY 14853 USA
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas Fayetteville AR 72701 USA
| | - James Losey
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
| | - Alireza Abbaspourrad
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas Fayetteville AR 72701 USA
| | - Robert Beitle
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University Ithaca NY 14853 USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
| |
Collapse
|
8
|
Hoff SE, Di Silvio D, Ziolo RF, Moya SE, Heinz H. Patterning of Self-Assembled Monolayers of Amphiphilic Multisegment Ligands on Nanoparticles and Design Parameters for Protein Interactions. ACS NANO 2022; 16:8766-8783. [PMID: 35603431 DOI: 10.1021/acsnano.1c08695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalization of nanoparticles with specific ligands is helpful to control specific diagnostic and therapeutic responses such as protein adsorption, cell targeting, and circulation. Precision delivery critically depends on a fundamental understanding of the interplay between surface chemistry, ligand dynamics, and interaction with the biochemical environment. Due to limited atomic-scale insights into the structure and dynamics of nanoparticle-bound ligands from experiments, relationships of grafting density and ligand chemistry to observable properties such as hydrophilicity and protein interactions remain largely unknown. In this work, we uncover how self-assembled monolayers (SAMs) composed of multisegment ligands such as thioalkyl-PEG-(N-alkyl)amides on gold nanoparticles can mimic mixed hydrophobic and hydrophilic ligand coatings, including control of patterns, hydrophilicity, and specific recognition properties. Our results are derived from molecular dynamics simulations with the INTERFACE-CHARMM36 force field at picometer resolution and comparisons to experiments. Small changes in ligand hydrophobicity, via adjusting the length of the N-terminal alkyl groups, tune water penetration by multiples and control superficial ordering of alkyl chains from 0 to 70% regularity. Further parameters include the grafting density of the ligands, curvature of the nanoparticle surfaces, type of solvent, and overall ligand length, which were examined in detail. We explain the thermodynamic origin of the formation of heterogeneous patterns of multisegment ligand SAMs and illustrate how different degrees of ligand order on the nanoparticle surface affect interactions with bovine serum albumin. The resulting design principles can be applied to a variety of ligand chemistries to customize the behavior of functionalized nanoparticles in biological media and enhance therapeutic efficiency.
Collapse
Affiliation(s)
- Samuel E Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303-0596, United States
| | - Desiré Di Silvio
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon, 182, 20009 San Sebastian, Spain
| | - Ronald F Ziolo
- Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna 140, 25294 Saltillo, Coahuila, México
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon, 182, 20009 San Sebastian, Spain
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303-0596, United States
| |
Collapse
|
9
|
Cao Y, Qiao Y, Cui S, Ge J. Origin of Metal Cluster Tuning Enzyme Activity at the Bio-Nano Interface. JACS AU 2022; 2:961-971. [PMID: 35557767 PMCID: PMC9088776 DOI: 10.1021/jacsau.2c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Detailed understanding of how the bio-nano interface orchestrates the function of both biological components and nanomaterials remains ambiguous. Here, through a combination of experiments and molecular dynamics simulations, we investigated how the interface between Candida Antarctic lipase B and palladium (Pd) nanoparticles (NPs) tunes the structure, dynamics, and catalysis of the enzyme. Our simulations show that the metal binding to protein is a shape matching behavior and there is a transition from saturated binding to unsaturated binding along with the increase in the size of metal NPs. When we engineered the interface with the polymer, not only did the critical size of saturated binding of metal NPs become larger, but also the disturbance of the metal NPs to the enzyme function was reduced. In addition, we found that an enzyme-metal interface engineered with the polymer can boost bio-metal cascade reactions via substrate channeling. Understanding and control of the bio-nano interface at the molecular level enable us to rationally design bio-nanocomposites with prospective properties.
Collapse
Affiliation(s)
- Yufei Cao
- Key
Lab for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yida Qiao
- Key
Lab for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shitong Cui
- Key
Lab for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Ge
- Key
Lab for Industrial Biocatalysis, Ministry of Education, Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute
of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute
of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
10
|
Singh H, Sharma S. Determination of Equilibrium Adsorbed Morphologies of Surfactants at Metal-Water Interfaces Using a Modified Umbrella Sampling-Based Methodology. J Chem Theory Comput 2022; 18:2513-2520. [PMID: 35258301 DOI: 10.1021/acs.jctc.2c00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surfactants adsorb to metal-water interfaces in various morphologies, including self-assembled monolayers (SAMs), cylindrical and spherical micelles, or hemimicelles. Current molecular simulation methods are unable to efficiently sample the formation of these morphologies because of the large diffusive/energetic barriers. We introduce a modified umbrella sampling-based methodology that allows sampling of these morphologies from any initial configuration and provides free energy differences between them. Using this methodology, we have studied adsorption behavior of cationic [quaternary ammonium (quat) of 4 and 12 carbon long alkyl tails], uncharged [decanethiol], and anionic [phosphate monoester] surfactants and their mixtures at a gold-water interface. We find that while Coulombic repulsion between the charged head groups of quat-4 limits their adsorption to a sparse layer, stronger hydrophobic interactions between the alkyl tails of quat-12 promote adsorption resulting in a morphology with adsorbed hemispherical micelles sitting atop a monolayer. Decanethiol molecules adsorb in a densely packed bilayer with the molecules standing-up on the surface in the first layer and lying parallel to the surface in the second layer. Cationic and anionic surfactant mixtures display a synergistic adsorption behavior. These results elucidate the role of molecular characteristics in dictating the nature of adsorbed morphologies of surfactants at metal-water interfaces.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
11
|
Mosleh I, Shahsavari HR, Beitle R, Beyzavi MH. Recombinant Peptide Fusion Protein‐Templated Palladium Nanoparticles for Suzuki‐Miyaura and Stille Coupling Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.201902099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Imann Mosleh
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas Fayetteville AR 72701 USA
| | - Hamid R. Shahsavari
- Department of Chemistry and BiochemistryUniversity of Arkansas Fayetteville AR 72701 USA
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Robert Beitle
- Ralph E. Martin Department of Chemical EngineeringUniversity of Arkansas Fayetteville AR 72701 USA
| | - M. Hassan Beyzavi
- Department of Chemistry and BiochemistryUniversity of Arkansas Fayetteville AR 72701 USA
| |
Collapse
|
12
|
Slocik JM, Dennis PB, Govorov AO, Bedford NM, Ren Y, Naik RR. Chiral Restructuring of Peptide Enantiomers on Gold Nanomaterials. ACS Biomater Sci Eng 2019; 6:2612-2620. [PMID: 33463283 DOI: 10.1021/acsbiomaterials.9b00933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of biomolecules has been invaluable at generating and controlling optical chirality in nanomaterials; however, the structure and properties of the chiral biotemplate are not well understood due to the complexity of peptide-nanoparticle interactions. In this study, we show that the complex interactions between d-peptides and gold nanomaterials led to a chiral restructuring of peptides as demonstrated by circular dichroism and proteolytic cleavage of d-peptides via gold-mediated inversion of peptide chirality. The gold nanoparticles synthesized using d-peptide produce a highly ordered atomic surface and restructured peptide bonds for enzyme cleavage. Differences in gold nanoparticle catalyzed reduction of 4-nitrophenol were observed on the basis of the chiral peptide used in nanoparticle synthesis. Notably, the proteolytic cleavage of d-peptides on gold provides an opportunity for designing nanoparticle based therapeutics to treat peptide venoms, access new chemistries, or modulate the catalytic activity of nanomaterials.
Collapse
Affiliation(s)
- Joseph M Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Patrick B Dennis
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Nicholas M Bedford
- School of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Ren
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| |
Collapse
|
13
|
Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years. Biotechnol Lett 2019; 41:453-469. [PMID: 30739282 DOI: 10.1007/s10529-018-02635-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023]
Abstract
The encapsulation of bacteriocins from lactic acid bacteria has involved several methods to protect them from unfavourable environmental conditions and incompatibilities. This review encompasses different methods for the encapsulation of bacteriocins and their applications in both food and pharmaceutical fields. Based on the bibliometric analysis of publications from well-reputed journals including different available patents during the period from 1996 to 2017, 135 articles and 60 patents were collected. Continent-wise contributions to the bacteriocins encapsulation research were carried out by America (52%), Asia (29%) and Europe (19%); with the United States of America, Brazil, Thailand and Italy the countries with major contributions. Till date, different methods proposed for encapsulation have been (i) Film coatings (50%), (ii) Liposomes (23%), (iii) Nanofibers (22%) and (iv) Nanoparticles (4%). Bacteriocins encapsulation methods frequently carried out in food protection (70%); while in the pharmaceutical field, 30% of the research was conducted on multi drug resistant therapy.
Collapse
|
14
|
Ortuño MA, López N. Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01351b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The frontiers between homogeneous and heterogeneous catalysis are progressively disappearing.
Collapse
Affiliation(s)
- Manuel A. Ortuño
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| |
Collapse
|
15
|
Rosa M, Di Felice R, Corni S. Adsorption Mechanisms of Nucleobases on the Hydrated Au(111) Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14749-14756. [PMID: 29723478 DOI: 10.1021/acs.langmuir.8b00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The solution environment is of fundamental importance in the adsorption of molecules on surfaces, a process that is strongly affected by the capability of the adsorbate to disrupt the hydration layer above the surface. Here we disclose how the presence of interface water influences the adsorption mechanism of DNA nucleobases on a gold surface. By means of metadynamics simulations, we describe the distinctive features of a complex free-energy landscape for each base, which manifests activation barriers for the adsorption process. We characterize the different pathways that allow each nucleobase to overcome the barriers and be adsorbed on the surface, discussing how they influence the kinetics of adsorption of single-stranded DNA oligomers with homogeneous sequences. Our findings offer a rationale as to why experimental data on the adsorption of single-stranded homo-oligonucleotides do not straightforwardly follow the thermodynamics affinity rank.
Collapse
Affiliation(s)
| | - Rosa Di Felice
- Center S3 , CNR Institute of Nanoscience , 41125 Modena , Italy
- Department of Physics and Astronomy , University of Southern California , Los Angeles , California 90089 , United States
| | - Stefano Corni
- Center S3 , CNR Institute of Nanoscience , 41125 Modena , Italy
| |
Collapse
|
16
|
|
17
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
18
|
Fernandez Garcia G, Lunghi A, Totti F, Sessoli R. The disclosure of mesoscale behaviour of a 3d-SMM monolayer on Au(111) through a multilevel approach. NANOSCALE 2018; 10:4096-4104. [PMID: 29431791 DOI: 10.1039/c7nr06320b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here we present a computational study of a full- and a half-monolayer of a Fe4 single molecule magnet ([Fe4(L)2(dpm)6], where H3L = 2-hydroxymethyl-2-phenylpropane-1,3-diol and Hdpm = dipivaloylmethane, Fe4Ph) on an unreconstructed surface of Au(111). This has been possible through the application of an integrated approach, which allows the explicit inclusion of the packing effects in the classical dynamics to be used in a second step in periodic and non-periodic high level DFT calculations. In this way we can obtain access to mesoscale geometrical data and verify how they can influence the magnetic properties of interest of the single Fe4 molecule. The proposed approach allows to overcome the ab initio state-of-the-art approaches used to study Single Molecule Magnets (SMMs), which are based on the study of one single adsorbed molecule and cannot represent effects on the scale of a monolayer. Indeed, we show here that it is possible to go beyond the computational limitations inherent to the use, for such complex systems, of accurate calculation techniques (e.g. ab initio molecular dynamics) without losing the level of accuracy necessary to gain new detailed insights, hardly reachable at the experimental level. Indeed, long-range and edge effects on the Fe4 structures and their easy axis of magnetization orientations have been evidenced as their different contributions to the overall macroscopic behavior.
Collapse
Affiliation(s)
- Guglielmo Fernandez Garcia
- Università degli Studi di Firenze. Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy.
| | | | | | | |
Collapse
|
19
|
Geada IL, Ramezani-Dakhel H, Jamil T, Sulpizi M, Heinz H. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential. Nat Commun 2018; 9:716. [PMID: 29459638 PMCID: PMC5818522 DOI: 10.1038/s41467-018-03137-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard–Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals. Molecular dynamics models for predicting the behavior of metallic nanostructures typically do not take into account polarization effects in metals. Here, the authors introduce a polarizable Lennard–Jones potential that provides quantitative insight into the role of induced charges at metal surfaces and related complex material interfaces.
Collapse
Affiliation(s)
- Isidro Lorenzo Geada
- Department of Physics, University of Mainz, Staudingerweg 7, D-55128, Mainz, Germany
| | - Hadi Ramezani-Dakhel
- Department of Polymer Engineering, University of Akron, 250S Forge St, Akron, OH, 44325, USA.,Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Tariq Jamil
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Ave, Boulder, CO, 80309, USA
| | - Marialore Sulpizi
- Department of Physics, University of Mainz, Staudingerweg 7, D-55128, Mainz, Germany.
| | - Hendrik Heinz
- Department of Polymer Engineering, University of Akron, 250S Forge St, Akron, OH, 44325, USA. .,Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Ave, Boulder, CO, 80309, USA.
| |
Collapse
|
20
|
Affiliation(s)
- Rajesh R. Naik
- 711th Human Performance Wing, Air Force
Research Laboratory, Wright−Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and
Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
21
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
22
|
Gupta M, Khan TS, Gupta S, Alam MI, Agarwal M, Haider MA. Non-bonding and bonding interactions of biogenic impurities with the metal catalyst and the design of bimetallic alloys. J Catal 2017. [DOI: 10.1016/j.jcat.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Slocik JM, Naik RR. Sequenced defined biomolecules for nanomaterial synthesis, functionalization, and assembly. Curr Opin Biotechnol 2017; 46:7-13. [DOI: 10.1016/j.copbio.2016.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
24
|
Ramezani-Dakhel H, Bedford NM, Woehl TJ, Knecht MR, Naik RR, Heinz H. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control. NANOSCALE 2017; 9:8401-8409. [PMID: 28604905 DOI: 10.1039/c7nr02813j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field. Folding of longer peptides across many facets explains the formation of near-spherical particles with local surface disorder, in contrast to the possibility of nanostructures of higher symmetry with shorter ligands. The average particle size in TEM correlates inversely with the surface coverage with a given ligand and with the strength of ligand adsorption. The role of specific amino acids and sequence mutations on the nanoparticle size and facet composition is discussed, as well as the origin of local surface disorder that leads to large differences in catalytic reactivity.
Collapse
|
25
|
Dharmawardhana CC, Kanhaiya K, Lin TJ, Garley A, Knecht MR, Zhou J, Miao J, Heinz H. Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1332414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chamila C. Dharmawardhana
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Tzu-Jen Lin
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Amanda Garley
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Marc R. Knecht
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | - Jihan Zhou
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
26
|
Wang W, Anderson CF, Wang Z, Wu W, Cui H, Liu CJ. Peptide-templated noble metal catalysts: syntheses and applications. Chem Sci 2017; 8:3310-3324. [PMID: 28507701 PMCID: PMC5416928 DOI: 10.1039/c7sc00069c] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/11/2017] [Indexed: 01/10/2023] Open
Abstract
Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Zongyuan Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| | - Wei Wu
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Chang-Jun Liu
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| |
Collapse
|
27
|
Lawrence RL, Scola B, Li Y, Lim CK, Liu Y, Prasad PN, Swihart MT, Knecht MR. Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles through Reconfiguration of the Inorganic/Organic Interface. ACS NANO 2016; 10:9470-9477. [PMID: 27666415 DOI: 10.1021/acsnano.6b04555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce here a concept of remote photoinitiated reconfiguration of ligands adsorbed onto a nanocatalyst surface to enable reversible modulation of the catalytic activity. This is demonstrated by using peptide-ligand-capped Au nanoparticles with a photoswitchable azobenzene unit integrated into the biomolecular ligand. Optical switching of the azobenzene isomerization state drives rearrangement of the ligand layer, substantially changing the accessibility and subsequent catalytic activity of the underlying metal surface. The catalytic activity was probed using 4-nitrophenol reduction as a model reaction, where both the position of the photoswitch in the peptide sequence and its isomerization state affected the catalytic activity of the nanoparticles. Reversible switching of the isomerization state produces reversible changes in catalytic activity via reconfiguration of the biomolecular overlayer. These results provide a pathway to catalytic materials whose activity can be remotely modulated, which could be important for multistep chemical transformations that can be accessed via nanoparticle-based catalytic systems.
Collapse
Affiliation(s)
- Randy L Lawrence
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Billy Scola
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | | | | | | | | | | | - Marc R Knecht
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
28
|
Abstract
Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse-grained approaches. We examine uses of different sampling methods, as well as free energy calculations. Furthermore, we review computational studies of protein-surface interactions and discuss the successes and limitations of current approaches.
Collapse
|
29
|
Bedford NM, Showalter AR, Woehl TJ, Hughes ZE, Lee S, Reinhart B, Ertem SP, Coughlin EB, Ren Y, Walsh TR, Bunker BA. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. ACS NANO 2016; 10:8645-59. [PMID: 27583654 DOI: 10.1021/acsnano.6b03963] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.
Collapse
Affiliation(s)
- Nicholas M Bedford
- Applied Chemical and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Allison R Showalter
- Department of Physics, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Taylor J Woehl
- Applied Chemical and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Zak E Hughes
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3216, Australia
| | - Sungsik Lee
- X-ray Sciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Benjamin Reinhart
- X-ray Sciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - S Piril Ertem
- Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - E Bryan Coughlin
- Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Yang Ren
- X-ray Sciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3216, Australia
| | - Bruce A Bunker
- Department of Physics, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Peptide Binding for Bio-Based Nanomaterials. Methods Enzymol 2016. [PMID: 27586350 DOI: 10.1016/bs.mie.2016.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships.
Collapse
|
31
|
Slocik JM, Kuang Z, Knecht MR, Naik RR. Optical Modulation of Azobenzene-Modified Peptide for Gold Surface Binding. Chemphyschem 2016; 17:3252-3259. [PMID: 27526644 DOI: 10.1002/cphc.201600670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 11/08/2022]
Abstract
The ability to precisely and remotely modulate reversible binding interactions between biomolecules and abiotic surfaces is appealing for many applications. To achieve this level of control, an azobenzene-based optical switch is added to nanoparticle-binding peptides in order to switch peptide conformation and attenuate binding affinity to gold surfaces via binding and dissociation of peptides.
Collapse
Affiliation(s)
- Joseph M Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Zhifeng Kuang
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Marc R Knecht
- Department of Chemistry, Miami University, Miami, FL, 33146, USA
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Dayton, OH, 45433, USA.
| |
Collapse
|
32
|
Walker JM, Zaleski JM. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis. NANOSCALE 2016; 8:1535-1544. [PMID: 26681072 DOI: 10.1039/c5nr06700f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M; M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 10(7) s(-1) mol(Pd)(-1); 5 × 10(6) s(-1) mol(Au)(-1); 5 × 10(5) s(-1) mol(PtAg)(-1); 7 × 10(5) s(-1) mol(Ag)(-1)). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing.
Collapse
Affiliation(s)
- Joan M Walker
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| | | |
Collapse
|
33
|
Heinz H, Ramezani-Dakhel H. Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem Soc Rev 2016; 45:412-48. [PMID: 26750724 DOI: 10.1039/c5cs00890e] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural and man-made materials often rely on functional interfaces between inorganic and organic compounds. Examples include skeletal tissues and biominerals, drug delivery systems, catalysts, sensors, separation media, energy conversion devices, and polymer nanocomposites. Current laboratory techniques are limited to monitor and manipulate assembly on the 1 to 100 nm scale, time-consuming, and costly. Computational methods have become increasingly reliable to understand materials assembly and performance. This review explores the merit of simulations in comparison to experiment at the 1 to 100 nm scale, including connections to smaller length scales of quantum mechanics and larger length scales of coarse-grain models. First, current simulation methods, advances in the understanding of chemical bonding, in the development of force fields, and in the development of chemically realistic models are described. Then, the recognition mechanisms of biomolecules on nanostructured metals, semimetals, oxides, phosphates, carbonates, sulfides, and other inorganic materials are explained, including extensive comparisons between modeling and laboratory measurements. Depending on the substrate, the role of soft epitaxial binding mechanisms, ion pairing, hydrogen bonds, hydrophobic interactions, and conformation effects is described. Applications of the knowledge from simulation to predict binding of ligands and drug molecules to the inorganic surfaces, crystal growth and shape development, catalyst performance, as well as electrical properties at interfaces are examined. The quality of estimates from molecular dynamics and Monte Carlo simulations is validated in comparison to measurements and design rules described where available. The review further describes applications of simulation methods to polymer composite materials, surface modification of nanofillers, and interfacial interactions in building materials. The complexity of functional multiphase materials creates opportunities to further develop accurate force fields, including reactive force fields, and chemically realistic surface models, to enable materials discovery at a million times lower computational cost compared to quantum mechanical methods. The impact of modeling and simulation could further be increased by the advancement of a uniform simulation platform for organic and inorganic compounds across the periodic table and new simulation methods to evaluate system performance in silico.
Collapse
Affiliation(s)
- Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO 80309, USA.
| | | |
Collapse
|
34
|
Merrill NA, McKee EM, Merino KC, Drummy LF, Lee S, Reinhart B, Ren Y, Frenkel AI, Naik RR, Bedford NM, Knecht MR. Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials. ACS NANO 2015; 9:11968-11979. [PMID: 26497843 DOI: 10.1021/acsnano.5b04665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bioinspired approaches for the formation of metallic nanomaterials have been extensively employed for a diverse range of applications including diagnostics and catalysis. These materials can often be used under sustainable conditions; however, it is challenging to control the material size, morphology, and composition simultaneously. Here we have employed the R5 peptide, which forms a 3D scaffold to direct the size and linear shape of bimetallic PdAu nanomaterials for catalysis. The materials were prepared at varying Pd:Au ratios to probe optimal compositions to achieve maximal catalytic efficiency. These materials were extensively characterized at the atomic level using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, and atomic pair distribution function analysis derived from high-energy X-ray diffraction patterns to provide highly resolved structural information. The results confirmed PdAu alloy formation, but also demonstrated that significant surface structural disorder was present. The catalytic activity of the materials was studied for olefin hydrogenation, which demonstrated enhanced reactivity from the bimetallic structures. These results present a pathway to the bioinspired production of multimetallic materials with enhanced properties, which can be assessed via a suite of characterization methods to fully ascertain structure/function relationships.
Collapse
Affiliation(s)
- Nicholas A Merrill
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Erik M McKee
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kyle C Merino
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base , Dayton, Ohio 45433, United States
| | - Sungsik Lee
- X-Ray Science Division, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Benjamin Reinhart
- X-Ray Science Division, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Yang Ren
- X-Ray Science Division, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Anatoly I Frenkel
- Department of Physics, Yeshiva University , New York, New York 10016, United States
| | - Rajesh R Naik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base , Dayton, Ohio 45433, United States
| | - Nicholas M Bedford
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base , Dayton, Ohio 45433, United States
- Applied Chemicals and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Marc R Knecht
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
35
|
Bedford NM, Hughes ZE, Tang Z, Li Y, Briggs BD, Ren Y, Swihart MT, Petkov VG, Naik RR, Knecht MR, Walsh TR. Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. J Am Chem Soc 2015; 138:540-8. [DOI: 10.1021/jacs.5b09529] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nicholas M. Bedford
- Applied
Chemical and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Zak E. Hughes
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Zhenghua Tang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
- New
Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yue Li
- Chemical
and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Beverly D. Briggs
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Yang Ren
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Mark T. Swihart
- Chemical
and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Valeri G. Petkov
- Department
of Physics, Central Michigan University, Mt. Pleasant, Michigan 48858, United States
| | - Rajesh R. Naik
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
36
|
Janairo JIB, Co F, Carandang JS, Amalin DM. Sequence-dependent cluster analysis of biomineralization peptides. Z NATURFORSCH C 2015; 70:191-5. [PMID: 26263194 DOI: 10.1515/znc-2014-4202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/20/2015] [Indexed: 11/15/2022]
Abstract
A reliable and statistically valid classification of biomineralization peptides is herein presented. 27 biomineralization peptides (BMPep) were randomly selected as representative samples to establish the classification system using k-means method. These biomineralization peptides were either discovered through isolation from various organisms or via phage display. Our findings show that there are two types of biomineralization peptides based on their length, molecular weight, heterogeneity, and aliphatic residues. Type-1 BMPeps are more commonly found and exhibit higher values for these significant clustering variables. In contrast are the type-2 BMPeps, which have lower values for these parameters and are less common. Through our clustering analysis, a more efficient and systematic approach in BMPep selection is possible since previous methods of BMPep classification are unreliable.
Collapse
|
37
|
Bedford NM, Ramezani-Dakhel H, Slocik JM, Briggs BD, Ren Y, Frenkel AI, Petkov V, Heinz H, Naik RR, Knecht MR. Elucidation of peptide-directed palladium surface structure for biologically tunable nanocatalysts. ACS NANO 2015; 9:5082-92. [PMID: 25905675 DOI: 10.1021/acsnano.5b00168] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then elucidated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences.
Collapse
Affiliation(s)
- Nicholas M Bedford
- †Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- ‡Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Hadi Ramezani-Dakhel
- §Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Joseph M Slocik
- †Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Beverly D Briggs
- ‡Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Yang Ren
- ⊥X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Anatoly I Frenkel
- ∥Department of Physics, Yeshiva University, New York, New York 10016, United States
| | - Valeri Petkov
- #Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48858, United States
| | - Hendrik Heinz
- §Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Rajesh R Naik
- †Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Marc R Knecht
- ‡Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
38
|
Briggs BD, Li Y, Swihart MT, Knecht MR. Reductant and sequence effects on the morphology and catalytic activity of peptide-capped Au nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8843-8851. [PMID: 25839335 DOI: 10.1021/acsami.5b01461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of peptides as capping ligands for materials synthesis has been widely explored. The ambient conditions of bio-inspired syntheses using molecules such as peptides represent an attractive route for controlling the morphology and activity of nanomaterials. Although various reductants can be used in such syntheses, no comprehensive comparison of the same bio-based ligand with different reductants has been reported. In this contribution, peptides AuBP1, AuBP2, and Pd4 are used in the synthesis of Au nanoparticles. The reductant strength is varied by using three different reducing agents: NaBH4, hydrazine, and ascorbic acid. These changes in reductant produce significant morphological differences in the final particles. The weakest reductant, ascorbic acid, yields large, globular nanoparticles with rough surfaces, whereas the strongest reductant, NaBH4, yields small, spherical, smooth nanomaterials. Studies of 4-nitrophenol reduction using the Au nanoparticles as catalysts reveal a decrease in activation energy for the large, globular, rough materials relative to the small, spherical, smooth materials. These studies demonstrate that modifying the reductant is a simple way to control the activity of peptide-capped nanoparticles.
Collapse
Affiliation(s)
- Beverly D Briggs
- †Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Yue Li
- ‡Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mark T Swihart
- ‡Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Marc R Knecht
- †Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
39
|
Molnár Á. Novelty in Complexity: Relationship between Small Peptides, Pd Nanoparticles, and Catalyst Characteristics. ChemCatChem 2015. [DOI: 10.1002/cctc.201500108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 2015; 33:259-68. [PMID: 25796487 DOI: 10.1016/j.tibtech.2015.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
Over the past decade, solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to the surfaces of a diverse range of solid materials including metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers, and minerals. They can direct the assembly and functionalisation of materials, and have the ability to mediate the synthesis and construction of nanoparticles and complex nanostructures. As the availability of newly synthesised nanomaterials expands rapidly, so too do the potential applications for SBPs.
Collapse
|
41
|
Arthur TD, Cavera VL, Chikindas ML. On bacteriocin delivery systems and potential applications. Future Microbiol 2014; 9:235-48. [PMID: 24571075 DOI: 10.2217/fmb.13.148] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteriocins are antimicrobial peptides produced by a variety of bacteria. These peptides can act as antibiotic synergists or alternatives to enhance the therapeutic effects of current infection treatments and decrease the prevalence of resistant strains. Two bacteriocins, namely nisin and pediocin PA-1, are currently being used by the food industry; however, the introduction of these and others into the biomedical industry, and further development of food applications, have been challenged by the slow development of reliable delivery systems. For bacteriocins, these systems rely on novel and pre-existing technologies. Many essential variables need to be accounted for to formulate successful delivery methods. In this review, documented and potential bacteriocin delivery systems are examined, with special attention paid to how those systems are being implemented in the food and medical industries.
Collapse
Affiliation(s)
- Timothy D Arthur
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ, USA
| | | | | |
Collapse
|
42
|
Maeda Y, Javid N, Duncan K, Birchall L, Gibson KF, Cannon D, Kanetsuki Y, Knapp C, Tuttle T, Ulijn RV, Matsui H. Discovery of catalytic phages by biocatalytic self-assembly. J Am Chem Soc 2014; 136:15893-6. [PMID: 25343575 PMCID: PMC6390487 DOI: 10.1021/ja509393p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovery of new catalysts for demanding aqueous reactions is challenging. Here, we describe methodology for selection of catalytic phages by taking advantage of localized assembly of the product of the catalytic reaction that is screened for. A phage display library covering 10(9) unique dodecapeptide sequences is incubated with nonassembling precursors. Phages which are able to catalyze formation of the self-assembling reaction product (via amide condensation) acquire an aggregate of reaction product, enabling separation by centrifugation. The thus selected phages can be amplified by infection of Escherichia coli. These phages are shown to catalyze amide condensation and hydrolysis. Kinetic analysis shows a minor role for substrate binding. The approach enables discovery and mass-production of biocatalytic phages.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Department of Chemistry and Biochemistry, Hunter College, City University of New York , 695 Park Avenue, New York, New York 10065, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ruan L, Ramezani-Dakhel H, Lee C, Li Y, Duan X, Heinz H, Huang Y. A rational biomimetic approach to structure defect generation in colloidal nanocrystals. ACS NANO 2014; 8:6934-6944. [PMID: 24937767 DOI: 10.1021/nn501704k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Controlling the morphology of nanocrystals (NCs) is of paramount importance for both fundamental studies and practical applications. The morphology of NCs is determined by the seed structure and the following facet growth. While means for directing facet formation in NC growth have been extensively studied, rational strategies for the production of NCs bearing structure defects in seeds have been much less explored. Here, we report mechanistic investigations of high density twin formation induced by specific peptides in platinum (Pt) NC growth, on the basis of which we derive principles that can serve as guidelines for the rational design of molecular surfactants to introduce high yield twinning in noble metal NC syntheses. Two synergistic factors are identified in producing twinned Pt NCs with the peptide: (1) the altered reduction kinetics and crystal growth pathway as a result of the complex formation between the histidine residue on the peptide and Pt ions, and (2) the preferential stabilization of {111} planes upon the formation of twinned seeds. We further apply the discovered principles to the design of small organic molecules bearing similar binding motifs as ligands/surfactants to create single and multiple twinned Pd and Rh NCs. Our studies demonstrate the rich information derived from biomimetic synthesis and the broad applicability of biomimetic principles to NC synthesis for diverse property tailoring.
Collapse
Affiliation(s)
- Lingyan Ruan
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Heinz H. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution--accurate computational models and experiment. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:244105. [PMID: 24863288 DOI: 10.1088/0953-8984/26/24/244105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Adsorption of biomolecules and polymers to inorganic nanostructures plays a major role in the design of novel materials and therapeutics. The behavior of flexible molecules on solid surfaces at a scale of 1-1000 nm remains difficult and expensive to monitor using current laboratory techniques, while playing a critical role in energy conversion and composite materials as well as in understanding the origin of diseases. Approaches to implement key surface features and pH in molecular models of solids are explained, and distinct mechanisms of peptide recognition on metal nanostructures, silica and apatite surfaces in solution are described as illustrative examples. The influence of surface energies, specific surface features and protonation states on the structure of aqueous interfaces and selective biomolecular adsorption is found to be critical, comparable to the well-known influence of the charge state and pH of proteins and surfactants on their conformations and assembly. The representation of such details in molecular models according to experimental data and available chemical knowledge enables accurate simulations of unknown complex interfaces in atomic resolution in quantitative agreement with independent experimental measurements. In this context, the benefits of a uniform force field for all material classes and of a mineral surface structure database are discussed.
Collapse
Affiliation(s)
- Hendrik Heinz
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
45
|
Li X, Li G, Zang W, Wang L, Zhang X. Catalytic activity of shaped platinum nanoparticles for hydrogenation: a kinetic study. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00580e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Wu RH, Nguyen TP, Marquart GW, Miesen TJ, Mau T, Mackiewicz MR. A facile route to tailoring peptide-stabilized gold nanoparticles using glutathione as a synthon. Molecules 2014; 19:6754-75. [PMID: 24858266 PMCID: PMC6271629 DOI: 10.3390/molecules19056754] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022] Open
Abstract
The preparation of gold nanoparticles (AuNPs) of high purity and stability remains a major challenge for biological applications. This paper reports a simple synthetic strategy to prepare water-soluble peptide-stabilized AuNPs. Reduced glutathione, a natural tripeptide, was used as a synthon for the growth of two peptide chains directly on the AuNP surface. Both nonpolar (tryptophan and methionine) and polar basic (histidine and dansylated arginine) amino acids were conjugated to the GSH-capped AuNPs. Ultracentrifugation concentrators with polyethersulfone (PES) membranes were used to purify precursor materials in each stage of the multi-step synthesis to minimize side reactions. Thin layer chromatography, transmission electron microscopy, UV-Visible, 1H-NMR, and fluorescence spectroscopies demonstrated that ultracentrifugation produces high purity AuNPs, with narrow polydispersity, and minimal aggregation. More importantly, it allows for more control over the composition of the final ligand structure. Studies under conditions of varying pH and ionic strength revealed that peptide length, charge, and hydrophobicity influence the stability as well as solubility of the peptide-capped AuNPs. The synthetic and purification strategies used provide a facile route for developing a library of tailored biocompatible peptide-stabilized AuNPs for biomedical applications.
Collapse
Affiliation(s)
- Rosina Ho Wu
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Tan P Nguyen
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Grant W Marquart
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Thomas J Miesen
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Theresa Mau
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- Marco Filice
- Departamento
de Biocatálisis, Instituto de Catálisis (CSIC) Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Jose M. Palomo
- Departamento
de Biocatálisis, Instituto de Catálisis (CSIC) Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
48
|
Sharma B, Mandani S, Sarma TK. Enzymes as bionanoreactors: glucose oxidase for the synthesis of catalytic Au nanoparticles and Au nanoparticle–polyaniline nanocomposites. J Mater Chem B 2014; 2:4072-4079. [DOI: 10.1039/c4tb00218k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biogenic synthesis of Au nanoparticles and Au nanoparticle–polyaniline composite could be accomplished taking advantage of the reducing and catalytic activity of glucose oxidase.
Collapse
Affiliation(s)
- Bhagwati Sharma
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology Indore
- IET Campus-DAVV
- Indore-452017, India
| | - Sonam Mandani
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology Indore
- IET Campus-DAVV
- Indore-452017, India
| | - Tridib K. Sarma
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology Indore
- IET Campus-DAVV
- Indore-452017, India
| |
Collapse
|
49
|
Maity I, Rasale DB, Das AK. Peptide nanofibers decorated with Pd nanoparticles to enhance the catalytic activity for C–C coupling reactions in aerobic conditions. RSC Adv 2014. [DOI: 10.1039/c3ra44787a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|