1
|
Hunter NH, Thomas CM. Polarized metal-metal multiple bonding and reactivity of phosphinoamide-bridged heterobimetallic group IV/cobalt compounds. Dalton Trans 2024; 53:15764-15781. [PMID: 39224084 DOI: 10.1039/d4dt02064b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Heterobimetallic complexes are studied for their ability to mimic biological systems as well as active sites in heterogeneous catalysts. While specific interest in early/late heterobimetallic systems has fluctuated, they serve as important models to fundamentally understand metal-metal bonding. Specifically, the polarized metal-metal multiple bonds formed in highly reduced early/late heterobimetallic complexes exemplify how each metal modulates the electronic environment and reactivity of the complex as a whole. In this Perspective, we chronicle the development of phosphinoamide-supported group IV/cobalt heterobimetallic complexes. This combination of metals allows access to a low valent Co-I center, which performs a rich variety of bond activation reactions when coupled with the pendent Lewis acidic metal center. Conversely, the low valent late transition metal is also observed to act as an electron reservoir, allowing for redox processes to occur at the d0 group IV metal site. Most of the bond activation reactions carried out by phosphinoamide-bridged M/Co-I (M = Ti, Zr, Hf) complexes are facilitated by cleavage of metal-metal multiple bonds, which serve as readily accessible electron reservoirs. Comparative studies in which both the number of buttressing ligands as well as the identity of the early metal were varied to give a library of heterobimetallic complexes are summarized, providing a thorough understanding of the reactivity of M/Co-I heterobimetallic systems.
Collapse
Affiliation(s)
- Nathanael H Hunter
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W, 18th Ave, Columbus, OH 43210, USA.
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W, 18th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Xin X, Sheng W, Zhang Q, Qi R, Zhu Q, Zhu C. Synthesis and characterization of homometallic cobalt complexes with metal-metal interactions. Dalton Trans 2024; 53:15696-15702. [PMID: 39248639 DOI: 10.1039/d4dt01301h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Complexes featuring metal-metal bonds play crucial roles in catalysis and small molecule activation due to the synergistic effects between the metals. Here, we report a series of homometallic cobalt complexes with metal-metal interactions that have been successfully stabilized by a multidentate ligand platform. Theoretical studies on metal-metal interactions in these cobalt complexes are discussed.
Collapse
Affiliation(s)
- Xiaoqing Xin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Wang JL, Wu GY, Luo JN, Liu JL, Zhuo CX. Catalytic Intermolecular Deoxygenative Coupling of Carbonyl Compounds with Alkynes by a Cp*Mo(II)-Catalyst. J Am Chem Soc 2024; 146:5605-5613. [PMID: 38351743 DOI: 10.1021/jacs.3c14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Carbonyl is highly accessible and acts as an essential functional group in chemical synthesis. However, the direct catalytic deoxygenative functionalization of carbonyl compounds via a putative metal carbene intermediate is a formidable challenge due to the requirement of a high activation energy for the cleavage of strong C═O double bonds. Here, we report a class of bench stable and readily available Cp*Mo(II)-complexes as efficient deoxygenation catalysts that could catalyze the direct intermolecular deoxygenative coupling of carbonyl compounds with alkynes. Enabled by this powerful Cp*Mo(II)-catalyst, various valuable heteroarenes (10 different classes) were obtained in generally good yields and remarkable chemo- and regioselectivities. Mechanistic studies suggested that this reaction might proceed via a sequence of C═O double bonds cleavage, carbene-alkyne metathesis, cyclization, and aromatization processes. This strategy not only provided a general catalytic platform for the rapid preparation of heteroarenes but also opened a new window for the applications of Cp*Mo(II)-catalysts in organic synthesis.
Collapse
Affiliation(s)
- Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guan-Yu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jian-Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jun-Long Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Sun Y, Zhang J, Zeng Y, Meng L, Li X. Mechanism and Stereoselectivity Control of Terminal Alkyne Dimerization Activated by a Zr/Co Heterobimetallic Complex: A DFT Study. J Org Chem 2024; 89:605-616. [PMID: 38096545 DOI: 10.1021/acs.joc.3c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Heterobimetallic complexes have recently garnered considerable attention in organic synthesis owing to their high activity and selectivity, which surpass those of monometallic complexes. In this study, the detailed mechanisms of terminal alkyne dimerization activated by the heterobimetallic Zr/Co complex, as well as the different stereoselectivities of Me3SiC≡CH and PhC≡CH dimerization, were investigated and elucidated by using density functional theory calculations. After excluding the three-molecule reaction and outer-sphere mechanisms, the inner-sphere mechanism was determined as the most optimal process. The inner-sphere mechanism involves four processes: THF dissociation and coordination of the first alkyne; ligand migration and C-H activation; N2 dissociation and insertion of the second alkyne; and reductive elimination. The stereoselectivity between the E-/Z- and gem-isomers is determined by the C-C coupling mode of the two alkynes and that of the E- and Z-isomers is determined by the sequence of the C-C coupling and hydrogen migration in the reductive elimination process. Me3SiC≡CH dimerization yields only an E-isomer owing to the large differences in the distortion and interaction energies, whereas PhC≡CH dimerization produces an E-, Z-, and gem-isomers owing to the reduced interaction energy differences.
Collapse
Affiliation(s)
- Yuanyuan Sun
- College of Chemistry and Material Science, Hebei Key Laboratory of Inorganic and Nano-Materials, National Demonstratin Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Jinying Zhang
- College of Chemistry and Material Science, Hebei Key Laboratory of Inorganic and Nano-Materials, National Demonstratin Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yanli Zeng
- College of Chemistry and Material Science, Hebei Key Laboratory of Inorganic and Nano-Materials, National Demonstratin Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Lingpeng Meng
- College of Chemistry and Material Science, Hebei Key Laboratory of Inorganic and Nano-Materials, National Demonstratin Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xiaoyan Li
- College of Chemistry and Material Science, Hebei Key Laboratory of Inorganic and Nano-Materials, National Demonstratin Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
5
|
Sun X, Shen J, Rajeshkumar T, Maron L, Zhu C. Heterometallic Clusters with Cerium-Transition-Metal Bonding Supported by Nitrogen-Phosphorus Ligands. Inorg Chem 2023; 62:16077-16083. [PMID: 37733482 DOI: 10.1021/acs.inorgchem.3c02259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Ligands are known to play a crucial role in the construction of complexes with metal-metal bonds. Compared with metal-metal bonds involving d-block transition metals, knowledge of the metal-metal bonds involving f-block rare-earth metals still lags far behind. Herein, we report a series of complexes with cerium-transition-metal bonds, which are supported by two kinds of nitrogen-phosphorus ligands N[CH2CH2NHPiPr2]3 (VI) and PyNHCH2PPh2 (VII). The reactions of zerovalent group 10 metal precursors, Pd(PPh3)4 and Pt(PPh3)4, with the cerium complex supported by VI generate heterometallic clusters [N{CH2CH2NPiPr2}3Ce(μ-M)]2 (M = Pd, 2 and M = Pt, 3) featuring four Ce-M bonds; meanwhile, the bimetallic species [(PyNCH2PPh2)3Ce-M] (M = Ni, 5; M = Pd, 6; and M = Pt, 7) with a single Ce-M bond were isolated from the reactions of the cerium precursor 4 supported by VII with Ni(COD)2, Pd(PPh3)4, or Pt(PPh3)4, respectively. These complexes represent the first example of species with an RE-M bond between Ce and group 10 metals, and 2 and 3 contain the largest number of RE-M donor/acceptor interactions ever to have been observed in a molecule.
Collapse
Affiliation(s)
- Xiong Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China
| | - Jinghang Shen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Cooperative Bond Activation and Catalytic CO 2 Functionalization with a Geometrically Constrained Bis(silylene)-Stabilized Borylene. J Am Chem Soc 2023; 145:7011-7020. [PMID: 36939300 DOI: 10.1021/jacs.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Metal-ligand cooperativity has emerged as an important strategy to tune the reactivity of transition-metal complexes for the catalysis and activation of small molecules. Studies of main-group compounds, however, are scarce. Here, we report the synthesis, structural characterization, and reactivity of a geometrically constrained bis(silylene)-stabilized borylene. The one-pot reaction of [(SiNSi)Li(OEt2)] (SiNSi = 4,5-bis(silylene)-2,7,9,9-tetramethyl-9H-acridin-10-ide) with 1 equiv of [BBr3(SMe2)] in toluene at room temperature followed by reduction with 2 equiv of potassium graphite (KC8) leads to borylene [(SiNSi)B] (1), isolated as blue crystals in 45% yield. X-ray crystallography shows that borylene (1) has a tricoordinate boron center with a distorted T-shaped geometry. Computational studies reveal that the HOMO of 1 represents the lone pair orbital on the boron center and is delocalized over the Si-B-Si unit, while the geometric perturbation significantly increases its energy. Borylene (1) shows single electron transfer reactivity toward tris(pentafluorophenyl)borane (B(C6F5)3), forming a frustrated radical pair [(SiNSi)B]•+[B(C6F5)3]•-, which can be trapped by its reaction with PhSSPh, affording an ion pair [(SiNSi)BSPh][PhSB(C6F5)3] (3). Remarkably, the cooperation between borylene and silylene allows the facile cleavage of the N-H bond of aniline, the P-P bond in white phosphorus, and the C═O bond in ketones and carbon dioxide, thus representing a new type of main-group element-ligand cooperativity for the activation of small molecules. In addition, 1 is a strikingly effective catalyst for carbon dioxide reduction. Computational studies reveal that the cooperation between borylene and silylene plays a key role in the catalytic chemical bond activation process.
Collapse
|
7
|
Yu YZ, Bai J, Peng JM, Yao JS, Zhuo CX. Modular Access to meta-Substituted Benzenes via Mo-Catalyzed Intermolecular Deoxygenative Benzene Formation. J Am Chem Soc 2023; 145:8781-8787. [PMID: 36929879 DOI: 10.1021/jacs.3c01330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The substituted benzene derivatives are essential to organic synthesis, medicinal chemistry, and material science. However, the 1,3-di- and 1,3,5-trisubstituted benzenes are far less prevalent in small-molecule drugs than other substitution patterns, likely due to the lack of robust, efficient, and convenient synthetic methods. Here, we report a Mo-catalyzed intermolecular deoxygenative benzene-forming reaction of readily available ynones and allylic amines. A wide range of unsymmetric and unfunctionalized 1,3-di- and 1,3,5-trisubstituted benzenes were obtained in up to 88% yield by using a commercially available molybdenum catalyst. The synthetic potential of the method was further illustrated by synthetic transformations, a scale-up synthesis, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this benzene-forming process might proceed through a Mo-catalyzed aza-Michael addition/[1,5]-hydride shift/cyclization/aromatization cascade. This strategy not only provided a facile, robust, and modular approach to various meta-substituted benzene derivatives but also demonstrated the potential of molybdenum catalysis in the challenging intermolecular deoxygenative cross-coupling reactions.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.,Shenzhen Research Institute of Xiamen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Pan X, Xu M, Xiong C, Hong D, Fang H, Cui P. Dinitrogen Complexes of Cobalt(-I) Supported by Rare-Earth Metal-Based Metalloligands. Inorg Chem 2023; 62:3836-3846. [PMID: 36800534 DOI: 10.1021/acs.inorgchem.2c04099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Sequential reactions of heptadentate phosphinoamine LH3 with rare-earth metal tris-alkyl precursor (Me3SiCH2)3Ln(THF)2 (Ln = Sc, Lu, Yb, Y, Gd) and a low-valent cobalt complex (Ph3P)3CoI afforded rare-earth metal-supported cobalt iodide complexes. Reduction of these iodide complexes under N2 allowed the isolation of the first series of dinitrogen complexes of Co(-I) featuring dative Co(-I) → Ln (Ln = Sc, Lu, Yb, Y, Gd) bonding interactions. These compounds were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The correlation of N-N vibrational frequencies with the pKa of [Ln(H2O)6]3+ showed that strongest activation of N2 was achieved with the least Lewis acidic Gd(III) ion. Interestingly, these Ln-Co-N2 complexes catalyzed silylation of N2 in the presence of KC8 and Me3SiCl with turnover numbers (TONs) up to 16, where the lutetium-supported Co(-I) complex showed the highest activity within the series. The role of the Lewis acidic Ln(III) was crucial to achieve catalytic turnovers and tunable reactivity toward N2 functionalization.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Min Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
9
|
Cao LY, Wang JL, Wang K, Wu JB, Wang DK, Peng JM, Bai J, Zhuo CX. Catalytic Asymmetric Deoxygenative Cyclopropanation Reactions by a Chiral Salen-Mo Catalyst. J Am Chem Soc 2023; 145:2765-2772. [PMID: 36626166 DOI: 10.1021/jacs.2c12225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The catalytic asymmetric cyclopropanation reaction of alkenes with diazo compounds is a direct and powerful method to construct chiral cyclopropanes that are essential to drug discovery. However, diazo compounds are potentially explosive and often require hazardous reagents for their preparation. Here, we report on the use of 1,2-dicarbonyl compounds as safe and readily available surrogates for diazo compounds in the direct catalytic asymmetric deoxygenative cyclopropanation reaction. Enabled by a class of simple and readily accessible chiral salen-Mo catalysts, the reaction proceeded with generally good enantioselectivities and yields toward a wide range of substrates (80 examples). Preliminary mechanistic studies suggested that the proposed μ-oxo bridged dinuclear Mo(III)-species was the catalytically active species. This strategy not only provides a promising route for the synthesis of chiral cyclopropanes but also opens a new window for the potential applications of chiral salen-Mo complexes in asymmetric catalysis.
Collapse
Affiliation(s)
- Li-Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiang-Bin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - De-Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Dong YQ, Wang K, Zhuo CX. Molybdenum-Catalyzed Intermolecular Deoxygenative Cross-Coupling Reactions of 1,2-Diketones with α-Ketoamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan-Qing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, P. R. China
| |
Collapse
|
11
|
Sinhababu S, Radzhabov MR, Telser J, Mankad NP. Cooperative Activation of CO 2 and Epoxide by a Heterobinuclear Al-Fe Complex via Radical Pair Mechanisms. J Am Chem Soc 2022; 144:3210-3221. [PMID: 35157448 PMCID: PMC9308047 DOI: 10.1021/jacs.1c13108] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of inert molecules like CO2 is often mediated by cooperative chemistry between two reactive sites within a catalytic assembly, the most common form of which is Lewis acid/base bifunctionality observed in both natural metalloenzymes and synthetic systems. Here, we disclose a heterobinuclear complex with an Al-Fe bond that instead activates CO2 and other substrates through cooperative behavior of two radical intermediates. The complex Ldipp(Me)AlFp (2, Ldipp = HC{(CMe)(2,6-iPr2C6H3N)}2, Fp = FeCp(CO)2, Cp = η5-C5H5) was found to insert CO2 and cyclohexene oxide, producing LdippAl(Me)(μ:κ2-O2C)Fp (3) and LdippAl(Me)(μ-OC6H10)Fp (4), respectively. Detailed mechanistic studies indicate unusual pathways in which (i) the Al-Fe bond dissociates homolytically to generate formally AlII and FeI metalloradicals, then (ii) the metalloradicals add to substrate in a pairwise fashion initiated by O-coordination to Al. The accessibility of this unusual mechanism is aided, in part, by the redox noninnocent nature of Ldipp that stabilizes the formally AlII intermediates, instead giving them predominantly AlIII-like physical character. The redox noninnocent nature of the radical intermediates was elucidated through direct observation of LdippAl(Me)(OCPh2) (22), a metalloradical species generated by addition of benzophenone to 2. Complex 22 was characterized by X-band EPR, Q-band EPR, and ENDOR spectroscopies as well as computational modeling. The "radical pair" pathway represents an unprecedented mechanism for CO2 activation.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Maxim R. Radzhabov
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
12
|
Szych LS, Pilopp Y, Bresien J, Villinger A, Rabeah J, Schulz A. Ein persistentes phosphanyl‐substituiertes Thioketylradikalanion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lilian Sophie Szych
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Yannic Pilopp
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Jonas Bresien
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Alexander Villinger
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| | - Axel Schulz
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| |
Collapse
|
13
|
Affiliation(s)
- Naofumi Hara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiko Semba
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
Du J, He X, Hong D, Zhou S, Fang H, Cui P. Phosphinoamido Ligand Supported Heterobimetallic Rare-Earth Metal-Palladium Complexes: Versatile Structures and Redox Reactivities. Dalton Trans 2022; 51:8777-8785. [DOI: 10.1039/d2dt01084d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterobimetallic Ln(III)-Pd(0) complexes (Ln = Y, Sm, Gd, Yb) featuring tetranuclear structures with COD as bridges were obtained via the metallation of tris(phosphinoamido) rare-earth metal complexes [Ph2PNAd]3Ln (Ad = admantyl)...
Collapse
|
15
|
Sieg G, Pessemesse Q, Reith S, Yelin S, Limberg C, Munz D, Werncke CG. Cobalt and Iron Stabilized Ketyl, Ketiminyl and Aldiminyl Radical Anions. Chemistry 2021; 27:16760-16767. [PMID: 34569676 PMCID: PMC9298351 DOI: 10.1002/chem.202103096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/02/2023]
Abstract
Carbonyl and iminyl based radical anions are reactive intermediates in a variety of transformations in organic synthesis. Herein, the isolation of ketyl, and more importantly unprecedented ketiminyl and aldiminyl radical anions coordinated to cobalt and iron complexes is presented. Insights into the electronic structure of these unusual metal bound radical anions is provided by X-Ray diffraction analysis, NMR, IR, UV/Vis and Mössbauer spectroscopy, solid and solution state magnetometry, as well as a by a detailed computational analysis. The metal bound radical anions are very reactive and facilitate the activation of intra- and intermolecular C-H bonds.
Collapse
Affiliation(s)
- Grégoire Sieg
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Quentin Pessemesse
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1, Laboratoire de Chimie69342LyonFrance
- Anorganische Chemie: Koordinationschemie Campus C4.1Universität des Saarlandes66123SaarbrückenGermany
| | - Sascha Reith
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Stefan Yelin
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Christian Limberg
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Dominik Munz
- Anorganische Chemie: Koordinationschemie Campus C4.1Universität des Saarlandes66123SaarbrückenGermany
- Department Chemie und PharmazieFriedrich-Alexander Universität (FAU) Erlangen-NürnbergEgerlandstr. 1D-91058ErlangenGermany
| | - C. Gunnar Werncke
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
16
|
Schulz A, Szych LS, Pilopp Y, Bresien J, Villinger A, Rabeah J. A Persistent Phosphanyl-Substituted Thioketyl Radical Anion. Angew Chem Int Ed Engl 2021; 61:e202114792. [PMID: 34843637 PMCID: PMC9303638 DOI: 10.1002/anie.202114792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/05/2022]
Abstract
Alkali metal salts, M+[Ter(iPr)P−C(=S)−P(iPr)2S].− (M=Na, K; 2_M; Ter=2,6‐bis‐(2,4,6‐trimethylphenyl)phenyl) containing a room‐temperature‐stable thioketyl radical anion were obtained by reduction of the thioketone precursor, Ter(iPr)P−C(=S)−P(iPr)2S (1), with alkali metals (Na, K). Single‐crystal X‐ray studies as well as EPR spectroscopy revealed the unequivocal existence of a thioketyl radical anion in the solid state and in solution, respectively. The computed Mulliken spin density within 2_M is mainly located at the sulfur (49 %) and the carbonyl carbon (33 %) atoms. Upon adding [2.2.2]‐cryptand to the radical species 2_K to minimize the interionic interaction, an activation reaction was observed, yielding a potassium salt with a phosphanyl thioether based anion, [K(crypt)]+[Ter(iPr)P−C(−S‐iPr)−P(iPr)2S]− (3) as the product of an intermolecular shift of an iPr group from a second anion. The products were fully characterized and application of the radical anion as a reducing agent was demonstrated.
Collapse
Affiliation(s)
- Axel Schulz
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059, Rostock, GERMANY
| | - Lilian Sophie Szych
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Yannic Pilopp
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Jonas Bresien
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Alexander Villinger
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Jabor Rabeah
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV, Chemie, GERMANY
| |
Collapse
|
17
|
Hunter NH, Lane EM, Gramigna KM, Moore CE, Thomas CM. C–H Bond Activation Facilitated by Bis(phosphinoamide) Heterobimetallic Zr/Co Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathanael H. Hunter
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Elizabeth M. Lane
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Kathryn M. Gramigna
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Cao L, Luo J, Yao J, Wang D, Dong Y, Zheng C, Zhuo C. Molybdenum‐Catalyzed Deoxygenative Cyclopropanation of 1,2‐Dicarbonyl or Monocarbonyl Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Li‐Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jian‐Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jia‐Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - De‐Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yuan‐Qing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Chun‐Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
19
|
Cui P, Wu C, Du J, Luo G, Huang Z, Zhou S. Three-Coordinate Pd(0) with Rare-Earth Metalloligands: Synergetic CO Activation and Double P-C Bond Cleavage-Formation Reactions. Inorg Chem 2021; 60:9688-9699. [PMID: 34125520 DOI: 10.1021/acs.inorgchem.1c00990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalation of β-diketiminato rare-earth metal complexes LnacnacLn(PhNCH2PPh2)2 (Ln = Y, Yb, Lu) with (COD)Pd(CH2SiMe3)2 afforded three-coordinate Pd(0) complexes supported by two sterically less bulky phosphines and a Pd → Ln dative interaction. The Pd(0) center is prone to ligation with isonitrile and CO; in the latter case, the insertion of a second CO with the Y-N bond was assisted via a precoordination of CO on the Pd(0) center, which led to the formation of an anionic Pd(0) carbamoyl. The reaction of the Pd-Y complex with iodobenzene showed a remarkable double P-C bond cleavage-formation pathway within the heterobimetallic Pd-Y core to afford (Ph3P)2PdI(Ph), imine PhNCH2, and a β-diketiminato yttrium diiodide. In the related reaction of LnacnacY(PhNCH2PPh2)2 with (Ph3P)2PdI(Ph), the P-C bond cleavage following with a N-C bond formation was observed. Computational studies revealed a synergetic bimetallic mechanism for these reactions.
Collapse
Affiliation(s)
- Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Changjiang Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jun Du
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zeming Huang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shuangliu Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
20
|
Belov DS, Tejeda G, Bukhryakov KV. Olefin Metathesis by First-Row Transition Metals. Chempluschem 2021; 86:924-937. [PMID: 34160903 DOI: 10.1002/cplu.202100192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Indexed: 11/06/2022]
Abstract
Catalytic olefin metathesis based on the second- and third-row transition metals has become one of the most powerful transformations in modern organic chemistry. The shift to first-row metals to produce fine and commodity chemicals would be an important achievement to complement existing methods with inexpensive and greener alternatives. In addition, those systems can offer unusual reactivity based on the unique electronic structure of the base metals. In this Minireview, we summarize the progress of the development of alkylidenes and metallacycles of first-row transition metals from scandium to nickel capable of performing cycloaddition and cycloreversion steps, crucial reactions in olefin metathesis. In addition, we will discuss systems capable of performing olefin metathesis; however, the nature of active species is not yet known.
Collapse
Affiliation(s)
- Dmitry S Belov
- Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Gabriela Tejeda
- Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Konstantin V Bukhryakov
- Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| |
Collapse
|
21
|
Cao LY, Luo JN, Yao JS, Wang DK, Dong YQ, Zheng C, Zhuo CX. Molybdenum-Catalyzed Deoxygenative Cyclopropanation of 1,2-Dicarbonyl or Monocarbonyl Compounds. Angew Chem Int Ed Engl 2021; 60:15254-15259. [PMID: 33901340 DOI: 10.1002/anie.202103429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Indexed: 12/26/2022]
Abstract
The transition-metal-catalyzed cyclopropanation of alkenes by the decomposition of diazo compounds is a powerful and straightforward strategy to produce cyclopropanes, but is tempered by the potentially explosive nature of diazo substrates. Herein we report the Mo-catalyzed regiospecific deoxygenative cyclopropanation of readily available and bench-stable 1,2-dicarbonyl compounds, in which one of the two carbonyl groups acts as a carbene equivalent upon deoxygenation and engages in the subsequent cyclopropanation process. The use of a commercially available Mo catalyst afforded an array of valuable cyclopropanes with exclusive regioselectivity in up to 90 % yield. The synthetic utility of this method was further demonstrated by gram-scale syntheses, late-stage functionalization, and the cyclopropanation of a simple monocarbonyl compound. Preliminary mechanistic studies suggest that phosphine (or silane) acts as both a mild reductant and a good oxygen acceptor that efficiently regenerates the catalytically active Mo catalyst through reduction of the Mo-oxo complexes.
Collapse
Affiliation(s)
- Li-Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jian-Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia-Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - De-Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan-Qing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
22
|
Charles RM, Brewster TP. H 2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coord Chem Rev 2021; 433:213765. [PMID: 35418712 PMCID: PMC9004596 DOI: 10.1016/j.ccr.2020.213765] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The field of heterobimetallic chemistry has rapidly expanded over the last decade. In addition to their interesting structural features, heterobimetallic structures have been found to facilitate a range of stoichiometric bond activations and catalytic processes. The accompanying review summarizes advances in this area since January of 2010. The review encompasses well-characterized heterobimetallic complexes, with a particular focus on mechanistic details surrounding their reactivity applications.
Collapse
Affiliation(s)
- R Malcolm Charles
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| | - Timothy P Brewster
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| |
Collapse
|
23
|
Wang Q, Brooks SH, Liu T, Tomson NC. Tuning metal-metal interactions for cooperative small molecule activation. Chem Commun (Camb) 2021; 57:2839-2853. [PMID: 33624638 PMCID: PMC8274379 DOI: 10.1039/d0cc07721f] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cluster complexes have attracted interest for decades due to their promise of drawing analogies to metallic surfaces and metalloenzyme active sites, but only recently have chemists started to develop ligand scaffolds that are specifically designed to support multinuclear transition metal cores. Such ligands not only hold multiple metal centers in close proximity but also allow for fine-tuning of their electronic structures and surrounding steric environments. This Feature Article highlights ligand designs that allow for cooperative small molecule activation at cluster complexes, with a particular focus on complexes that contain metal-metal bonds. Two useful ligand-design elements have emerged from this work: a degree of geometric flexibility, which allows for novel small molecule activation modes, and the use of redox-active ligands to provide electronic flexibility to the cluster core. The authors have incorporated these factors into a unique class of dinucleating macrocycles (nPDI2). Redox-active fragments in nPDI2 mimic the weak-overlap covalent bonding that is characteristic of M-M interactions, and aliphatic linkers in the ligand backbone provide geometric flexibility, allowing for interconversion between a range of geometries as the dinuclear core responds to the requirements of various small molecule substrates. The union of these design elements appears to be a powerful combination for analogizing critical aspects of heterogeneous and metalloenzyme catalysts.
Collapse
Affiliation(s)
- Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
24
|
Cui P, Huang X, Du J, Huang Z. P–C Bond Cleavage Induced Ni(II) Complexes Bearing Rare-Earth-Metal-Based Metalloligand and Reactivities toward Isonitrile, Nitrile, and Epoxide. Inorg Chem 2021; 60:3249-3258. [DOI: 10.1021/acs.inorgchem.0c03675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
- Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123, PR China
| | - Xia Huang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
| | - Jun Du
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
| | - Zeming Huang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
| |
Collapse
|
25
|
Maity AK, Kalb AE, Zeller M, Uyeda C. A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew Chem Int Ed Engl 2021; 60:1897-1902. [PMID: 33045127 PMCID: PMC8086810 DOI: 10.1002/anie.202011602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/09/2022]
Abstract
(NDI)Ni2 catalysts (NDI=naphthyridine-diimine) promote cyclopropanation reactions of 1,3-dienes using (Me3 Si)CHN2 . Mechanistic studies reveal that a metal carbene intermediate is not part of the catalytic cycle. The (NDI)Ni2 (CHSiMe3 ) complex was independently synthesized and found to be unreactive toward dienes. Based on DFT models, we propose an alternative mechanism that begins with a Ni2 -mediated coupling of (Me3 Si)CHN2 and the diene. N2 extrusion followed by radical C-C bond formation generates the cyclopropane product. This model reproduces the experimentally observed regioselectivity and diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Annah E. Kalb
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| |
Collapse
|
26
|
Navarro M, Campos J. Bimetallic frustrated Lewis pairs. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Maity AK, Kalb AE, Zeller M, Uyeda C. A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Annah E. Kalb
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Matthias Zeller
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Christopher Uyeda
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| |
Collapse
|
28
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
29
|
Zhang H, Hatzis GP, Dickie DA, Moore CE, Thomas CM. Redox chemistry and H-atom abstraction reactivity of a terminal zirconium(iv) oxo compound mediated by an appended cobalt(i) center. Chem Sci 2020; 11:10729-10736. [PMID: 34094325 PMCID: PMC8162367 DOI: 10.1039/d0sc04229c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reactivity of the terminal zirconium(iv) oxo complex, O
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
Zr(MesNPiPr2)3CoCNtBu (2), is explored, revealing unique redox activity imparted by the pendent redox active cobalt(i) center. Oxo complex 2 can be chemically reduced using Na/Hg or Ph3C• to afford the ZrIV/Co0 complexes [(μ-Na)OZr(MesNPiPr2)3CoCNtBu]2 (3) and Ph3COZr(MesNPiPr2)3CoCNtBu (4), respectively. Based on the cyclic voltammogram of 2, Ph3˙ should not be sufficiently reducing to achieve the chemical reduction of 2, but sufficient driving force for the reaction is provided by the nucleophilicity of the terminal oxo fragment and its affinity to bind Ph3C+. Accordingly, 2 reacts readily with [Ph3C][BPh4] and Ph3CCl to afford [Ph3COZr(MesNPiPr2)3CoCNtBu][BPh4] ([5][BPh4]) and Ph3COZr(MesNPiPr2)3CoCl (6), respectively. The chemical oxidation of 2 is also investigated, revealing that oxidation of 2 is accompanied by immediate hydrogen atom abstraction to afford the hydroxide complex [HOZr(MesNPiPr2)3CoCNtBu]+ ([9]+). Thus it is posited that the transient [OZr(MesNPiPr2)3CoCNtBu]+ [2]+ cation generated upon oxidation combines the basicity of a nucleophilic early metal oxo fragment with the oxidizing power of the appended cobalt center to facilitate H-atom abstraction. Bimetallic cooperativity is demonstrated with a Co/Zr complex featuring both nucleophilic Zr(iv) oxo and redox active Co sites.![]()
Collapse
Affiliation(s)
- Hongtu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Gregory P Hatzis
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia 409 McCormick Road, PO Box 400319 Charlottesville VA 22904 USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
30
|
Grass A, Bellow JA, Morrison G, Zur Loye HC, Lord RL, Groysman S. One electron reduction transforms high-valent low-spin cobalt alkylidene into high-spin cobalt(ii) carbene radical. Chem Commun (Camb) 2020; 56:8416-8419. [PMID: 32579653 DOI: 10.1039/d0cc03028g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One electron reduction of formally CoIV(OR)2(CPh2) forms the [CoII(OR)2(CPh2)]- anion. Whereas low-spin Co(OR)2([double bond, length as m-dash]CPh2) demonstrated significant alkylidene character, the high-spin [Co(OR)2(CPh2)]- anion features a rare Co(ii)-carbene radical. Treatment of [Co(OR)2(CPh2)][CoCp*2] with xylyl isocyanide triggers formation of two new C-C bonds, and is likely mediated by nucleophilic attack of deprotonated CoCp*2+ on a transient ketenimine.
Collapse
Affiliation(s)
- Amanda Grass
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| | - James A Bellow
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University, 1 Campus Dr, Allendale, MI 49401, USA.
| | - Stanislav Groysman
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| |
Collapse
|
31
|
Witzke RJ, Hait D, Chakarawet K, Head-Gordon M, Tilley TD. Bimetallic Mechanism for Alkyne Cyclotrimerization with a Two-Coordinate Fe Precatalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan J. Witzke
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Diptarka Hait
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Fujii I, Semba K, Li QZ, Sakaki S, Nakao Y. Magnesiation of Aryl Fluorides Catalyzed by a Rhodium–Aluminum Complex. J Am Chem Soc 2020; 142:11647-11652. [DOI: 10.1021/jacs.0c04905] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ikuya Fujii
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuhiko Semba
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Qiao-Zhi Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
33
|
Dunn PL, Beaumier EP, Tonks IA. Synthesis and Characterization of Tantalum-Based Early-Late Heterobimetallic Complexes Supported by 2-(diphenylphosphino)pyrrolide Ligands. Polyhedron 2020; 181. [PMID: 32292224 DOI: 10.1016/j.poly.2020.114471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis of the metalloligand Ta(κ2-NP)3Cl2 (NP = 2-diphenylphosphinopyrrolide) and its coordination chemistry with group 9 and 10 metals is reported. Treatment of Ta(κ2-NP)3Cl2 with group 9 and 10 metals resulted in clean formation of the heterobimetallic complexes Cl2Ta(μ2-NP)3M (M = Ni (2), Pd (3)) or Cl2Ta(μ2-NP)3MCl (M = Rh (4), Ir (5)). Each pair of complexes is isostructural and contains three phosphinopyrrolide ligands that bridge the metal centers. The d10 or d8 complexes are all diamagnetic and X-ray crystallographic analysis reveals similarly short metal-metal distances, ranging from 2.2979(5) Å to 2.4366(2) Å. Despite the similar bonding metrics in 2-5, treatment with an L type donor (2,6-dimethylphenylisocyanide (CNXylyl)) reveals 3 different coordination geometries in TaNi(CNXylyl) (6), TaPd(CNXylyl) (7), and TaIr(CNXylyl) (8). While complexes 6, 7, and 8 all bind the isocyanide at the late metal, ligand rearrangements are observed in the first row complex 6. Complex 7 binds the isocyanide in the axial position while equatorial binding is observed in 8. All isocyanide adducts maintain close metal-metal contacts in the solid state.
Collapse
Affiliation(s)
- Peter L Dunn
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Evan P Beaumier
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| |
Collapse
|
34
|
Beattie JW, Wang C, Zhang H, Krogman JP, Foxman BM, Thomas CM. Dimerization of terminal alkynes promoted by a heterobimetallic Zr/Co complex. Dalton Trans 2020; 49:2407-2411. [PMID: 32022087 DOI: 10.1039/d0dt00334d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enynes are important synthetic intermediates that are also found in a variety of natural products and other biologically relevant molecules. The most atom economical synthetic route to enynes is via the direct coupling of readily available terminal alkyne precursors. Towards this goal, we demonstrate the formation of 1,3-enynes from terminal alkynes facilitated by a reduced ZrIV/Co-I heterobimetallic complex. An intermediate is trapped as a tBuNC adduct, revealing that bimetallic activation of the terminal C-H bond of the alkyne is an essential mechanistic step.
Collapse
Affiliation(s)
- Jeffrey W Beattie
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, OH 43210, USA.
| | - Canning Wang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, OH 43210, USA.
| | - Hongtu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, OH 43210, USA.
| | - Jeremy P Krogman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA and School of Physical Science and Technology, ShanghaiTech University, Pudong, Shanghai, 201210, China
| | - Bruce M Foxman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Abstract
Significant progress has been made in the past 10-15 years on the design, synthesis, and properties of multimetallic coordination complexes with heterometallic metal-metal bonds that are paramagnetic. Several general classes have been explored including heterobimetallic compounds, heterotrimetallic compounds of either linear or triangular geometry, discrete molecular compounds containing a linear array of more than three metal atoms, and coordination polymers with a heterometallic metal-metal bonded backbone. We focus in this Review on the synthetic methods employed to access these compounds, their structural features, magnetic properties, and electronic structure. Regarding the metal-metal bond distances, we make use of the formal shortness ratio (FSR) for comparison of bond distances between a broad range of metal atoms of different sizes. The magnetic properties of these compounds can be described using an extension of the Goodenough-Kanamori rules to cases where two magnetic ions interact via a third metal atom. In describing the electronic structure, we focus on the ability (or not) of electrons to be delocalized across heterometallic bonds, allowing for rationalizations and predictions of single-molecule conductance measurements in paramagnetic heterometallic molecular wires.
Collapse
Affiliation(s)
- Jill A Chipman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| |
Collapse
|
36
|
Cui P, Xiong C, Du J, Huang Z, Xie S, Wang H, Zhou S, Fang H, Wang S. Heterobimetallic scandium–group 10 metal complexes with LM → Sc (LM = Ni, Pd, Pt) dative bonds. Dalton Trans 2020; 49:124-130. [DOI: 10.1039/c9dt04369a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heterobimetallic scandium–group 10 metal complexes featuring notable LM → Sc (LM = Ni, Pd, Pt) dative bonding interactions.
Collapse
Affiliation(s)
- Peng Cui
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Chunyan Xiong
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jun Du
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Zeming Huang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Sijun Xie
- Department of Chemistry
- Fudan University
- Shanghai 200438
- P. R. China
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Huayi Fang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- P. R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
37
|
Du J, Zhang Y, Huang Z, Zhou S, Fang H, Cui P. Heterobimetallic Pd(0) complexes with Pd→Ln (Ln = Sc, Y, Yb, Lu) dative bonds: rare-earth metal-dominated frustrated Lewis pair-like reactivity. Dalton Trans 2020; 49:12311-12318. [DOI: 10.1039/d0dt02708a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of Pd–Ln complexes with Pd→Ln (Ln = Sc, Y, Yb, Lu) dative bonds exhibited notable dynamic structural features and unexpected frustrated Lewis pair-like reactivity.
Collapse
Affiliation(s)
- Jun Du
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yanan Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Zeming Huang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Huayi Fang
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- P. R. China
| | - Peng Cui
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
38
|
Taylor JW, Harman WH. CO scission and reductive coupling of organic carbonyls by a redox-active diboraanthracene. Chem Commun (Camb) 2020; 56:4480-4483. [PMID: 32201869 DOI: 10.1039/d0cc01142h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A gold-stabilized diboraanthracene mediates reductive transformations of carbonyls, including C–O and C–C bond formation, and deoxygenation of acetone to propene and hydroxide.
Collapse
Affiliation(s)
| | - W. Hill Harman
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|
39
|
Hatanaka T, Kusunose H, Kawaguchi H, Funahashi Y. Dinitrogen Activation by a Heterometallic VFe Complex Derived from 1,1'‐Bis(arylamido)vanadocene. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tsubasa Hatanaka
- Department of Chemistry Graduate School of Science Osaka University 1–1 Machikaneyama 560–0043 Toyonaka Osaka Japan
| | - Hinano Kusunose
- Department of Chemistry Graduate School of Science Osaka University 1–1 Machikaneyama 560–0043 Toyonaka Osaka Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry Graduate School of Science Tokyo Institute of Technology 2–12–1 Ookayama, Meguro‐ku 152–8551 Tokyo Japan
| | - Yasuhiro Funahashi
- Department of Chemistry Graduate School of Science Osaka University 1–1 Machikaneyama 560–0043 Toyonaka Osaka Japan
| |
Collapse
|
40
|
Crockett MP, Zhang H, Thomas CM, Byers JA. Adding diffusion ordered NMR spectroscopy (DOSY) to the arsenal for characterizing paramagnetic complexes. Chem Commun (Camb) 2019; 55:14426-14429. [PMID: 31730148 DOI: 10.1039/c9cc08229h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the development of diffusion ordered NMR spectroscopy (DOSY) for its use to characterize metal complexes containing paramagnetic first row transition metal elements. This technique is capable of assessing the purity and speciation of paramagnetic complexes, and also provides a convenient method to provide qualitative and sometimes quantitative molecular weight data.
Collapse
Affiliation(s)
- M P Crockett
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| | | | | | | |
Collapse
|
41
|
Grass A, Wannipurage D, Lord RL, Groysman S. Group-transfer chemistry at transition metal centers in bulky alkoxide ligand environments. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Du J, Huang Z, Zhang Y, Wang S, Zhou S, Fang H, Cui P. A Scandium Metalloligand‐Based Heterobimetallic Pd−Sc Complex: Electronic Tuning Through a Very Short Pd→Sc Dative Bond. Chemistry 2019; 25:10149-10155. [DOI: 10.1002/chem.201901424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Du
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Zeming Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Yanan Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Huayi Fang
- Department of ChemistryFudan University No. 2205 Songhu Road, Yangpu District Shanghai 200438 P.R. China
| | - Peng Cui
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| |
Collapse
|
43
|
Asako S, Ishihara S, Hirata K, Takai K. Deoxygenative Insertion of Carbonyl Carbon into a C(sp3)–H Bond: Synthesis of Indolines and Indoles. J Am Chem Soc 2019; 141:9832-9836. [DOI: 10.1021/jacs.9b05428] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sobi Asako
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Seina Ishihara
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Keiya Hirata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
44
|
Zhang H, Hatzis GP, Moore CE, Dickie DA, Bezpalko MW, Foxman BM, Thomas CM. O 2 Activation by a Heterobimetallic Zr/Co Complex. J Am Chem Soc 2019; 141:9516-9520. [PMID: 31184140 DOI: 10.1021/jacs.9b04215] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygen reduction is a critical half reaction in renewable fuel cell development and a key step in the development of aerobic oxidation reactions. Herein, we report rapid two-electron O2 reduction by a d0 ZrIV center with an appended redox-active Co-I site serving as an electron reservoir. The early/late heterobimetallic Zr/Co complex (THF)Zr(MesNP iPr2)3CoCN tBu (1) reacts readily with O2 and O atom transfer reagents to generate reactive oxygenated species including terminal peroxo and oxo complexes, (O2)Zr(MesNP iPr2)3CoCN tBu (2) and O≡Zr(MesNP iPr2)3CoCN tBu (3). The bimetallic Zr/Co complex provides a new cooperative synthetic pathway to promote multielectron redox processes such as oxygen reduction, with each metal playing a distinct role as a substrate binding site or redox mediator.
Collapse
Affiliation(s)
- Hongtu Zhang
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Gregory P Hatzis
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Diane A Dickie
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02454 , United States
| | - Mark W Bezpalko
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02454 , United States
| | - Bruce M Foxman
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02454 , United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
45
|
Wang HX, Wan Q, Wu K, Low KH, Yang C, Zhou CY, Huang JS, Che CM. Ruthenium(II) Porphyrin Quinoid Carbene Complexes: Synthesis, Crystal Structure, and Reactivity toward Carbene Transfer and Hydrogen Atom Transfer Reactions. J Am Chem Soc 2019; 141:9027-9046. [DOI: 10.1021/jacs.9b03357] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kai Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Cong-Ying Zhou
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
46
|
Gramigna KM, Dickie DA, Foxman BM, Thomas CM. Cooperative H2 Activation across a Metal–Metal Multiple Bond and Hydrogenation Reactions Catalyzed by a Zr/Co Heterobimetallic Complex. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04390] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kathryn M. Gramigna
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Diane A. Dickie
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bruce M. Foxman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Christine M. Thomas
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
47
|
Sung S, Tinnermann H, Krämer T, Young RD. Direct oxide transfer from an η2-keto ligand to generate a cobalt PCcarbeneP(O) pincer complex. Dalton Trans 2019; 48:9920-9924. [DOI: 10.1039/c9dt02313e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the direct carbonyl cleavage in a κ3-P′,(η2-C,O),P′′ ligand by a monomeric cobalt centre through metal–ligand cooperativity.
Collapse
Affiliation(s)
- Simon Sung
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Hendrik Tinnermann
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Tobias Krämer
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Rowan D. Young
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|
48
|
Barden BA, Culcu G, Krogman JP, Bezpalko MW, Hatzis GP, Dickie DA, Foxman BM, Thomas CM. Assessing the Metal–Metal Interactions in a Series of Heterobimetallic Nb/M Complexes (M = Fe, Co, Ni, Cu) and Their Effect on Multielectron Redox Properties. Inorg Chem 2018; 58:821-833. [DOI: 10.1021/acs.inorgchem.8b02960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Brett A. Barden
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Gursu Culcu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jeremy P. Krogman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Mark W. Bezpalko
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Gillian P. Hatzis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Diane A. Dickie
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bruce M. Foxman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Christine M. Thomas
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
49
|
Sung S, Wang Q, Krämer T, Young RD. Synthesis and reactivity of a PC carbeneP cobalt(i) complex: the missing link in the cobalt PXP pincer series (X = B, C, N). Chem Sci 2018; 9:8234-8241. [PMID: 30542572 PMCID: PMC6240806 DOI: 10.1039/c8sc02782j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/05/2018] [Indexed: 02/05/2023] Open
Abstract
We report the first example of a cobalt PCcarbeneP pincer complex (1) featuring a central alkylidene carbon donor accessed through the dehydration of an alcoholic POP proligand.
We report the first example of a cobalt PCcarbeneP pincer complex (1) featuring a central alkylidene carbon donor accessed through the dehydration of an alcoholic POP proligand. Complex 1 shares bonding similarities with cobalt PBP and PNP pincer complexes where the donor atom engages in π-bonding with the cobalt centre, and thus completes the PXP (X = B, C, N) pincer ligand series for cobalt (for X donors that partake in M–L π-bonding). As compared to PBP and PNP pincer complexes, which are known to be good hydride and proton acceptors (respectively), complex 1 is found to be an effective hydrogen atom acceptor. Complex 1 partakes in cooperative ligand reactivity, engaging in several small molecule activations with styrene, bromine, carbon disulphide, phenyl acetylene, acetonitrile, hydrogen, benzaldehyde and water (through microreversibility). The mechanism for the formation of complex 1 is studied through the isolation and computational analysis of key intermediates. The formation of 1 is found to avoid C–H activation of the proligand, and instead proceeds through a combination of O–H activation, hydrogen atom transfer, β-hydride elimination and hydrogen activation processes.
Collapse
Affiliation(s)
- Simon Sung
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 .
| | - Qingyang Wang
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 .
| | - Tobias Krämer
- Department of Chemistry , Maynooth University , Maynooth , Ireland
| | - Rowan D Young
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 .
| |
Collapse
|
50
|
Abstract
The synthesis and reactivity of a dinickel bridging carbene is described. The previously reported [ i-PrNDI]Ni2(C6H6) complex (NDI = naphthyridine-diimine) reacts with Ph2CN2 to generate a metastable diazoalkane adduct, which eliminates N2 at 60 °C to yield a paramagnetic Ni2(μ-CPh2) complex. The Ni2(μ-CPh2) complex undergoes carbene transfer to t-BuNC via an initial isonitrile adduct, which, upon heating, releases free t-BuNCCPh2. Based on this sequence of stoichiometric reactions, a catalytic carbene transfer reaction is demonstrated.
Collapse
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mathias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|