1
|
Zhang R, Zhou X, Deng H, Yuan R, Yuan Y. Efficient Multidriven Strand Displacement Reaction for Biosensing. Anal Chem 2024; 96:16735-16742. [PMID: 39400171 DOI: 10.1021/acs.analchem.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A key challenge for achieving high-efficient DNA strand displacement reaction (SDR) with existing technologies is the inferior kinetic performance due to the alternately cumbersome conjunction and dissociation of dsDNA. In this work, a novel multidriven SDR collaborated by toehold initiator, strand towing, and click chemistry is engineered. The invasion strand (O) endows the hybridization with a basal strand (M) in dsDNA for releasing a displacement strand (P), which can be significantly boosted by the towing of a helper strand and impetus from the click reaction. Accordingly, the hybridization rate and dissociation extent of P can be largely improved and showed a desiring displacement rate close to 6-fold compared with the traditional method, providing a newly high-efficient SDR strategy for potential application in biosensing, clinical diagnostics, and DNA nanotechnology. In view of this, a practical biosensing platform by combining the multidriven SDR (MSDR) with waste-free DNA multi-cycle amplification is constructed for the rapid and ultrasensitive electrochemical detection of cancer-related miRNA-21. The substantial output DNA as an invasion strand (O) from target-triggered waste-free DNA multicycle can high-efficiently release a signal probe (Fc)-labeled displacement strand (P) on an electrode by using the proposed MSDR, obtaining a low detection limit below 106.8 aM.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xudong Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hanmei Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
2
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Zhao R, Luo W, Wu Y, Zhang L, Liu X, Li J, Yang Y, Wang L, Wang L, Han X, Wang Z, Zhang J, Lv K, Chen T, Xie G. Unmodificated stepless regulation of CRISPR/Cas12a multi-performance. Nucleic Acids Res 2023; 51:10795-10807. [PMID: 37757856 PMCID: PMC10602922 DOI: 10.1093/nar/gkad748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
As CRISPR technology is promoted to more fine-divided molecular biology applications, its inherent performance finds it increasingly difficult to cope with diverse needs in these different fields, and how to more accurately control the performance has become a key issue to develop CRISPR technology to a new stage. Herein, we propose a CRISPR/Cas12a regulation strategy based on the powerful programmability of nucleic acid nanotechnology. Unlike previous difficult and rigid regulation of core components Cas nuclease and crRNA, only a simple switch of different external RNA accessories is required to change the reaction kinetics or thermodynamics, thereby finely and almost steplessly regulating multi-performance of CRISPR/Cas12a including activity, speed, specificity, compatibility, programmability and sensitivity. In particular, the significantly improved specificity is expected to mark advance the accuracy of molecular detection and the safety of gene editing. In addition, this strategy was applied to regulate the delayed activation of Cas12a, overcoming the compatibility problem of the one-pot assay without any physical separation or external stimulation, and demonstrating great potential for fine-grained control of CRISPR. This simple but powerful CRISPR regulation strategy without any component modification has pioneering flexibility and versatility, and will unlock the potential for deeper applications of CRISPR technology in many finely divided fields.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - You Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianhong Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Ke Lv
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
4
|
Liao Y, Hu H, Tang X, Qin Y, Zhang W, Dong K, Yan B, Mu Y, Li L, Ming Z, Xiao X. A versatile and convenient tool for regulation of DNA strand displacement and post-modification on pre-fabricated DNA nanodevices. Nucleic Acids Res 2023; 51:29-40. [PMID: 36537218 PMCID: PMC9841412 DOI: 10.1093/nar/gkac1193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Toehold-mediated strand displacement and its regulatory tools are fundamental for DNA nanotechnology. However, current regulatory tools all need to change the original sequence of reactants, making the regulation inconvenient and cumbersome. More importantly, the booming development of DNA nanotechnology will soon promote the production of packaged and batched devices or circuits with specified functions. Regarding standardized, packaged DNA nanodevices, access to personalized post-modification will greatly help users, whereas none of the current regulatory tools can provide such access, which has greatly constrained DNA nanodevices from becoming more powerful and practical. Herein, we developed a novel regulation tool named Cap which has two basic functions of subtle regulation of the reaction rate and erasability. Based on these functions, we further developed three advanced functions. Through integration of all functions of Cap and its distinct advantage of working independently, we finally realized personalized tailor-made post-modification on pre-fabricated DNA circuits. A pre-fabricated dual-output DNA circuit was successfully transformed into an equal-output circuit, a signal-antagonist circuit and a covariant circuit according to our requirements. Taken together, Cap is easy to design and generalizable for all strand displacement-based DNA nanodevices. We believe the Cap tool will be widely used in regulating reaction networks and personalized tailor-made post-modification of DNA nanodevices.
Collapse
Affiliation(s)
- Yangwei Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaofeng Tang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Qin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kejun Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoqin Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Longjie Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhihao Ming
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Laboratory Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Toehold-mediated biosensors: Types, mechanisms and biosensing strategies. Biosens Bioelectron 2022; 220:114922. [DOI: 10.1016/j.bios.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
6
|
Abstract
Regulatory processes in biology can be re-conceptualized in terms of logic gates, analogous to those in computer science. Frequently, biological systems need to respond to multiple, sometimes conflicting, inputs to provide the correct output. The language of logic gates can then be used to model complex signal transduction and metabolic processes. Advances in synthetic biology in turn can be used to construct new logic gates, which find a variety of biotechnology applications including in the production of high value chemicals, biosensing, and drug delivery. In this review, we focus on advances in the construction of logic gates that take advantage of biological catalysts, including both protein-based and nucleic acid-based enzymes. These catalyst-based biomolecular logic gates can read a variety of molecular inputs and provide chemical, optical, and electrical outputs, allowing them to interface with other types of biomolecular logic gates or even extend to inorganic systems. Continued advances in molecular modeling and engineering will facilitate the construction of new logic gates, further expanding the utility of biomolecular computing.
Collapse
|
7
|
Weng Z, Yu H, Luo W, Guo Y, Liu Q, Zhang L, Zhang Z, Wang T, Dai L, Zhou X, Han X, Wang L, Li J, Yang Y, Xie G. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement. ACS NANO 2022; 16:3135-3144. [PMID: 35113525 DOI: 10.1021/acsnano.1c10797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA strand displacement plays an essential role in the field of dynamic DNA nanotechnology. However, flexible regulation of strand displacement remains a significant challenge. Most previous regulatory tools focused on controllable activation of toehold and thus limited the design flexibility. Here, we introduce a regulatory tool termed cooperative branch migration (CBM), through which DNA strand displacement can be controlled by regulating the complementarity of branch migration domains. CBM shows perfect compatibility with the majority of existing regulatory tools, and when combined with forked toehold, it permits continuous fine-tuning of the strand displacement rate spanning 5 orders of magnitude. CBM manifests multifunctional regulation ability, including rate fine-tuning, continuous dynamic regulation, reaction resetting, and selective activation. To exemplify the powerful function, we also constructed a nested if-function signal processing system on the basis of cascading CBM reactions. We believe that the proposed regulatory strategy would effectively enrich the DNA strand displacement toolbox and ultimately promote the construction of DNA machines of higher complexity in nucleic acid research and biomedical applications.
Collapse
Affiliation(s)
- Zhi Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, PR China
| | - Qian Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ting Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ling Dai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
8
|
Wang LL, Zhang QL, Wang Y, Liu Y, Lin J, Xie F, Xu L. Controllable DNA strand displacement by independent metal-ligand complexation. Chem Sci 2021; 12:8698-8705. [PMID: 34257868 PMCID: PMC8246113 DOI: 10.1039/d1sc01041g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction of artificial metal-ligand base pairs can enrich the structural diversity and functional controllability of nucleic acids. In this work, we revealed a novel approach by placing a ligand-type nucleoside as an independent toehold to control DNA strand-displacement reactions based on metal-ligand complexation. This metal-mediated artificial base pair could initiate strand invasion similar to the natural toehold DNA, but exhibited flexible controllability to manipulate the dynamics of strand displacement that was only governed by its intrinsic coordination properties. External factors that influence the intrinsic properties of metal-ligand complexation, including metal species, metal concentrations and pH conditions, could be utilized to regulate the strand dynamics. Reversible control of DNA strand-displacement reactions was also achieved through combination of the metal-mediated artificial base pair with the conventional toehold-mediated strand exchange by cyclical treatments of the metal ion and the chelating reagent. Unlike previous studies of embedded metal-mediated base pairs within natural base pairs, this metal-ligand complexation is not integrated into the nucleic acid structure, but functions as an independent toehold to regulate strand displacement, which would open a new door for the development of versatile dynamic DNA nanotechnologies.
Collapse
Affiliation(s)
- Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
9
|
Wan L, Lam SL, Lee HK, Guo P. Rational design of a reversible Mg 2+/EDTA-controlled molecular switch based on a DNA minidumbbell. Chem Commun (Camb) 2021; 56:10127-10130. [PMID: 32870195 DOI: 10.1039/d0cc03774e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report that incorporation of an abasic site to DNA minidumbbells formed by natural sequences can lead to significant enhancements in their thermodynamic stability. Based on these stable minidumbbells, the first metal ion-controlled molecular switch which can regulate instant and reversible DNA duplex formation and dissociation has been constructed.
Collapse
Affiliation(s)
- Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Jia Y, Hu Y. Cofactor-assisted three-way DNA junction-driven strand displacement. RSC Adv 2021; 11:30377-30382. [PMID: 35480263 PMCID: PMC9041134 DOI: 10.1039/d1ra05242j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
Toehold-mediated strand displacement is widely used to construct and operate DNA nanodevices. Cooperative regulation of strand displacement with diverse factors is pivotal in the design and construction of functional and dynamic devices. Herein, a cofactor-assisted three-way DNA junction-driven strand displacement strategy was reported, which could tune the reaction kinetics by the collaboration of DNA and other types of stimulus. This strategy is responsive to various inputs by incorporation of the specific sequence into the three-way junction structure. Specifically, the cooperation of multiple factors changes the conformation of the specific domain and promotes the reaction. To demonstrate the strategy, adenosine triphosphate (ATP), HG2+, and pH were used as cofactors to modulate the displacement reaction. The electrophoresis and fluorescence experiments showed that the cooperative regulation of the strand displacement reaction could be achieved by diverse factors using this strategy. The proposed strategy provides design flexibility for dynamic DNA devices and may have potential in biosensing and biocomputing. Cooperative regulation of strand displacement with diverse factors was achieved by a cofactor-assisted three-way DNA junction-driven strategy. Using this strategy nanodevices reacted to various inputs by incorporating a specific sequence into the three-way junction structure.![]()
Collapse
Affiliation(s)
- Yufeng Jia
- School of Economics and Management, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China
| |
Collapse
|
11
|
Li C, Chen Z, Zhang Y, He J, Yuan R, Xu W. Guanine-Lighting-Up Fluorescence Biosensing of Silver Nanoclusters Populated in Functional DNA Constructs by a pH-Triggered Switch. Anal Chem 2020; 92:13369-13377. [PMID: 32900187 DOI: 10.1021/acs.analchem.0c02744] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dark or weak-emissive DNA-harbored silver nanoclusters (AgNCs) can be remarkably lighted up when approaching to guanine bases. The resultant bright AgNCs acting as a fluorescent reporter are fascinating in biosensing. To explore the applicable guanine-enhanced emission of AgNCs for biosensing microRNA-155 (miR-155) as a model, here we designed a unique stem-loop hairpin beacon (HB) encoding with an miR-155-recognizable sequence and a AgNCs-nucleable template, as well as a hairpin helper tethering a partially locked guanine-rich (15-nt) tail (G15H), while two identical cytosine-rich segments were inserted in HB and G15H to merge for folding/unfolding of i-motif at changed pHs. Initially, the intact clusters populated in HB (HB/AgNCs) were almost nonfluorescent in a buffer (pH 7.0). Then, miR-155 was introduced to trigger a repeated hairpin assembly of HB and G15H by competitive strand displacement reactions at decreased pH 5.0 within 10 min, consequently generating numerous duplex DNA constructs (DDCs). With the resultant template of pH-responsive i-motifs incorporated in DDCs, their folding at pH 5.0 brought the proximity of unlocked G15 overhang to the clusters in a crowded environment, remarkably lighting up the red-emitting fluorescence of HB/AgNCs (λem = 628 ± 5 nm) for amplified signal readout. About 3.5-fold enhancement of quantum yield was achievable using different variants of i-motif length and G15 position. Simply by adding OH-, the configuration fluctuation of i-motifs was implemented for switchable fluorescence biosensing to variable miR-155. Based on a one-step amplification and signaling scheme, this subtle strategy was rapid, low-cost, and specific for miR-155 with high sensitivity down to 67 pM.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zehui Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuxuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
12
|
Abstract
In recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.
Collapse
Affiliation(s)
- Dominic Scalise
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
13
|
Figg CA, Winegar PH, Hayes OG, Mirkin CA. Controlling the DNA Hybridization Chain Reaction. J Am Chem Soc 2020; 142:8596-8601. [PMID: 32356981 DOI: 10.1021/jacs.0c02892] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel method for controlling the oligomerization of metastable DNA hairpins using the hybridization chain reaction (HCR) is reported. Control was achieved through the introduction of a base-pair mismatch in the duplex of the hairpins. The mismatch modification allows one to kinetically differentiate initiation versus propagation events, leading to DNA oligomers up to 10 monomers long and improving dispersities from 2.5 to 1.3-1.6. Importantly, even after two consecutive chain extensions, dispersity remained unaffected, showing that well-defined block co-oligomers can be achieved. As a proof-of-concept, this technique was then applied to hairpin monomers functionalized with a mutant green fluorescent protein to prepare protein oligomers. Taken together, this work introduces an effective method for controlling living macromolecular HCR oligomerization in a manner analogous to the controlled polymerization of small molecules.
Collapse
Affiliation(s)
- C Adrian Figg
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peter H Winegar
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Oliver G Hayes
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Peng R, Xu L, Wang H, Lyu Y, Wang D, Bi C, Cui C, Fan C, Liu Q, Zhang X, Tan W. DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat Commun 2020; 11:978. [PMID: 32080196 PMCID: PMC7033183 DOI: 10.1038/s41467-020-14739-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
In order to maintain tissue homeostasis, cells communicate with the outside environment by receiving molecular signals, transmitting them, and responding accordingly with signaling pathways. Thus, one key challenge in engineering molecular signaling systems involves the design and construction of different modules into a rationally integrated system that mimics the cascade of molecular events. Herein, we rationally design a DNA-based artificial molecular signaling system that uses the confined microenvironment of a giant vesicle, derived from a living cell. This system consists of two main components. First, we build an adenosine triphosphate (ATP)-driven DNA nanogatekeeper. Second, we encapsulate a signaling network in the biomimetic vesicle, consisting of distinct modules, able to sequentially initiate a series of downstream reactions playing the roles of reception, transduction and response. Operationally, in the presence of ATP, nanogatekeeper switches from the closed to open state. The open state then triggers the sequential activation of confined downstream signaling modules.
Collapse
Affiliation(s)
- Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liujun Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China
| | - Huijing Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China
| | - Yifan Lyu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China
| | - Cheng Bi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Chunhai Fan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA.
| |
Collapse
|
15
|
Chen X, Liu N, Liu L, Chen W, Chen N, Lin M, Xu J, Zhou X, Wang H, Zhao M, Xiao X. Thermodynamics and kinetics guided probe design for uniformly sensitive and specific DNA hybridization without optimization. Nat Commun 2019; 10:4675. [PMID: 31611572 PMCID: PMC6791858 DOI: 10.1038/s41467-019-12593-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Sensitive and specific DNA hybridization is essential for nucleic acid chemistry. Competitive composition of probe and blocker has been the most adopted probe design for its relatively high sensitivity and specificity. However, the sensitivity and specificity were inversely correlated over the length and concentration of the blocker strand, making the optimization process cumbersome. Herein, we construct a theoretical model for competitive DNA hybridization, which disclose that both the thermodynamics and kinetics contribute to the inverse correlation. Guided by this, we invent the 4-way Strand Exchange LEd Competitive DNA Testing (SELECT) system, which breaks up the inverse correlation. Using SELECT, we identified 16 hot-pot mutations in human genome under uniform conditions, without optimization at all. The specificities were all above 140. As a demonstration of the clinical practicability, we develop probe systems that detect mutations in human genomic DNA extracted from ovarian cancer patients with a detection limit of 0.1%. Optimisation of nucleic acid probes and blocker strands can be laborious. Here the authors construct a theoretical model of competitive DNA hybridisation to design DNA probes for optimisation-free mutation detection.
Collapse
Affiliation(s)
- Xin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Na Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Liquan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Na Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Meng Lin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiaju Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xing Zhou
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Hongbo Wang
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China. .,Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
16
|
Ma F, Zhang Q, Zhang CY. Catalytic Self-Assembly of Quantum-Dot-Based MicroRNA Nanosensor Directed by Toehold-Mediated Strand Displacement Cascade. NANO LETTERS 2019; 19:6370-6376. [PMID: 31460766 DOI: 10.1021/acs.nanolett.9b02544] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconductor quantum dots (QDs) are highly attractive nanomaterials with wide biomedical applications owing to their unique photophysical properties. However, the adaptation of the nonenzymatic QD nanosensor assembly to sense low-abundance targets remains a great challenge. Herein, taking advantage of the dynamic DNA nanotechnology and single-molecule fluorescence detection, we demonstrate the catalytic self-assembly of a QD-based microRNA nanosensor directed by toehold-mediated strand displacement cascade for the simple and sensitive detection of microRNA at femtomolar concentration without the requirement of any enzymes. Moreover, this QD nanosensor is capable of detecting circulating microRNA in clinical serum samples and even imaging microRNA in living cells. This work may extend the use of an enzyme-free QD nanosensor assembly for low-abundance biomarker detection and offer a novel platform for fundamental biomedical research and clinical applications.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
17
|
Wang S, Zhao J, Lu S, Huang J, Yang X. Establishment of Logic Gates Based on Conformational Changes in a Multiple-Factor Biomolecule Interaction Process by Dual Polarization Interferometry. Anal Chem 2019; 91:6971-6975. [PMID: 31081324 DOI: 10.1021/acs.analchem.9b01319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA-based logic gates stimulate the development of molecular scale computers and show enormous potential in nanotechnology, biotechnology, and medicine. However, the reported detectors to date usually require one to label appropriate signal probes, resulting in not only a high cost but also potentially tedious manipulation. For the first time, we established a label-free logic gate by regarding the structure-related signal as output. Dual polarization interferometry (DPI) was employed to reveal the detailed conformational transitions occurring in the multiple-factor biomolecule interactions and then was utilized as a detection tool of logic gate. As a vital merit of this system, the dependence of the density output signal on the interaction with multiple-factor input can mimic the function of signal communication in OR, INHIBIT, and IDENTITY logic gates and the INHIBIT-OR cascade circuit. Additionally, the DPI signal with logic stringency can unambiguously distinguish conformational polymorphisms and compare structural stability. This study provides a new way for the construction of a label-free logic gate, supplements information deficiency of reaction details, and extends the application of DPI in logic operation.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China.,University of Chinese Academy of Sciences , Beijing 100039 , China
| |
Collapse
|
18
|
Lyu Y, Guo Y, Cai R, Peng R, Hong C, Chen X, Hou W, Li X, Tan J, Zou Y, Zhang X, Liu Q, Tan W. Spherically Directed Synthesis and Enhanced Cellular Internalization of Metal-Crosslinked DNA Micelles. Chem 2019. [DOI: 10.1016/j.chempr.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Xu L, Liu S, Yang T, Shen Y, Zhang Y, Huang L, Zhang L, Ding S, Song F, Cheng W. DNAzyme Catalyzed Tyramide Depositing Reaction for In Situ Imaging of Protein Status on the Cell Surface. Theranostics 2019; 9:1993-2002. [PMID: 31037152 PMCID: PMC6485291 DOI: 10.7150/thno.31943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Effective characterization of protein biomarkers status on the cell surface has important value in the diagnosis and treatment of diseases. Traditional immunohistochemistry can only assess the protein expression level rather than accurately reflect their interaction and oligomerization, resulting in inevitable problems for personalized therapy. Methods: Herein, we developed a novel DNAzyme-catalyzed tyramide depositing reaction (DCTDR) for in situ amplified imaging of membrane protein status. By using human epidermal growth factor receptor 2 (HER2) as model, the binding of HER2 proteins with specific aptamers induced the formation of activated hemin/G-quadruplex (G4) DNAzyme on the cell surface to catalyze the covalent deposition of fluorescent tyramide on the membrane proteins for fluorescence imaging. Results: The DCTDR-based imaging can conveniently characterize total HER2 expression and HER2 dimerization on the breast cancer cell surface with the application of aptamer-G4 probes and proximity aptamer-split G4 probes, respectively. The designed DCTDR strategy was successfully applied to quantitatively estimate total HER2 expression and HER2 homodimer on clinical breast cancer tissue sections with high specificity and accuracy. Conclusion: The DCTDR strategy provides a simple, pragmatic and enzyme-free toolbox to conveniently and sensitively analyze protein status in clinical samples for improving clinical research, cancer diagnostics and personalized treatment.
Collapse
|
20
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
21
|
Hu P, Li M, Wei X, Yang B, Li Y, Li CY, Du J. Cooperative Toehold: A Mechanism To Activate DNA Strand Displacement and Construct Biosensors. Anal Chem 2018; 90:9751-9760. [PMID: 30040891 DOI: 10.1021/acs.analchem.8b01202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toehold-mediated DNA strand displacement has proven powerful in the construction of various DNA circuits, DNA machines, and biosensors. So far, many new toehold activation mechanisms have been developed to achieve programmed DNA strand displacement behaviors. However, almost all those toeholds are inflexible via either a covalently attached manner or a complementary hybridization strategy, which limit the versatility of DNA devices. To solve this problem, we developed a new toehold, named "cooperative toehold", to activate DNA strand displacement. On the basis of a base stacking mechanism, the cooperative toehold is comprised of two moieties with completely independent DNA sequences between each other. The cooperative toehold enabled one to continuously tune the rate of DNA strand displacement, as well as more sophisticated strand displacement reactions. The cooperative toehold has also been employed as a universal signal translator for biosensors to qualitatively determine RNA and ATP. Moreover, as a novel specific PCR monitoring system, cooperative toehold-mediated DNA strand displacement can detect the pUC18 plasmid in genomic DNA samples with an aM detection limit.
Collapse
Affiliation(s)
- Pan Hu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Mengmeng Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Xijiao Wei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Ye Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Chun-Yan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Jun Du
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| |
Collapse
|
22
|
Fu T, Lyu Y, Liu H, Peng R, Zhang X, Ye M, Tan W. DNA-Based Dynamic Reaction Networks. Trends Biochem Sci 2018; 43:547-560. [PMID: 29793809 DOI: 10.1016/j.tibs.2018.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
Deriving from logical and mechanical interactions between DNA strands and complexes, DNA-based artificial reaction networks (RNs) are attractive for their high programmability, as well as cascading and fan-out ability, which are similar to the basic principles of electronic logic gates. Arising from the dream of creating novel computing mechanisms, researchers have placed high hopes on the development of DNA-based dynamic RNs and have strived to establish the basic theories and operative strategies of these networks. This review starts by looking back on the evolution of DNA dynamic RNs; in particular' the most significant applications in biochemistry occurring in recent years. Finally, we discuss the perspectives of DNA dynamic RNs and give a possible direction for the development of DNA circuits.
Collapse
Affiliation(s)
- Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Joint first authors
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China; Joint first authors
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Joint first authors.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
23
|
Stimuli-Triggered Strand Displacement-Based Multifunctional Gene Detection Platform Controlled By A Multi-Input DNA Logic Gate. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Liu X, Xu N, Gai P, Li F. Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine. Talanta 2018; 185:352-358. [PMID: 29759211 DOI: 10.1016/j.talanta.2018.03.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/11/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Since melamine is a strong hazard to human health, the development of new methods for highly sensitive detection of melamine is highly desirable. Herein, a novel fluorescent biosensing strategy was designed for sensitive and selective melamine assay based on the recognition ability of abasic (AP) site in triplex towards melamine and signal amplification by Mg2+-dependent DNAzyme. In this strategy, the melamine-induced formation of triplex DNA was employed to trigger the strand displacement reaction (SDR). The SDR process converted the specific target recognition into the release and activation of Mg2+-dependent DNAzyme, which could catalyze the cleavage of fluorophore/quencher labeled DNA substrate (FQ), resulting in a significantly increased fluorescent signal. Under the optimal conditions, the fluorescent signal has a linear relationship with the logarithm of the melamine concentration in a wide range of 0.005-50 μM. The detection limit was estimated to be 0.9 nM (0.1ppb), which is sufficiently sensitive for practical application. Furthermore, this strategy exhibits high selectivity against other potential interfering substances, and the practical application of this strategy for milk samples reveals that the proposed strategy works well for melamine assay in real samples. Therefore, this strategy presents a new method for the sensitive melamine assay and holds great promise for sensing applications in the environment and the food safety field.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ningning Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Key Laboratory of Applied Mycology of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China.
| |
Collapse
|
25
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
26
|
Han M, Fan Q, Zhang Y, Xu L, Yu C, Su X. Non-classical hydrogen bond triggered strand displacement for analytical applications and DNA nanostructure assembly. NEW J CHEM 2018. [DOI: 10.1039/c7nj05141g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strand displacement triggered by the non-classical hydrogen bond between cyanuric acid and adenine exhibits a fast reaction rate.
Collapse
Affiliation(s)
- Manli Han
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Qingsheng Fan
- Sino-erman Joint Research Institution
- Nanchang University
- Nanchang 330047
- China
| | - Yi Zhang
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changyuan Yu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xin Su
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
27
|
Flexible regulation of DNA displacement reaction through nucleic acid-recognition enzyme and its application in keypad lock system and biosensing. Sci Rep 2017; 7:10017. [PMID: 28855676 PMCID: PMC5577262 DOI: 10.1038/s41598-017-10459-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/08/2017] [Indexed: 11/15/2022] Open
Abstract
Toehold-mediated DNA strand displacement reaction (SDR) plays pivotal roles for the construction of diverse dynamic DNA nanodevices. To date, many elements have been introduced into SDR system to achieve controllable activation and fine regulation. However, as the most relevant stimuli for nucleic acid involved reaction, nucleic acid-recognizing enzymes (NAEs) have received nearly no attention so far despite SDR often takes place in NAEs-enriched environment (i.e., biological fluids). Herein, we report a set of NAEs-controlled SDR strategies, which take full advantage of NAEs’ properties. In this study, three different kinds of enzymes belonging to several classes (i.e., exonuclease, endonuclease and polymerase) have been used to activate or inhibit SDR, and more importantly, some mechanisms behind these strategies on how NAEs affect SDR have also been revealed. The exploration to use NAEs as possible cues to operate SDR will expand the available toolbox to build novel stimuli-fueled DNA nanodevices and could open the door to many applications including enzyme-triggered biocomputing and biosensing.
Collapse
|
28
|
Abstract
The minidumbbell (MDB) is a new type of native DNA structure. At neutral pH, two TTTA or CCTG repeats can fold into the highly compact MDB with a melting temperature of ∼22 °C. Owing to the relatively low thermodynamic stability, MDBs have been proposed to be the structural intermediates that lead to efficient DNA repair escape and thus repeat expansions. In this study, we reveal that two CCTG repeats can also form an extraordinarily stable MDB with a melting temperature of ∼46 °C at pH 5.0. This unusual stability predominantly results from the formation of a three hydrogen bond C+·C mispair between the two minor groove cytosine residues. Due to the drastic stability change, the CCTG MDB, when combined with its complementary sequence, shows instant and complete structural conversions when the pH switches between 5.0 and 7.0, making the system serve as a simple and efficient pH-controlled molecular switch.
Collapse
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| |
Collapse
|
29
|
Li L, Xiao X, Ge J, Han M, Zhou X, Wang L, Su X, Yu C. Discrimination Cascade Enabled Selective Detection of Single-Nucleotide Mutation. ACS Sens 2017; 2:419-425. [PMID: 28723215 DOI: 10.1021/acssensors.7b00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Owing to the significance of single nucleotide mutation (SNM) for personalized medicine, the detection of SNM with high accuracy has recently attracted considerable interest. Here, we present a kinetic method for selective detection of SNM based on a discrimination cascade constructed by combining the toehold strand displacement (TSD) and endonuclease IV (Endo IV) catalyzed hydrolysis. The single-nucleotide specificity of the two DNA reactions allows highly selective detection of all types of single nucleotide changes (including single-nucleotide insertion and deletion), achieving a high discrimination factor with a median of 491 which is comparable with recently reported methods. For the first time, the enzyme assisted nucleic acid assay was characterized by single molecule analysis on total internal reflection fluorescence microscope (TIRFM) suggesting that the two steps do not work independently and the rate of TSD can be tuned by Endo IV facilitated conformation selection. The effective discrimination of the point mutation of BRAF gene in cancer and normal cell line suggests that this method can be a prominent post-PCR genotyping assay.
Collapse
Affiliation(s)
- Lidan Li
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianjin Xiao
- Family
Planning Research Institute/Center of Reproductive Medicine, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jingyang Ge
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Manli Han
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Zhou
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyuan Yu
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Li X, Xie J, Jiang B, Yuan R, Xiang Y. Metallo-Toehold-Activated Catalytic Hairpin Assembly Formation of Three-Way DNAzyme Junctions for Amplified Fluorescent Detection of Hg 2. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5733-5738. [PMID: 28117978 DOI: 10.1021/acsami.6b13717] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Because of their irreversible toxicological impacts on the environment and human body, the development of reliable and sensitive Hg2+ detection methods with high selectivity is of great significance. On the basis of the substantial signal amplification by metallo-toehold-triggered, catalytic hairpin assembly (CHA) formation of three-way DNAzyme junctions, we have constructed a highly selective and sensitive fluorescent sensing system for the determination of Hg2+ in different environmental water samples. The presence of the target Hg2+ ions can lead to the generation of T-Hg2+-T base mismatched metallo-toeholds, which trigger the catalytic assembly of three split-DNAzyme containing hairpins to form many Mg2+-dependent DNAzyme junction structures upon binding to the fluorescently quenched substrate sequences. The Mg2+ ions then cyclically cleave the fluorescently quenched substrate sequences of the Mg2+-dependent DNAzymes to generate drastically enhanced fluorescent signals for sensitively detecting Hg2+ at the low 4.5 pM level. The developed sensing method offers high selectivity toward the target Hg2+ over other possible competing metal ions due to the specific T-Hg2+-T bridge structure chemistry in the metallo-toehold domain, and reliable detection of spiked Hg2+ in environmentally relevant water samples with this method is also verified. Considering the nucleic acid nature of the trigger and assembly sequences, the developed approach thus holds great potentials for designing new enzyme-free signal amplification strategies to achieve highly sensitive determination of different DNA and RNA targets.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Jiaqing Xie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology , Chongqing 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology , Chongqing 400054, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| |
Collapse
|
31
|
Song J, Su P, Yang Y, Yang Y. Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst. NEW J CHEM 2017. [DOI: 10.1039/c7nj00284j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient enzyme immobilization strategy based on toehold-mediated DNA strand displacement on modified magnetic nanoparticles was developed in this study.
Collapse
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ye Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
32
|
Tang W, Huang Q, Yang Z, Zheng Q, Wang L, Zhang J, Chen L, Zhou X, Liu Y, Hu J. A DNA kinetics competition strategy of hybridization chain reaction for molecular information processing circuit construction. Chem Commun (Camb) 2017; 53:1789-1792. [DOI: 10.1039/c6cc08472a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DNA kinetics competition strategy of HCR for recognizing input combinations and input sequences has been proposed.
Collapse
Affiliation(s)
- Weiyang Tang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Qichen Huang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Zhenjie Yang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Qiwei Zheng
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Lihong Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Junmin Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Liang Chen
- College of Information Engineering
- Shenzhen University
- China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- China
| | - Jiming Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- China
| |
Collapse
|
33
|
Schmidt OP, Mata G, Luedtke NW. Fluorescent Base Analogue Reveals T-HgII-T Base Pairs Have High Kinetic Stabilities That Perturb DNA Metabolism. J Am Chem Soc 2016; 138:14733-14739. [DOI: 10.1021/jacs.6b09044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Olivia P. Schmidt
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Guillaume Mata
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
34
|
Yang X, Tang Y, Traynor SM, Li F. Regulation of DNA Strand Displacement Using an Allosteric DNA Toehold. J Am Chem Soc 2016; 138:14076-14082. [DOI: 10.1021/jacs.6b08794] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaolong Yang
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Yanan Tang
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Sarah M. Traynor
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Feng Li
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| |
Collapse
|
35
|
Zhang P, Wang C, Zhao J, Xiao A, Shen Q, Li L, Li J, Zhang J, Min Q, Chen J, Chen HY, Zhu JJ. Near Infrared-Guided Smart Nanocarriers for MicroRNA-Controlled Release of Doxorubicin/siRNA with Intracellular ATP as Fuel. ACS NANO 2016; 10:3637-3647. [PMID: 26905935 DOI: 10.1021/acsnano.5b08145] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In chemotherapy, it is a great challenge to recruit endogenous stimuli instead of external intervention for targeted delivery and controlled release; microRNAs are the most promising candidates due to their vital role during tumorigenesis and significant expression difference. Herein, to amplify the low abundant microRNAs in live cells, we designed a stimuli-responsive DNA Y-motif for codelivery of siRNA and Dox, in which the cargo release was achieved via enzyme-free cascade amplification with endogenous microRNA as trigger and ATP (or H(+)) as fuel through toehold-mediated strand displacement. Furthermore, to realize controlled release in tumor cells, smart nanocarriers were constructed with stimuli-responsive Y-motifs, gold nanorods, and temperature-sensitive polymers, whose surfaces could be reversibly switched between PEG and RGD states via photothermal conversion. The PEG corona kept the nanocarriers stealth during blood circulation to protect the Y-motifs against nuclease digestion and enhance passive accumulation, whereas the exposed RGD shell under near-infrared (NIR) irradiation at tumor sites facilitated the specific receptor-mediated endocytosis by tumor cells. Through modulating NIR laser, microRNA, or ATP expressions, the therapy efficacies to five different cell lines were finely controlled, presenting NIR-guided accumulation, massive release, efficient gene silence, and severe apoptosis in HeLa cells; in vivo study showed that a low dosage of nanocarriers synergistically inhibited the tumor growth by silencing gene expression and inducing cell apoptosis under mild NIR irradiation, though they only brought minimum damage to normal organs. The combination of nanomaterials, polymers, and DNA nanomachines provided a promising tool for designing smart nanodevices for disease therapy.
Collapse
Affiliation(s)
- Penghui Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210093, P. R. China
| | - Jingjing Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Anqi Xiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Linting Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jianxin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210093, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University , Nanjing 210093, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
36
|
Zhu J, Wang L, Xu X, Wei H, Jiang W. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application. Anal Chem 2016; 88:3817-25. [DOI: 10.1021/acs.analchem.5b04889] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Zhu
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| | - Lei Wang
- School
of Pharmaceutical Sciences, Shandong University, 250012 Jinan, People’s Republic of China
| | - Xiaowen Xu
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| | - Haiping Wei
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| | - Wei Jiang
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, People’s Republic of China
| |
Collapse
|
37
|
Wang L, Fang L, Liu S. Responsive hairpin DNA aptamer switch to program the strand displacement reaction for the enhanced electrochemical assay of ATP. Analyst 2016. [PMID: 26215159 DOI: 10.1039/c5an00725a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A responsive hairpin DNA aptamer switch was ingeniously designed for enzyme-free, sensitive and selective electrochemical detection of ATP. It takes full advantage of the target-triggered liberation effect of the toehold region and the concomitant proximity effect with the branch-migration region to execute the toehold-mediated strand displacement reaction on the electrode surface.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Rd., Qingdao, Shandong 266042, China.
| | | | | |
Collapse
|
38
|
Li C, Li Y, Chen Y, Lin R, Li T, Liu F, Li N. Modulating the DNA strand-displacement kinetics with the one-sided remote toehold design for differentiation of single-base mismatched DNA. RSC Adv 2016. [DOI: 10.1039/c6ra17006d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one-sided remote toehold design was proposed to provide the fine control over strand-displacement reaction kinetics with simplicity and versatility.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yixin Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yang Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ruoyun Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Tian Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
39
|
Del Grosso E, Dallaire AM, Vallée-Bélisle A, Ricci F. Enzyme-Operated DNA-Based Nanodevices. NANO LETTERS 2015; 15:8407-11. [PMID: 26600418 PMCID: PMC4676031 DOI: 10.1021/acs.nanolett.5b04566] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 11/20/2015] [Indexed: 05/23/2023]
Abstract
Functional molecular nanodevices and nanomachines have attracted a growing interest for their potential use in life science and nanomedicine. In particular, due to their versatility and modularity DNA-based nanodevices appear extremely promising. However, a limitation of such devices is represented by the limited number of molecular stimuli and cues that can be used to control and regulate their function. Here we demonstrate the possibility to rationally control and regulate DNA-based nanodevices using biocatalytic reactions catalyzed by different enzymes. To demonstrate the versatility of our approach, we have employed three model DNA-based systems and three different enzymes (belonging to several classes, i.e., transferases and hydrolases). The possibility to use enzymes and enzymatic substrates as possible cues to operate DNA-based molecular nanodevices will expand the available toolbox of molecular stimuli to be used in the field of DNA nanotechnology and could open the door to many applications including enzyme-induced drug delivery and enzyme-triggered nanostructures assembly.
Collapse
Affiliation(s)
- Erica Del Grosso
- Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Anne-Marie Dallaire
- Laboratory of Biosensors and Nanomachines, Département de
Chimie, Université de Montréal, Québec QC H3T 1J4, Canada
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors and Nanomachines, Département de
Chimie, Université de Montréal, Québec QC H3T 1J4, Canada
| | - Francesco Ricci
- Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
40
|
Zhu J, Wang L, Jiang W. A binding-induced sutured toehold activation for controllable DNA strand displacement reactions. Chem Commun (Camb) 2015; 51:2903-6. [PMID: 25583351 DOI: 10.1039/c4cc08816f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel toehold activation strategy was developed based on hairpin-reconfiguration which was initiated by the interaction between the hairpin and different environmental stimuli (Hg(2+) or ATP). Through variation of the concentration of environmental stimuli, it allowed the fine control of the DNA strand displacement rates almost 2 orders of magnitude.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | | | | |
Collapse
|
41
|
Li W, Jiang W, Ding Y, Wang L. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate. Biosens Bioelectron 2015; 71:401-406. [DOI: 10.1016/j.bios.2015.04.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
|
42
|
Zhu J, Zhang L, Dong S, Wang E. How to split a G-quadruplex for DNA detection: new insight into the formation of DNA split G-quadruplex. Chem Sci 2015; 6:4822-4827. [PMID: 29142717 PMCID: PMC5667574 DOI: 10.1039/c5sc01287b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/31/2015] [Indexed: 01/30/2023] Open
Abstract
Here, we get a new insight into the formation of a split G-quadruplex from the viewpoints of the split mode and guanine base number. An unusual result is that the split mode 4 : 8 performed best in six split modes, including the frequently used mode 1 : 3 and 2 : 2 in the split G-quadruplex enhanced fluorescence assay. Circular dichroism spectra verified the conclusion. The application of the split G-quadruplex based assay in DNA detection was performed on the point mutations of the JAK2 V617F and HBB genes. A multi-target analysis method based on a pool of G-segments split from T30695 (GGGTGGGTGGGTGGGT) by the magic "law of 4 : 8" was established.
Collapse
Affiliation(s)
- Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Libing Zhang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China .
| |
Collapse
|
43
|
Tang W, Hu S, Wang H, Zhao Y, Li N, Liu F. A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations. Chem Commun (Camb) 2015; 50:14352-5. [PMID: 25295484 DOI: 10.1039/c4cc07041k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A universal molecular translator based on the target-triggered DNA strand displacement was developed, which was able to convert various kinds of non-nucleic acid targets into a unique output DNA. This translation strategy was successfully applied in directing dynamic DNA assemblies and in realizing three-input logic gate operations.
Collapse
Affiliation(s)
- Wei Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
44
|
Guo Y, Wu J, Ju H. Target-driven DNA association to initiate cyclic assembly of hairpins for biosensing and logic gate operation. Chem Sci 2015; 6:4318-4323. [PMID: 29218202 PMCID: PMC5707516 DOI: 10.1039/c5sc01215e] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
Target-driven DNA association is designed for initiating the cyclic assembly of hairpins for target detection and logic gate operation.
A target-driven DNA association was designed to initiate cyclic assembly of hairpins, which led to an enzyme-free amplification strategy for detection of a nucleic acid or aptamer substrate and flexible construction of logic gates. The cyclic system contained two ssDNA (S1 and S2) and two hairpins (H1 and H2). These ssDNA could co-recognize the target to produce an S1–target–S2 structure, which brought their toehold and branch-migration domains into close proximity to initiate the cyclic assembly of hairpins. The assembly product further induced the dissociation of a double-stranded probe DNA (Q:F) via toehold-mediated strand displacement to switch the fluorescence signal. This method could detect DNA and ATP as model analytes down to 21.6 pM and 38 nM, respectively. By designing different DNA input strands, the “AND”, “INHIBIT” and “NAND” logic gates could be activated to achieve the output signal. The proposed biosensing and logic gate operation platform showed potential applications in disease diagnosis.
Collapse
Affiliation(s)
- Yuehua Guo
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86 25 83593593
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86 25 83593593
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China . ; ; Tel: +86 25 83593593
| |
Collapse
|
45
|
Liu Z, Mao C. Reporting transient molecular events by DNA strand displacement. Chem Commun (Camb) 2015; 50:8239-41. [PMID: 24938726 DOI: 10.1039/c4cc03291h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transient formation of DNA triplexes was reported by coupling with a permanent strand displacement reaction.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | | |
Collapse
|
46
|
Mata G, Luedtke NW. Fluorescent Probe for Proton-Coupled DNA Folding Revealing Slow Exchange of i-Motif and Duplex Structures. J Am Chem Soc 2015; 137:699-707. [DOI: 10.1021/ja508741u] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guillaume Mata
- Department of Chemistry, University of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| |
Collapse
|
47
|
Wang Q, Xu N, Gui Z, Lei J, Ju H, Yan F. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing. Analyst 2015; 140:6532-7. [PMID: 26295460 DOI: 10.1039/c5an01206f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The toehold-mediated DNA strand displacement was utilized to regulate the catalytic activity of the peroxidase mimic hemin and design a fluorescent DNA sensing method with high specificity.
Collapse
Affiliation(s)
- Quanbo Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P.R. China
| | - Nan Xu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P.R. China
| | - Zhen Gui
- Department of Clinical Laboratory
- Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital
- Nanjing 210009
- P.R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P.R. China
| | - Feng Yan
- Department of Clinical Laboratory
- Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital
- Nanjing 210009
- P.R. China
| |
Collapse
|
48
|
Amodio A, Zhao B, Porchetta A, Idili A, Castronovo M, Fan C, Ricci F. Rational design of pH-controlled DNA strand displacement. J Am Chem Soc 2014; 136:16469-72. [PMID: 25369216 DOI: 10.1021/ja508213d] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving strategies to finely regulate with biological inputs the formation and functionality of DNA-based nanoarchitectures and nanomachines is essential toward a full realization of the potential of DNA nanotechnology. Here we demonstrate an unprecedented, rational approach to achieve control, through a simple change of the solution's pH, over an important class of DNA association-based reactions. To do so we took advantage of the pH dependence of parallel Hoogsteen interactions and rationally designed two triplex-based DNA strand displacement strategies that can be triggered and finely regulated at either basic or acidic pHs. Because pH change represents an important input both in healthy and pathological biological pathways, our findings can have implication for the development of DNA nanostructures whose assembly and functionality can be triggered in the presence of specific biological targets.
Collapse
Affiliation(s)
- Alessia Amodio
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata , Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Xu X, Yang X. Reversion of DNA strand displacement using functional nucleic acids as toeholds. Chem Commun (Camb) 2014; 50:805-7. [PMID: 24292558 DOI: 10.1039/c3cc47102k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein we report the reversion of DNA strand displacement using functional nucleic acids as toeholds.
Collapse
Affiliation(s)
- Xiaowen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | |
Collapse
|
50
|
Deng W, Xu H, Ding W, Liang H. DNA logic gate based on metallo-toehold strand displacement. PLoS One 2014; 9:e111650. [PMID: 25365381 PMCID: PMC4218789 DOI: 10.1371/journal.pone.0111650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/30/2014] [Indexed: 01/05/2023] Open
Abstract
DNA is increasingly being used as an ideal material for the construction of nanoscale structures, circuits, and machines. Toehold-mediated DNA strand displacement reactions play a very important role in these enzyme-free constructions. In this study, the concept of metallo-toehold was utilized to further develop a mechanism for strand displacement driven by Ag+ ions, in which the intercalation of cytosine-cytosine mismatched base pairs on the toeholds provides additional control by varying of the concentration of Ag+ ions. The characteristics of displacement reaction in response to different concentration of Ag+ ions are investigated by fluorescence spectral and non-denaturing polyacrylamide gel electrophoresis. The reaction can successfully occur when the concentration of Ag+ ions is suitabe; excess Ag+ ions block the reaction. Furthermore, the displacement reaction can be tuned and controlled most efficiently under the condition of two C:C mismatched base pairs placed on the six-nt toehold. Based on our research, a mechanism was developed to construct Boolean logic gate AND and OR by employing strand displacement reaction as a tool, Ag+ and Hg2+ as input.
Collapse
Affiliation(s)
- Wei Deng
- CAS Key Laboratory of Soft Matter Chemistry, Department of polymer science and engineering, University of Science and Technologyof China, Hefei, Anhui, P. R. China
| | - Huaguo Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of polymer science and engineering, University of Science and Technologyof China, Hefei, Anhui, P. R. China
| | - Wei Ding
- CAS Key Laboratory of Soft Matter Chemistry, Department of polymer science and engineering, University of Science and Technologyof China, Hefei, Anhui, P. R. China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of polymer science and engineering, University of Science and Technologyof China, Hefei, Anhui, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|