1
|
Ikeda T, Kobayashi Y, Yamakawa M. Structure and dynamics of amphiphilic patchy cubes in a nanoslit under shear. J Chem Phys 2024; 161:024901. [PMID: 38973760 DOI: 10.1063/5.0216550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Patchy nanocubes are intriguing materials with simple shapes and space-filling and multidirectional bonding properties. Previous studies have revealed various mesoscopic structures such as colloidal crystals in the solid regime and rod-like or fractal-like aggregates in the liquid regime of the phase diagram. Recent studies have also shown that mesoscopic structural properties, such as an average cluster size M and orientational order, in amphiphilic nanocube suspensions are associated with macroscopic viscosity changes, mainly owing to differences in cluster shape among patch arrangements. Although many studies have been conducted on the self-assembled structures of nanocubes in bulk, little is known about their self-assembly in nanoscale spaces or structural changes under shear. In this study, we investigated mixtures of one- and two-patch amphiphilic nanocubes confined in two flat parallel plates at rest and under shear using molecular dynamics simulations coupled with multiparticle collision dynamics. We considered two different patch arrangements for the two-patch particles and two different slit widths H to determine the degree of confinement in constant volume fractions in the liquid regime of the phase diagram. We revealed two unique cluster morphologies that have not been previously observed under bulk conditions. At rest, the size of the rod-like aggregates increased with decreasing H, whereas that of the fractal-like aggregates remained constant. Under weak shear with strong confinement, the rod-like aggregates maintained a larger M than the fractal-like aggregates, which were more rigid and maintained a larger M than the rod-like aggregates under bulk conditions.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusei Kobayashi
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masashi Yamakawa
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
2
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
3
|
Yu C, Guo H. Molecular Dynamics Simulation Study on Self-Assembly of Polymer-Grafted Nanocrystals: From Isotropic Cores to Anisotropic Cores. J Chem Theory Comput 2024; 20:1625-1635. [PMID: 37583059 DOI: 10.1021/acs.jctc.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The self-assembly of polymer-grafted nanocrystals (PGNCs) is an important method to manufacture novel nanomaterials. Herein, we focus on the self-assembly of three types of PGNCs with differently shaped cores including sphere, octahedron, and cube by molecular dynamics simulation. By characterizing the positional and orientational order of the assembled superlattices, we construct the phase diagrams as a function of the grafting density and polymer chain length. For PGNCs with spherical cores, we observe the transition from the FCC phase to the BCC phase due to the packing entropy of the ligand polymer chains. For PGNCs with anisotropic cores, the close-packed FCC phase is replaced by the C-BCC phase (octahedral cores) or the C-triclinic phase (cubic cores) due to the directional entropy of core shape. We also study the assembly dynamics by tracking the time evolution of the positional and orientational order. We elucidate the relationship of grafting density and polymer chain length to the packing entropy and directional entropy and reveal their important effects on assembled structures. In general, our simulation results provide useful guidelines for the programmable assembly of PGNCs.
Collapse
Affiliation(s)
- Chong Yu
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Matos IQ, Escobedo FA. Self-Assembling of Nonadditive Mixtures Containing Patchy Particles with Tunable Interactions. J Phys Chem B 2023; 127:8982-8992. [PMID: 37795929 DOI: 10.1021/acs.jpcb.3c05302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Mixtures of nanoparticles (NPs) with hybridizing grafted DNA or DNA-like strands have been of particular interest because of the tunable selectivity provided for the interactions between the NP components. A richer self-assembly behavior would be accessible if these NP-NP interactions could be designed to give nonadditive mixing (in analogy to the case of molecular components). Nonadditive mixing occurs when the mixed-state volume is smaller (negative) or larger (positive) than the sum of the individual components' volumes. However, instances of nonadditivity in colloidal/NP mixtures are rare, and systematic studies of such mixtures are nonexistent. This work focuses on patchy NPs whose patches (coarsely representing grafted hybridizing DNA strands) not only encode selectivity across components but also impart a tunable nonadditivity by varying their extent of protrusion. To guide the exploration of the relationship between phase behavior and nonadditivity for different patches' designs, the NP-NP potential of mean force (PMF) and a nonadditive parameter were first calculated. For one-patch NPs, different lamellar morphologies were predominantly observed. In contrast, for mixtures of two-patch NPs and (fully grafted) spherical particles, a rich phase behavior was found depending on patch-patch angle and degree of nonadditivity, resulting in phases such as the gyroid, cylinder, honeycomb, and two-layered crystal. Our results also show that both minimum positive nonadditivity and multivalent interactions are necessary for the formation of ordered network mesophases in the class of models studied.
Collapse
Affiliation(s)
- Isabela Quintela Matos
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernando A Escobedo
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Cai T, Zhao S, Lin J, Zhang L. Kinetically Programming Copolymerization-like Coassembly of Multicomponent Nanoparticles with DNA. ACS NANO 2022; 16:15907-15916. [PMID: 36129379 DOI: 10.1021/acsnano.2c02867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Programmable coassembly of multicomponent nanoparticles (NPs) into heterostructures has the capability to build upon nanostructured metamaterials with enhanced complexity and diversity. However, a general understanding of how to manipulate the sequence-defined heterostructures using straightforward concepts and quantitatively predict the coassembly process remains unreached. Drawing inspiration from the synthetic concepts of molecular block copolymers is extremely beneficial to achieve controllable coassembly of NPs and access mesoscale structuring mechanisms. We herein report a general paradigm of kinetic pathway guidance for the controllable coassembly of bivalent DNA-functionalized NPs into regular block-copolymer-like heterostructures via the stepwise polymerization strategy. By quantifying the coassembly kinetics and structural statistics, it is demonstrated that the coassembly of multicomponent NPs, through directing the specific pathways of prepolymer intermediates, follows the step-growth copolymerization mechanism. Meanwhile, a quantitative model is developed to predict the growth kinetics and outcomes of heterostructures, all controlled by the designed elements of the coassembly system. Furthermore, the stepwise polymerization strategy can be generalized to build upon a great variety of regular nanopolymers with complex architectures, such as multiblock terpolymers and ladder copolymers. Our theoretical and simulation results provide fundamental insights on quantitative predictions of the coassembly kinetics and coassembled outcomes, which can aid in realizing a diverse set of supramolecular DNA materials by the rational design of kinetic pathways.
Collapse
Affiliation(s)
- Tianyun Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuochen Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Zhang H, Luo B, An P, Zhan X, Lan F, Wu Y. Interaction of Nucleic Acids with Metal-Organic Framework Nanosheets by Fluorescence Spectroscopy and Molecular Dynamics Simulations. ACS APPLIED BIO MATERIALS 2022; 5:3500-3508. [PMID: 35731983 DOI: 10.1021/acsabm.2c00431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The integration of nanomaterials and nucleic acids has attracted great attention in various research fields, especially biomedical applications. Designing two-dimensional nanomaterials and studying the mechanism of their interaction with nucleic acids are still attractive tasks. Herein, we designed and prepared a class of ultrathin two-dimensional metal-organic framework (MOF) nanosheets, named Zr-BTB MOF nanosheets, composed of Zr-O clusters and 1,3,5-benzenetribenzoate by a bottom-up synthesis strategy. The Zr-BTB MOF nanosheets possessed inherent excellent performance such as a high specific surface area, porosity, and biocompatibility. In addition, we clarified the interaction difference between the Zr-BTB MOF nanosheets and fluorophore-labeled double-stranded DNA and single-stranded DNA via molecular dynamics simulations and fluorescence measurement. Through molecular dynamics simulations, specific interactions between DNA and nanosheets such as forces, binding energies, and binding modes were deeply analyzed and clearly presented. Based on the affinity difference, the system showed the biosensing potential for target DNA detection with considerable specificity, sensitivity, and linearity. Our research results presented the Zr-BTB MOF nanosheet as a platform for nucleic acid detection, showing the potential for hybridization-based biosensing and related biological applications.
Collapse
Affiliation(s)
- Huinan Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Peng An
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Lee BHJ, Arya G. Assembly mechanism of surface-functionalized nanocubes. NANOSCALE 2022; 14:3917-3928. [PMID: 35225318 DOI: 10.1039/d1nr07995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Faceted nanoparticles can be used as building blocks to assemble nanomaterials with exceptional optical and catalytic properties. Recent studies have shown that surface functionalization of such nanoparticles with organic molecules, polymer chains, or DNA can be used to control the separation distance and orientation of particles within their assemblies. In this study, we computationally investigate the mechanism of assembly of nanocubes grafted with short-chain molecules. Our approach involves computing the interaction free energy landscape of a pair of such nanocubes via Monte Carlo simulations and using the Dijkstra algorithm to determine the minimum free energy pathway connecting key states in the landscape. We find that the assembly pathway of nanocubes is very rugged involving multiple energy barriers and metastable states. Analysis of nanocube configurations along the pathway reveals that the assembly mechanism is dominated by sliding motion of nanocubes relative to each other punctuated by their local dissociation at grafting points involving lineal separation and rolling motions. The height of energy barriers between metastable states depends on factors such as the interaction strength and surface roughness of the nanocubes and the steric repulsion from the grafts. These results imply that the observed assembly configuration of nanocubes depends not only on their globally stable minimum free energy state but also on the assembly pathway leading to this state. The free energy landscapes and assembly pathways presented in this study along with the proposed guidelines for engineering such pathways should be useful to researchers aiming to achieve uniform nanostructures from self-assembly of faceted nanoparticles.
Collapse
Affiliation(s)
- Brian Hyun-Jong Lee
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| | - Gaurav Arya
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Jason S. Kahn
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Oleg Gang
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Department of Applied Physics and Applied Mathematics Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
9
|
Abstract
It is a great challenge to develop ultra-coarse-grained models in simulations of biological macromolecules. In this study, the original coarse-graining strategy proposed in our previous work [M. Li and J. Z. H. Zhang, Phys. Chem. Chem. Phys. 23, 8926 (2021)] is first extended to the ultra-coarse-graining (UCG) modeling of liquid water, with the NC increasing from 4-10 to 20-500. The UCG force field is parameterized by the top-down strategy and subsequently refined on important properties of liquid water by the trial-and-error scheme. The optimal cutoffs for non-bonded interactions in the NC = 20/100/500 UCG simulations are, respectively, determined on energy convergence. The results show that the average density at 300 K can be accurately reproduced from the well-refined UCG models while it is largely different in describing compressibility, self-diffusion coefficient, etc. The density-temperature relationships predicted by these UCG models are in good agreement with the experiment result. Besides, two polarizable states of the UCG molecules are observed after simulated systems are equilibrated. The ion-water RDFs from the ion-involved NC = 100 UCG simulation are nearly in accord with the scaled AA ones. Furthermore, the concentration of ions can influence the ratio of two polarizable states in the NC = 100 simulation. Finally, it is illustrated that the proposed UCG models can accelerate liquid water simulation by 114-135 times, compared with the TIP3P force field. The proposed UCG force field is simple, generic, and transferable, potentially providing valuable information for UCG simulations of large biomolecules.
Collapse
Affiliation(s)
- Min Li
- College of Physics, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - WenCai Lu
- College of Physics, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - John ZengHui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
10
|
Kahn JS, Gang O. Designer Nanomaterials through Programmable Assembly. Angew Chem Int Ed Engl 2021; 61:e202105678. [PMID: 34128306 DOI: 10.1002/anie.202105678] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Nanoparticles have long been recognized for their unique properties, leading to exciting potential applications across optics, electronics, magnetism, and catalysis. These specific functions often require a designed organization of particles, which includes the type of order as well as placement and relative orientation of particles of the same or different kinds. DNA nanotechnology offers the ability to introduce highly addressable bonds, tailor particle interactions, and control the geometry of bindings motifs. Here, we discuss how developments in structural DNA nanotechnology have enabled greater control over 1D, 2D, and 3D particle organizations through programmable assembly. This Review focuses on how the use of DNA binding between nanocomponents and DNA structural motifs has progressively allowed the rational formation of prescribed particle organizations. We offer insight into how DNA-based motifs and elements can be further developed to control particle organizations and how particles and DNA can be integrated into nanoscale building blocks, so-called "material voxels", to realize designer nanomaterials with desired functions.
Collapse
Affiliation(s)
- Jason S Kahn
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.,Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.,Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
11
|
Quintela Matos I, Escobedo F. Congruent phase behavior of a binary compound crystal of colloidal spheres and dimpled cubes. J Chem Phys 2020; 153:214503. [DOI: 10.1063/5.0030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Isabela Quintela Matos
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Fernando Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
Xiong Y, Yang S, Tian Y, Michelson A, Xiang S, Xin H, Gang O. Three-Dimensional Patterning of Nanoparticles by Molecular Stamping. ACS NANO 2020; 14:6823-6833. [PMID: 32426966 DOI: 10.1021/acsnano.0c00607] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Directing the formation of nanoscale architectures from nanoparticles is one of the key challenges in designing nanomaterials with prescribed functions. Atomic systems, given their ability to form molecules and crystals via directional chemical bonds, provide an inspiration for establishing approaches where nanoparticles with designed anisotropic binding modalities can be assembled into nanoscale architectures. However, fabricating such nanoparticles has been challenging due to their small dimensions and limited ways for site-specific control of their surface. To this end, we present a molecular stamping (MOST) approach to pattern DNA-coated nanoparticles with molecules at the predefined positions on a nanoparticle surface. This patterning is realized by use of a rigid and coordinative DNA frame as a molecular stamping apparatus (MOST App). The MOST App transfers multiple types of molecular "inks", DNA sequences, onto a nanoparticle surface and fixes these molecular inks into place to form a designed pattern. After a nanoparticle is released the from MOST App, it possesses single-molecule patches that can provide anisotropic bonds with distinctive affinities. We further use these stamped nanoparticles to assemble prescribed clusters, whose structure is determined by the locations of patches. Using electron microscopy and tomographic methods, we investigate the efficiency of cluster formation and the resulting spatial arrangements of nanoparticles. The presented approach provides a single-molecule and spatially determined control over nanoparticle functionalization for creating nanoparticles with designed placement of different molecules and for realizing a rational fabrication of nanomaterial architectures.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Shize Yang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ye Tian
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Aaron Michelson
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Shuting Xiang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Huolin Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Manzanares-Palenzuela CL, Pourrahimi AM, Gonzalez-Julian J, Sofer Z, Pykal M, Otyepka M, Pumera M. Interaction of single- and double-stranded DNA with multilayer MXene by fluorescence spectroscopy and molecular dynamics simulations. Chem Sci 2019; 10:10010-10017. [PMID: 32055358 PMCID: PMC6979399 DOI: 10.1039/c9sc03049b] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
The integration of nucleic acids with nanomaterials has attracted great attention from various research communities in search of new nanoscale tools for a range of applications, from electronics to biomedical uses. MXenes are a new class of multielement 2D materials baring exciting properties mostly directed to energy-related fields. These advanced materials are now beginning to enter the biomedical field given their biocompatibility, hydrophilicity and near-infrared absorption. Herein, we elucidate the interaction of MXene Ti3C2T x with fluorophore-tagged DNA by fluorescence measurements and molecular dynamics simulations. The system showed potential for biosensing with unequivocal detection at picomole levels and single-base discrimination. We found that this material possesses a kinetically unique entrapment/release behavior, with potential implications in time-controlled biomolecule delivery. Our findings present MXenes as platforms for binding nucleic acids, contributing to their potential for hybridization-based biosensing and related bio-applications.
Collapse
Affiliation(s)
- C Lorena Manzanares-Palenzuela
- Center for Advanced Functional Nanorobots , Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , Prague 6 , 166 28 , Czech Republic .
| | - Amir M Pourrahimi
- Center for Advanced Functional Nanorobots , Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , Prague 6 , 166 28 , Czech Republic .
| | - J Gonzalez-Julian
- Forschungszentrum Jülich GmbH , Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1) , 52425 Jülich , Germany
| | - Zdenek Sofer
- Center for Advanced Functional Nanorobots , Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , Prague 6 , 166 28 , Czech Republic .
| | - Martin Pykal
- Regional Centre for Advanced Technologies and Materials , Palacký University Olomouc , Šlechtitelů 27 , Olomouc , 771 46 , Czech Republic
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials , Palacký University Olomouc , Šlechtitelů 27 , Olomouc , 771 46 , Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots , Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , Prague 6 , 166 28 , Czech Republic .
- Future Energy and Innovation Laboratory , Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , Brno , CZ-616 00 , Czech Republic
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro, Seodaemun-gu , Seoul 03722 , Korea
| |
Collapse
|
14
|
Gu M, Ma X, Zhang L, Lin J. Reversible Polymerization-like Kinetics for Programmable Self-Assembly of DNA-Encoded Nanoparticles with Limited Valence. J Am Chem Soc 2019; 141:16408-16415. [PMID: 31553167 DOI: 10.1021/jacs.9b07919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A similarity between the polymerization reaction of molecules and the self-assembly of nanoparticles provides a unique way to reliably predict structural characteristics of nanoparticle ensembles. However, the quantitative elucidation of programmable self-assembly kinetics of DNA-encoded nanoparticles is still challenging due to the existence of hybridization and dehybridization of DNA strands. Herein, a joint theoretical-computational method is developed to explicate the mechanism and kinetics of programmable self-assembly of limited-valence nanoparticles with surface encoding of complementary DNA strands. It is revealed that the DNA-encoded nanoparticles are programmed to form a diverse range of self-assembled superstructures with complex architecture, such as linear chains, sols, and gels of nanoparticles. It is theoretically demonstrated that the programmable self-assembly of DNA-encoded nanoparticles with limited valence generally obeys the kinetics and statistics of reversible step-growth polymerization originally proposed in polymer science. Furthermore, the theoretical-computational method is applied to capture the programmable self-assembly behavior of bivalent DNA-protein conjugates. The obtained results not only provide fundamental insights into the programmable self-assembly of DNA-encoded nanoparticles but also offer design rules for the DNA-programmed superstructures with elaborate architecture.
Collapse
Affiliation(s)
- Mengxin Gu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
15
|
Lu F, Vo T, Zhang Y, Frenkel A, Yager KG, Kumar S, Gang O. Unusual packing of soft-shelled nanocubes. SCIENCE ADVANCES 2019; 5:eaaw2399. [PMID: 31114807 PMCID: PMC6524981 DOI: 10.1126/sciadv.aaw2399] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Space-filling generally governs hard particle packing and the resulting phases and interparticle orientations. Contrastingly, hard-shaped nanoparticles with grafted soft-ligands pack differently since the energetically interacting soft-shell is amenable to nanoscale sculpturing. While the interplay between the shape and soft-shell can lead to unforeseen packing effects, little is known about the underlying physics. Here, using electron microscopy and small-angle x-ray scattering, we demonstrate that nanoscale cubes with soft, grafted DNA shells exhibit remarkable packing, distinguished by orientational symmetry breaking of cubes relative to the unit cell vectors. This zigzag arrangement occurs in flat body-centered tetragonal and body-centered cubic phases. We ascribe this unique arrangement to the interplay between shape and a spatially anisotropic shell resulting from preferential grafting of ligands to regions of high curvature. These observations reveal the decisive role played by shell-modulated anisotropy in nanoscale packing and suggest a plethora of new spatial organizations for molecularly decorated shaped nanoparticles.
Collapse
Affiliation(s)
- Fang Lu
- Center for Functional Nanomaterials, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thi Vo
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Yugang Zhang
- National Synchrotron Light Source II, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alex Frenkel
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sanat Kumar
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Corresponding author. (S.K.); (O.G.)
| | - Oleg Gang
- Center for Functional Nanomaterials, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Corresponding author. (S.K.); (O.G.)
| |
Collapse
|
16
|
Hou G, Xia X, Liu J, Wang W, Dong M, Zhang L. Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles. J Phys Chem B 2019; 123:2157-2168. [PMID: 30742436 DOI: 10.1021/acs.jpcb.8b11118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The control of the self-assembly of the nanocrystals into ordered structures has been extensively investigated, but fewer efforts have been devoted to studying one-component polymer-grafted nanoparticles (OPNPs). Herein, through coarse-grained molecular dynamics simulation, we design a novel nanoparticle (NP) grafted with polymer chains, focusing on its self-assembled structures. First, we examine the effects of length and density of grafted polymer chains by calculating the radial distribution function between NPs, as well as through direct visualization. We observe a monotonic change of the arranged morphology of grafted-NPs as a function of the density of grafted polymer chains, which indicates that the increase of the grafting density contributes to the order of the morphology. Meanwhile, we find that much longer grafted polymer chains worsen the regularity of the morphology. Then, we probe the influence of the stiffness of grafted polymer chains (denoted by K ranging from 0 to 500) on the order of grafted-NPs, finding that the order of the structure exhibits a nonmonotonic behavior as a function of K at moderate grafting density. For high grafting density, the order of the morphology is initially enhanced and becomes saturated as a function of K. For the effect of K on the stress-strain behavior, the system with the lowest order demonstrates the most remarkable reinforced mechanical behavior for both low and high grafting density. Last, we establish the phase diagram by varying the stiffness and density of the grafted polymer chains, which contains the amorphous, ordered, and superlattice structures, respectively. In general, our simulated results provide guidelines to tailor the self-assembly of the OPNPs by taking advantage of the length, density, and stiffness of grafted polymer chains.
Collapse
Affiliation(s)
| | - Xiuyang Xia
- Chemical Engineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 , Singapore
| | | | | | | | | |
Collapse
|
17
|
Lenart WR, Hore MJ. Structure–property relationships of polymer-grafted nanospheres for designing advanced nanocomposites. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2017.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Madge J, Miller MA. Optimising minimal building blocks for addressable self-assembly. SOFT MATTER 2017; 13:7780-7792. [PMID: 29018850 DOI: 10.1039/c7sm01646h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Addressable structures are characterised by the set of unique components from which they are built and by the specific location that each component occupies. For an addressable structure to self-assemble, its constituent building blocks must be encoded with sufficient information to define their positions with respect to each other and to enable them to navigate to those positions. DNA, with its vast scope for encoding specific interactions, has been successfully used to synthesise addressable systems of several hundred components. In this work we examine the complementary question of the minimal requirements for building blocks to undergo addressable self-assembly driven by a controlled temperature quench. Our testbed is an idealised model of cubic particles patterned with attractive interactions. We introduce a scheme for optimising the interactions using a variant of basin-hopping and a negative design principle. The designed building blocks are tested dynamically in simple target structures to establish how their complexity affects the limits of reliable self-assembly.
Collapse
Affiliation(s)
- Jim Madge
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|
19
|
Jan Bachmann S, Petitzon M, Mognetti BM. Bond formation kinetics affects self-assembly directed by ligand-receptor interactions. SOFT MATTER 2016; 12:9585-9592. [PMID: 27849095 DOI: 10.1039/c6sm02016j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper we study aggregation kinetics in systems of particles functionalised by complementary linkers. Most of the coarse-grained models currently employed to study large-scale self-assembly of these systems rely on effective potentials between particles as calculated using equilibrium statistical mechanics. In these approaches the kinetic aspects underlying the formation of inter-particle linkages are neglected. We show how the rate at which supramolecular linkages form drastically changes the self-assembly pathway. In order to do this we develop a method that combines Brownian dynamics simulations with a Gillespie algorithm accounting for the evolution of inter-particle linkages. If compared with dynamics based on effective potentials, an explicit description of inter-particle linkages results in aggregates that in the early stages of self-assembly have a lower valency. Relaxation towards equilibrium is hampered by the time required to break existing linkages within one cluster and to reorient them toward free particles. This effect is more important at low temperature and high particle diffusion constant. Our results highlight the importance of including kinetic rates into coarse-grained descriptions of ligand-receptor systems.
Collapse
Affiliation(s)
- Stephan Jan Bachmann
- Université Libre de Bruxelles (ULB), Department of Physics, Interdisciplinary Center for Nonlinear Phenomena and Complex Systems & Service de Physique des Systèmes Complexes et Mécanique Statistique, Campus Plaine, CP 231, Blvd du Triomphe, B-1050 Brussels, Belgium.
| | - Marius Petitzon
- Université Libre de Bruxelles (ULB), Department of Physics, Interdisciplinary Center for Nonlinear Phenomena and Complex Systems & Service de Physique des Systèmes Complexes et Mécanique Statistique, Campus Plaine, CP 231, Blvd du Triomphe, B-1050 Brussels, Belgium.
| | - Bortolo Matteo Mognetti
- Université Libre de Bruxelles (ULB), Department of Physics, Interdisciplinary Center for Nonlinear Phenomena and Complex Systems & Service de Physique des Systèmes Complexes et Mécanique Statistique, Campus Plaine, CP 231, Blvd du Triomphe, B-1050 Brussels, Belgium.
| |
Collapse
|
20
|
Calais T, Baijot V, Djafari Rouhani M, Gauchard D, Chabal YJ, Rossi C, Estève A. General Strategy for the Design of DNA Coding Sequences Applied to Nanoparticle Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9676-9686. [PMID: 27578445 DOI: 10.1021/acs.langmuir.6b02843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The DNA-directed assembly of nano-objects has been the subject of many recent studies as a means to construct advanced nanomaterial architectures. Although much experimental in silico work has been presented and discussed, there has been no in-depth consideration of the proper design of single-strand sticky termination of DNA sequences, noted as ssST, which is important in avoiding self-folding within one DNA strand, unwanted strand-to-strand interaction, and mismatching. In this work, a new comprehensive and computationally efficient optimization algorithm is presented for the construction of all possible DNA sequences that specifically prevents these issues. This optimization procedure is also effective when a spacer section is used, typically repeated sequences of thymine or adenine placed between the ssST and the nano-object, to address the most conventional experimental protocols. We systematically discuss the fundamental statistics of DNA sequences considering complementarities limited to two (or three) adjacent pairs to avoid self-folding and hybridization of identical strands due to unwanted complements and mismatching. The optimized DNA sequences can reach maximum lengths of 9 to 34 bases depending on the level of applied constraints. The thermodynamic properties of the allowed sequences are used to develop a ranking for each design. For instance, we show that the maximum melting temperature saturates with 14 bases under typical solvation and concentration conditions. Thus, DNA ssST with optimized sequences are developed for segments ranging from 4 to 40 bases, providing a very useful guide for all technological protocols. An experimental test is presented and discussed using the aggregation of Al and CuO nanoparticles and is shown to validate and illustrate the importance of the proposed DNA coding sequence optimization.
Collapse
Affiliation(s)
- Théo Calais
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | - Vincent Baijot
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | | | - David Gauchard
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | - Yves J Chabal
- Department of Materials Science and Engineering, University of Texas at Dallas , Richardson, Texas 75080, United States
| | - Carole Rossi
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| | - Alain Estève
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse, France
| |
Collapse
|
21
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1074] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
22
|
Self-organized architectures from assorted DNA-framed nanoparticles. Nat Chem 2016; 8:867-73. [PMID: 27554413 DOI: 10.1038/nchem.2540] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/28/2016] [Indexed: 12/25/2022]
Abstract
The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it is possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci's Vitruvian Man, can be self-assembled successfully.
Collapse
|
23
|
Angioletti-Uberti S, Mognetti BM, Frenkel D. Theory and simulation of DNA-coated colloids: a guide for rational design. Phys Chem Chem Phys 2016; 18:6373-93. [PMID: 26862595 DOI: 10.1039/c5cp06981e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By exploiting the exquisite selectivity of DNA hybridization, DNA-coated colloids (DNACCs) can be made to self-assemble in a wide variety of structures. The beauty of this system stems largely from its exceptional versatility and from the fact that a proper choice of the grafted DNA sequences yields fine control over the colloidal interactions. Theory and simulations have an important role to play in the optimal design of self assembling DNACCs. At present, the powerful model-based design tools are not widely used, because the theoretical literature is fragmented and the connection between different theories is often not evident. In this Perspective, we aim to discuss the similarities and differences between the different models that have been described in the literature, their underlying assumptions, their strengths and their weaknesses. Using the tools described in the present Review, it should be possible to move towards a more rational design of novel self-assembling structures of DNACCs and, more generally, of systems where ligand-receptor are used to control interactions.
Collapse
Affiliation(s)
- Stefano Angioletti-Uberti
- International Research Centre for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | | | | |
Collapse
|
24
|
McGinley JT, Wang Y, Jenkins IC, Sinno T, Crocker JC. Crystal-Templated Colloidal Clusters Exhibit Directional DNA Interactions. ACS NANO 2015; 9:10817-10825. [PMID: 26439813 DOI: 10.1021/acsnano.5b03272] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spherical colloids covered with grafted DNA have been used in the directed self-assembly of a number of distinct crystal and gel structures. Simulation suggests that the use of anisotropic building blocks greatly augments the variety of potential colloidal assemblies that can be formed. Here, we form five distinct symmetries of colloidal clusters from DNA-functionalized spheres using a single type of colloidal crystal as a template. The crystals are formed by simple sedimentation of a binary mixture containing a majority "host" species that forms close-packed crystals with the minority "impurity" species occupying substitutional or interstitial defect sites. After the DNA strands between the two species are hybridized and enzymatically ligated, the results are colloidal clusters, one for each impurity particle, with a symmetry determined by the nearest neighbors in the original crystal template. By adjusting the size ratio of the two spheres and the timing of the ligation, we are able to generate clusters having the symmetry of tetrahedra, octahedra, cuboctahedra, triangular orthobicupola, and icosahedra, which can be readily separated from defective clusters and leftover spheres by centrifugation. We further demonstrate that these clusters, which are uniformly covered in DNA strands, display directional binding with spheres bearing complementary DNA strands, acting in a manner similar to patchy particles or proteins having multiple binding sites. The scalable nature of the fabrication process, along with the reprogrammability and directional nature of their resulting DNA interactions, makes these clusters suitable building blocks for use in further rounds of directed self-assembly.
Collapse
Affiliation(s)
- James T McGinley
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Yifan Wang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Ian C Jenkins
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Abstract
The structure of quasi-2d solutions of dipolar superballs in the fluid state has been determined by Metropolis Monte Carlos simulations in the absence and the presence of an external field. Superballs are 3d objects characterized by a one shape parameter. Here, superballs resembling cubes, but possessing rounded edges, have been used. Examination has been made for several magnitudes of the dipole moment in three different dipole directions. In the limit of a cube, the directions become (i) the center of mass - the center of a face (001) direction, (ii) the center of mass - the center of an edge (011) direction, and (iii) the center of mass - the corner (111) direction. At a small dipole moment, the superballs are translationally and orientationally disordered, and the dipoles become partially orientationally ordered in the presence of the field parallel to the plane of the superballs. At a large dipole moment, chains of superballs are formed, and the chains become parallel in the presence of the field. The chains remain separated for the dipole in the 001-direction and form bundles for the 011- and 111-directions. The different structures obtained for the different dipole directions are interpreted in terms of how compatible the dipole-dipole interaction is with the cube-cube interaction at short separation for the different directions of the dipole moment. Hence, the structural richness arises from an interplay of the different symmetries of a cube and of the field of a dipole.
Collapse
Affiliation(s)
- Per Linse
- Physical Chemistry, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
26
|
Lu F, Yager KG, Zhang Y, Xin H, Gang O. Superlattices assembled through shape-induced directional binding. Nat Commun 2015; 6:6912. [PMID: 25903309 PMCID: PMC4423233 DOI: 10.1038/ncomms7912] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/12/2015] [Indexed: 01/18/2023] Open
Abstract
Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.
Collapse
Affiliation(s)
- Fang Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Huolin Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
27
|
Zhang X, Wang R, Xue G. Programming macro-materials from DNA-directed self-assembly. SOFT MATTER 2015; 11:1862-70. [PMID: 25687673 DOI: 10.1039/c4sm02649g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA is a powerful tool that can be attached to nano- and micro-objects and direct the self-assembly through base pairing. Since the strategy of DNA programmable nanoparticle self-assembly was first introduced in 1996, it has remained challenging to use DNA to make powerful diagnostic tools and to make designed materials with novel properties and highly ordered crystal structures. In this review, we summarize recent experimental and theoretical developments of DNA-programmable self-assembly into three-dimensional (3D) materials. Various types of aggregates and 3D crystal structures obtained from an experimental DNA-driven assembly are introduced. Furthermore, theoretical calculations and simulations for DNA-mediated assembly systems are described and we highlight some typical theoretical models for Monte Carlo and Molecular Dynamics simulations.
Collapse
Affiliation(s)
- Xuena Zhang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
28
|
Travesset A. Phase diagram of power law and Lennard-Jones systems: Crystal
phases. J Chem Phys 2014; 141:164501. [DOI: 10.1063/1.4898371] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alex Travesset
- Department of Physics and Astronomy and Ames Lab, Iowa State University
Ames, Ames, Iowa 50011, USA
| |
Collapse
|