1
|
Teng BH, Bao ZP, Zhao Y, Wu XF. Nickel-Catalyzed Four-Component Carbonylation of 1,3-Butadiene To Access β,γ-Unsaturated Ketones. Org Lett 2024; 26:4779-4783. [PMID: 38807481 PMCID: PMC11165585 DOI: 10.1021/acs.orglett.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
A new strategy to obtain β,γ-unsaturated ketones via the cross-coupling of 1,3-butadiene, alkyl bromides, and arylboronic acids under 1 bar of CO with nickel as the catalyst has been developed. This newly developed four-component carbonylation procedure features advantages including using a cheap catalytic system, high step economy, mild reaction conditions, and excellent 1,4-regioselectivity, thereby providing a sustainable and alternative tool for β,γ-unsaturated ketones production compared to the present tactics. To elucidate the application potential of this method, olefin synthons are derived from the representative coupling product.
Collapse
Affiliation(s)
- Bing-Hong Teng
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Zhi-Peng Bao
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Yingying Zhao
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Xiao-Feng Wu
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Jia Z, Cheng L, Zhang L, Luo S. Asymmetric C-H Dehydrogenative Alkenylation via a Photo-induced Chiral α‑Imino Radical Intermediate. Nat Commun 2024; 15:4044. [PMID: 38744891 PMCID: PMC11094157 DOI: 10.1038/s41467-024-48350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The direct alkenylation with simple alkenes stands out as the most ideal yet challenging strategy for obtaining high-valued desaturated alkanes. Here we present a direct asymmetric dehydrogenative α-C(sp3)-H alkenylation of carbonyls based on synergistic photoredox-cobalt-chiral primary amine catalysis under visible light. The ternary catalytic system enables the direct coupling of β-keto-carbonyls and alkenes through a cooperative radical addition-dehydrogenation process involving a chiral α-imino radical and Co(II)-metalloradical intermediate. A catalytic H-transfer process involving nitrobenzene is engaged to quench in situ generated cobalt hydride species, ensuring a chemoselective alkenylation in good yields and high enantioselectivities.
Collapse
Affiliation(s)
- Zongbin Jia
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Cheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Zaman MK, Li R, Deng W. Photocatalytic Cross-Coupling of Tetrafluoropyridine Sulfides with Vinyl Halides for the Synthesis of β,γ-Unsaturated Carbonyl Compounds. J Org Chem 2023; 88:15761-15766. [PMID: 37890077 DOI: 10.1021/acs.joc.3c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
β,γ-Unsaturated carbonyl compounds serve as versatile building blocks in organic synthesis and medicinal chemistry. Herein we reported the synthesis of β,γ-unsaturated carbonyl compounds from tetrafluoropyridine sulfides with vinyl halides. This cross-coupling reaction takes the advantage of photocatalysis, as well as zinc catalysis, which is preferred due to its less-toxic, earth abundant, and cost-effective nature.
Collapse
Affiliation(s)
- Muhammad Kashif Zaman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Deng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| |
Collapse
|
4
|
Liu J, Gao S, Miliordos E, Chen M. Asymmetric Syntheses of ( Z)- or ( E)-β,γ-Unsaturated Ketones via Silane-Controlled Enantiodivergent Catalysis. J Am Chem Soc 2023; 145:19542-19553. [PMID: 37639380 PMCID: PMC11144060 DOI: 10.1021/jacs.3c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-β,γ-unsaturated ketones from 1,3-butadienyl silanes are developed. The nature of the silyl group of the dienes has a significant impact on the stereo- and enantioselectivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted 1,3-diene gave (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereogenic center with excellent enantioselectivities and high Z-selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-β,γ-unsaturated ketones with high optical purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Wang X, Yang R, Zhu B, Liu Y, Song H, Dong J, Wang Q. Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis. Nat Commun 2023; 14:2951. [PMID: 37221185 DOI: 10.1038/s41467-023-38743-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Herein, we report a mild, operationally simple, multicatalytic method for the synthesis of β,γ-unsaturated ketones via allylic acylation of alkenes. Specifically, the method combines N‑heterocyclic carbene catalysis, hydrogen atom transfer catalysis, and photoredox catalysis for cross-coupling reactions between a wide range of feedstock carboxylic acids and readily available olefins to afford structurally diverse β,γ-unsaturated ketones without olefin transposition. The method could be used to install acyl groups on highly functionalized natural-product-derived compounds with no need for substrate pre-activation, and C-H functionalization proceed with excellent site selectivity. To demonstrate the potential applications of the method, we convert a representative coupling product into various useful olefin synthons.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Binbing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
6
|
Wen K, Feng M, Gao Q, Chen C, Wu Y, Zhou J, Huang L, Tang X. α‐Benzylation of Carbonyl Compounds Enabled by Synergistic Copper/Amine Catalyzed Decarboxylation of Arylacetic Acids. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| | - Mengxia Feng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Guangzhou 510640 P. R. China
| | - Qiwen Gao
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| | - Chen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| | - Jiamin Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Guangzhou 510640 P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| |
Collapse
|
7
|
Yasumoto K, Kunitomo N, Kano T. Cu-Catalyzed Asymmetric Alkenylation of Enone Diesters with Trialkenylboroxines. Org Lett 2023; 25:1497-1502. [PMID: 36861961 DOI: 10.1021/acs.orglett.3c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The Cu-catalyzed asymmetric conjugate addition of trialkenylboroxines to enone diesters is reported. This operationally simple and scalable reaction proceeded at room temperature, and a wide range of enone diesters and boroxines were tolerated under the applied reaction conditions. The practical utility of this approach was demonstrated via the formal synthesis of (+)-methylenolactocin. Mechanistic studies revealed that two different catalytic species work synergistically in the reaction.
Collapse
Affiliation(s)
- Kento Yasumoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Noritaka Kunitomo
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Xu H, Yamaguchi S, Mitsudome T, Mizugaki T. A copper nitride nanocube catalyst for highly efficient hydroboration of alkynes. Org Biomol Chem 2023; 21:1404-1410. [PMID: 36594420 DOI: 10.1039/d2ob02130g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hydroboration of alkynes with bis(pinacolato)diboron is a useful method for the synthesis of vinyl boronate esters, which are essential intermediates in organic syntheses. Copper catalysts have been used extensively in these reactions. However, previously reported Cu-catalyst systems inevitably require additives and elevated temperatures. Herein, we report, for the first time, a simple and efficient hydroboration of alkynes under additive-free and mild reaction conditions (i.e., at a temperature of 30 °C) using a copper nitride nanocube (Cu3N NC) catalyst. A wide range of alkynes can be transformed into their corresponding boronate esters. Cu3N NCs are also applicable in the hydroboration of alkynes with tetrahydroxydiboron to synthesize vinyl boronic acids. Moreover, the Cu3N NCs were easily separated by simple filtration and could be reused several times without any loss of their original activity. Hence, these highly active and reusable Cu3N NC catalysts offer an environmentally friendly route for the efficient production of vinyl boronates.
Collapse
Affiliation(s)
- Hang Xu
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. .,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Nagahata S, Takei S, Ueno S. One-Pot Synthesis of Multiarylated Benzophenones via [3 + 2 + 1] Benzannulation of Ketones, Alkynes, and α,β-Unsaturated Carbonyls. J Org Chem 2022; 87:10377-10384. [PMID: 35796518 DOI: 10.1021/acs.joc.2c00601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we synthesized γ-phenyl-β,γ-unsaturated ketones in situ from acetophenones and phenylacetylenes under Trofimov's conditions using KOtBu in a dimethyl sulfoxide (DMSO) solvent. The obtained ketones reacted with α,β-unsaturated carbonyls in a one-pot manner, forming tri- or diarylated benzophenones. The present reaction proceeded efficiently by one-pot manipulation with a suitable carboxylic acid.
Collapse
Affiliation(s)
- Shoko Nagahata
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Seiya Takei
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Satoshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
10
|
Nair VV, Arunprasath D, Solai P, Sekar G. Synergistic Dual Amine/Transition Metal Catalysis ‐ Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Pandidurai Solai
- IIT Madras: Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Govindasamy Sekar
- Indian Institute of Technology Madras Department of Chemistry IIT Campus 600 036 Chennai INDIA
| |
Collapse
|
11
|
Xiong P, Hemming M, Ivlev SI, Meggers E. Electrochemical Enantioselective Nucleophilic α-C(sp 3)-H Alkenylation of 2-Acyl Imidazoles. J Am Chem Soc 2022; 144:6964-6971. [PMID: 35385651 DOI: 10.1021/jacs.2c01686] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merging electrochemistry with asymmetric catalysis promises to provide an environmentally friendly and efficient strategy for the construction of nonracemic chiral molecules. However, in practice, significant challenges arise from the instability or incompatibility of the chiral catalysts under the electrochemical conditions at the interface of electrode and solution. Herein, we report a catalytic asymmetric indirect electrolysis employing the combination of a redox mediator and a chiral-at-rhodium Lewis acid, which achieves a previously elusive enantioselective nucleophilic α-C(sp3)-H alkenylation of ketones. Specifically, 2-acyl imidazoles react with potassium alkenyl trifluoroborates in high yields (up to 94%) and with exceptional enantioselectivities (27 examples with ≥99% ee) without the need for any additional stoichiometric oxidants (overall 40 examples). The new indirect electrosynthesis can be scaled to gram quantities and was applied to the straightforward synthesis of intermediates of the natural product cryptophycin A and a cathepsin K inhibitor.
Collapse
Affiliation(s)
- Peng Xiong
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Marcel Hemming
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
12
|
Betinol IO, Kuang Y, Reid JP. Guiding Target Synthesis with Statistical Modeling Tools: A Case Study in Organocatalysis. Org Lett 2022; 24:1429-1433. [PMID: 35030005 DOI: 10.1021/acs.orglett.1c04134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Practitioners are generally not willing to explore modern reactions where considerable synthetic effort is required to generate materials and the results are not certain. Organocatalysis exemplifies this, in which a broad set of enantioselective reactions have been successfully developed but further applications to include additional substrates are often not performed. Herein we demonstrate how statistical models can be utilized to accurately distinguish between different catalysts and reactions to guide the selection of efficient synthetic routes to obtain a target molecule.
Collapse
Affiliation(s)
- Isaiah O Betinol
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
Blieck R, Lemouzy S, van der Lee A, Taillefer M, Monnier F. Synergistic Copper/Enamine Catalysis for the Regio-, Stereo-, and Enantioselective Intermolecular α-Addition of Aldehydes to Allenamides. Org Lett 2021; 23:9199-9203. [PMID: 34780198 DOI: 10.1021/acs.orglett.1c03477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein describe an intermolecular enantioselective α-addition of aldehydes to allenamides using a dual copper/enamine catalytic system. Highly enantioselective addition of aldehydes was obtained thanks to secondary amine catalysts. The process was found to be highly regio-, stereo-, and enantioselective under mild conditions.
Collapse
Affiliation(s)
- Rémi Blieck
- Ecole Nationale Supérieure de Chimie de Montpellier, Institut Charles Gerhardt Montpellier UMR 5253, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, France
| | - Sébastien Lemouzy
- Ecole Nationale Supérieure de Chimie de Montpellier, Institut Charles Gerhardt Montpellier UMR 5253, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, France
| | - Arie van der Lee
- IEM Université Montpellier 2 Case courrier 047 Place Eugène Bataillon, 34095 cedex 5 Montpellier, France
| | - Marc Taillefer
- Ecole Nationale Supérieure de Chimie de Montpellier, Institut Charles Gerhardt Montpellier UMR 5253, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, France
| | - Florian Monnier
- Ecole Nationale Supérieure de Chimie de Montpellier, Institut Charles Gerhardt Montpellier UMR 5253, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293 Montpellier, France.,IUF Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
14
|
Ma H, Feng J, Zhou W, Chen C, Deng Z, Zhou F, Ouyang Y, Zhang X, Cai Q. Copper(i)-catalyzed asymmetric intramolecular C-arylation with ureas as the additives: highly enantioselective formation of spirooxindoles. Org Biomol Chem 2021; 19:7480-7484. [PMID: 34612367 DOI: 10.1039/d1ob01327k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cooperative catalytic strategy is developed for a copper-catalyzed asymmetric intramolecular C-arylation reaction with ureas as the co-catalysts. By forming hydrogen bonds with 1,3-dicarbonyl structures, ureas can activate the substrates, stabilize the carbanion intermediates and the products, and fix the syn-configurations of 1,3-dicarbonyl structures. They help enhance the reactivity, prevent side reactions and improve the enantioselectivities.
Collapse
Affiliation(s)
- Haowen Ma
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cheng X, Li T, Liu Y, Lu Z. Stereo- and Enantioselective Benzylic C–H Alkenylation via Photoredox/Nickel Dual Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaokai Cheng
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
| | - Tongtong Li
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
| | - Yuting Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
16
|
Tao X, Yao K, Xue W. Ni-catalyzed cross-electrophile coupling of α-hydroxy carbonyl compound-derived oxalates with vinyl triflates. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Doyle MGJ, Lundgren RJ. Oxidative cross-coupling processes inspired by the Chan-Lam reaction. Chem Commun (Camb) 2021; 57:2724-2731. [PMID: 33623942 DOI: 10.1039/d1cc00213a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Cu-catalyzed oxidative cross-coupling of N- and O-nucleophiles with aryl boronic acids (the Chan-Lam reaction) remains among the most useful approaches to prepare aniline and phenol derivatives. The combination of high chemoselectivity, mild reaction conditions, and the ability to use simple Cu-salts as catalysts makes this process a valuable alternative to aromatic substitutions and Pd-catalyzed reactions of aryl electrophiles (Buchwald-Hartwig coupling). Despite the widespread use of Chan-Lam reactions in synthesis, the analogous carbon-carbon bond forming variant of this process had not been developed prior to our work. This feature article describes our discovery and application of Cu-catalyzed oxidative coupling reactions of activated methylene derivatives or carboxylic acids with nucleophiles including aryl boronic esters and amines.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
18
|
Zhang S, Duan X, Li P. Access to Stereodefined Multifunctionalized β,
γ‐Unsaturated
Ketones
via
Chemo‐, Regio‐ and Diastereoselective
Copper‐Catalyzed
Diborylation of
Cross‐Conjugated
Enynones
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Xinhua Duan
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 China
- State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
19
|
Hao YJ, Hu XS, Zhou Y, Zhou J, Yu JS. Catalytic Enantioselective α-Arylation of Carbonyl Enolates and Related Compounds. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04480] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yong-Jia Hao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People’s Republic of China
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People’s Republic of China
| | - Jian Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| |
Collapse
|
20
|
Afewerki S, Córdova A. Enamine/Transition Metal Combined Catalysis: Catalytic Transformations Involving Organometallic Electrophilic Intermediates. Top Curr Chem (Cham) 2019; 377:38. [PMID: 31732819 PMCID: PMC6858407 DOI: 10.1007/s41061-019-0267-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The concept of merging enamine activation catalysis with transition metal catalysis is an important strategy, which allows for selective chemical transformations not accessible without this combination. The amine catalyst activates the carbonyl compounds through the formation of a reactive nucleophilic enamine intermediate and, in parallel, the transition metal activates a wide range of functionalities such as allylic substrates through the formation of reactive electrophilic π-allyl-metal complex. Since the first report of this strategy in 2006, considerable effort has been devoted to the successful advancement of this technology. In this chapter, these findings are highlighted and discussed.
Collapse
Affiliation(s)
- Samson Afewerki
- Department of Natural Sciences, Mid Sweden University, 851 70, Sundsvall, Sweden.
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, 851 70, Sundsvall, Sweden.
| |
Collapse
|
21
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
22
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019; 58:12674-12679. [DOI: 10.1002/anie.201906213] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
23
|
Zhang J, Jia J, Zeng X, Wang Y, Zhang Z, Gridnev ID, Zhang W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes. Angew Chem Int Ed Engl 2019; 58:11505-11512. [DOI: 10.1002/anie.201905263] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jia Jia
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xincheng Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuanhao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
24
|
Zhang J, Jia J, Zeng X, Wang Y, Zhang Z, Gridnev ID, Zhang W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jia Jia
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xincheng Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuanhao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
25
|
Wang L, Lear JM, Rafferty SM, Fosu SC, Nagib DA. Ketyl radical reactivity via atom transfer catalysis. Science 2018; 362:225-229. [PMID: 30309953 PMCID: PMC6504239 DOI: 10.1126/science.aau1777] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/13/2018] [Indexed: 11/02/2022]
Abstract
Single-electron reduction of a carbonyl to a ketyl enables access to a polarity-reversed platform of reactivity for this cornerstone functional group. However, the synthetic utility of the ketyl radical is hindered by the strong reductants necessary for its generation, which also limit its reactivity to net reductive mechanisms. We report a strategy for net redox-neutral generation and reaction of ketyl radicals. The in situ conversion of aldehydes to α-acetoxy iodides lowers their reduction potential by more than 1 volt, allowing for milder access to the corresponding ketyl radicals and an oxidative termination event. Upon subjecting these iodides to a dimanganese decacarbonyl precatalyst and visible light irradiation, an atom transfer radical addition (ATRA) mechanism affords a broad scope of vinyl iodide products with high Z-selectivity.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jeremy M Lear
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sean M Rafferty
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Stacy C Fosu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Park DY, Lee SY, Jeon J, Cheon CH. Enantioselective Synthesis of Tetrahydroquinolines from 2-Aminochalcones via a Consecutive One-Pot Reaction Catalyzed by Chiral Phosphoric Acid. J Org Chem 2018; 83:12486-12495. [DOI: 10.1021/acs.joc.8b01709] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Do Young Park
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - So Young Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiye Jeon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Grugel CP, Breit B. Rhodium‐Catalyzed Asymmetric Allylation of Malononitriles as Masked Acyl Cyanide with Allenes: Efficient Access to β,γ‐Unsaturated Carbonyls. Chemistry 2018; 24:15223-15226. [DOI: 10.1002/chem.201804150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Christian P. Grugel
- Albert-Ludwigs-Universität FreiburgInstitut für Organische Chemie Albertstr. 21 79104 Freiburg Germany
| | - Bernhard Breit
- Albert-Ludwigs-Universität FreiburgInstitut für Organische Chemie Albertstr. 21 79104 Freiburg Germany
| |
Collapse
|
28
|
DFT-assisted design and evaluation of bifunctional copper(I) catalysts for the direct intermolecular addition of aldehydes and ketones to alkynes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Zhu L, Wang D, Jia Z, Lin Q, Huang M, Luo S. Catalytic Asymmetric Oxidative Enamine Transformations. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01263] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lihui Zhu
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Dehong Wang
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Zongbin Jia
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Qifeng Lin
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Mouxin Huang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Sanzhong Luo
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
30
|
Liu C, Wang Q. Alkenylation of C(sp
3
)−H Bonds by Zincation/Copper‐Catalyzed Cross‐Coupling with Iodonium Salts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chuan Liu
- French Family Science Center Department of Chemistry Duke University 124 Science Drive Durham NC 27708 USA
- Current address: HitGen Ltd. Tianfu Life Science Park 88 South Keyuan Road Chengdu 610041 P. R. China
| | - Qiu Wang
- French Family Science Center Department of Chemistry Duke University 124 Science Drive Durham NC 27708 USA
| |
Collapse
|
31
|
Liu C, Wang Q. Alkenylation of C(sp 3 )-H Bonds by Zincation/Copper-Catalyzed Cross-Coupling with Iodonium Salts. Angew Chem Int Ed Engl 2018; 57:4727-4731. [PMID: 29479782 DOI: 10.1002/anie.201713278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/06/2018] [Indexed: 12/20/2022]
Abstract
α-Vinylation of phosphonates, phosphine oxides, sulfones, sulfonamides, and sulfoxides has been achieved by selective C-H zincation and copper-catalyzed C(sp3 )-C(sp2 ) cross-coupling reaction using vinylphenyliodonium salts. The vinylation transformation proceeds in high efficiency and stereospecificity under mild reaction conditions. This zincative cross-coupling reaction represents a general alkenylation strategy, which is also applicable for α-alkenylation of esters, amides, and nitriles in the synthesis of β,γ-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Chuan Liu
- French Family Science Center, Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA.,Current address: HitGen Ltd., Tianfu Life Science Park, 88 South Keyuan Road, Chengdu, 610041, P. R. China
| | - Qiu Wang
- French Family Science Center, Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
32
|
Wu F, Stewart S, Ariyarathna JP, Li W. Aerobic Copper-Catalyzed Alkene Oxyamination for Amino Lactone Synthesis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04060] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fan Wu
- Department of Chemistry and
Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Scott Stewart
- Department of Chemistry and
Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jeewani Poornima Ariyarathna
- Department of Chemistry and
Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Wei Li
- Department of Chemistry and
Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
33
|
Patil M. Stereocontrol through Synergistic Catalysis in the Enantioselective α-Alkenylation of Aldehyde: A Computational Study. J Org Chem 2018; 83:1304-1311. [DOI: 10.1021/acs.joc.7b02822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahendra Patil
- UM-DAE Centre for Excellence
in Basic Sciences, Health Centre, University of Mumbai, Vidyanagari
Campus, Kalina, Santacruz (East), Mumbai 400098, India
| |
Collapse
|
34
|
Ye L, Gu QS, Tian Y, Meng X, Chen GC, Liu XY. Radical asymmetric intramolecular α-cyclopropanation of aldehydes towards bicyclo[3.1.0]hexanes containing vicinal all-carbon quaternary stereocenters. Nat Commun 2018; 9:227. [PMID: 29335407 PMCID: PMC5768789 DOI: 10.1038/s41467-017-02231-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
The development of a general catalytic method for the direct and stereoselective construction of cyclopropanes bearing highly congested vicinal all-carbon quaternary stereocenters remains a formidable challenge in chemical synthesis. Here, we report an intramolecular radical cyclopropanation of unactivated alkenes with simple α-methylene group of aldehydes as C1 source via a Cu(I)/secondary amine cooperative catalyst, which enables the single-step construction of bicyclo[3.1.0]hexane skeletons with excellent efficiency, broad substrate scope covering various terminal, internal alkenes as well as diverse (hetero)aromatic, alkenyl, alkyl-substituted geminal alkenes. Moreover, this reaction has been successfully realized to an asymmetric transformation, providing an attractive approach for the construction of enantioenriched bicyclo[3.1.0]hexanes bearing two crucial vicinal all-carbon quaternary stereocenters with good to excellent enantioselectivity. The utility of this method is illustrated by facile transformations of the products into various useful chiral synthetic intermediates. Preliminary mechanistic studies support a stepwise radical process for this formal [2 + 1] cycloaddition.
Collapse
Affiliation(s)
- Liu Ye
- Department of Chemistry, South University of Science and Technology of China, 518055, Shenzhen, China
| | - Qiang-Shuai Gu
- Department of Chemistry, South University of Science and Technology of China, 518055, Shenzhen, China
| | - Yu Tian
- Department of Chemistry, South University of Science and Technology of China, 518055, Shenzhen, China
| | - Xiang Meng
- Department of Chemistry, South University of Science and Technology of China, 518055, Shenzhen, China
| | - Guo-Cong Chen
- Department of Chemistry, South University of Science and Technology of China, 518055, Shenzhen, China
| | - Xin-Yuan Liu
- Department of Chemistry, South University of Science and Technology of China, 518055, Shenzhen, China.
| |
Collapse
|
35
|
Choudhury AR, Manna MS, Mukherjee S. Nitro-enabled catalytic enantioselective formal umpolung alkenylation of β-ketoesters. Chem Sci 2017; 8:6686-6690. [PMID: 28989696 PMCID: PMC5625255 DOI: 10.1039/c7sc02232h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023] Open
Abstract
A formal umpolung strategy is presented for the enantioselective installation of an alkenyl group with a terminal double bond at a tertiary center. This one-pot two-step sequence relies on the unique features of the nitro group, which after inverting the polarity of the alkenylating agent toward the desired bond formation, itself serves as a leaving group. The application of this protocol to cyclic β-ketoesters results in densely functionalized products, bearing an all-carbon quaternary stereocenter including an alkenyl substituent with a terminal double bond, in high yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Abhijnan Ray Choudhury
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560 012 , India . ; ; Tel: +91-80-2293-2850
| | - Madhu Sudan Manna
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560 012 , India . ; ; Tel: +91-80-2293-2850
| | - Santanu Mukherjee
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560 012 , India . ; ; Tel: +91-80-2293-2850
| |
Collapse
|
36
|
Geng X, Wu X, Zhao P, Zhang J, Wu YD, Wu AX. Synergistic I2/Amine Promoted Povarov-Type Reaction for the Synthesis of 2-Acyl-3-aryl(alkyl)quinolines Using Aryl(alkyl)acetaldehydes as Alkene Surrogates. Org Lett 2017; 19:4179-4182. [DOI: 10.1021/acs.orglett.7b01686] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xia Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingjing Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
37
|
Yuan X, Dong S, Liu Z, Wu G, Zou C, Ye J. Enantioselective Michael Addition of Photogenerated o-Quinodimethanes to Enones Catalyzed by Chiral Amino Acid Esters. Org Lett 2017; 19:2322-2325. [DOI: 10.1021/acs.orglett.7b00862] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoqian Yuan
- Engineering
Research Centre of Pharmaceutical Process Chemistry,
Ministry of Education; Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, ‡State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shupeng Dong
- Engineering
Research Centre of Pharmaceutical Process Chemistry,
Ministry of Education; Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, ‡State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen Liu
- Engineering
Research Centre of Pharmaceutical Process Chemistry,
Ministry of Education; Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, ‡State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guibing Wu
- Engineering
Research Centre of Pharmaceutical Process Chemistry,
Ministry of Education; Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, ‡State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chuncheng Zou
- Engineering
Research Centre of Pharmaceutical Process Chemistry,
Ministry of Education; Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, ‡State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinxing Ye
- Engineering
Research Centre of Pharmaceutical Process Chemistry,
Ministry of Education; Shanghai Key Laboratory of New Drug Design,
School of Pharmacy, ‡State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
38
|
Yang S, Rui KH, Tang XY, Xu Q, Shi M. Rhodium/Silver Synergistic Catalysis in Highly Enantioselective Cycloisomerization/Cross Coupling of Keto-Vinylidenecyclopropanes with Terminal Alkynes. J Am Chem Soc 2017; 139:5957-5964. [PMID: 28387514 DOI: 10.1021/jacs.7b02027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A rhodium/silver synergistic catalysis has been established, enabling cycloisomerization/cross coupling of keto-vinylidenecyclopropanes (VDCPs) with terminal alkynes toward the regio- and enantioselective formation of diversified tetrahydropyridin-3-ol tethered 1,4-enynes in good yields and high ee values. In this synergistic catalysis, Rh(I) and Ag(I) catalysts selectively activate keto-VDCP substrates and terminal alkynes to generate the π-allyl Rh(III) complex of oxa-rhodacyclic intermediate and Ag alkynyl intermediate, respectively. The rapid transmetalation of alkynyl groups from Ag to Rh is proposed to play a key role in realizing the regioselective cleavage of the distal bond of the three-membered ring in this transformation.
Collapse
Affiliation(s)
- Song Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Mei-Long Road, Shanghai 200237, China
| | - Kang-Hua Rui
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Mei-Long Road, Shanghai 200237, China
| | - Xiang-Ying Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences , 354 Fenglin Road, Shanghai 200032, China
| | - Qin Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Mei-Long Road, Shanghai 200237, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory and Institute of Element-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences , 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
39
|
Li Y, Ibsen L, Jørgensen KA. Formal Asymmetric α-Alkenylation of Aldehydes and the Synthetic Application toward Forming α-exo-Methylene-γ-butyrolactones and Skipped Dienes. Org Lett 2017; 19:1200-1203. [DOI: 10.1021/acs.orglett.7b00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Li
- Department of Chemistry, Aarhus University, Langelandsgade
140, DK-8000 Aarhus
C, Denmark
| | - Lise Ibsen
- Department of Chemistry, Aarhus University, Langelandsgade
140, DK-8000 Aarhus
C, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade
140, DK-8000 Aarhus
C, Denmark
| |
Collapse
|
40
|
Guo J, Lin L, Liu Y, Li X, Liu X, Feng X. Nickel(II)-Catalyzed Enantioselective α-Vinylation of β-Keto Amides/Esters with Hypervalent Iodine Salts. Org Lett 2016; 18:5540-5543. [PMID: 27779414 DOI: 10.1021/acs.orglett.6b02785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantioselective α-vinylation of β-keto amides/esters using hypervalent iodine salts has been accomplished via a chiral N,N'-dioxide-nickel(II) complex promoted electrophilic addition and reductive elimination process. A wide range of vinyl-substituted all-carbon quaternary β-keto amides/esters were obtained in high yields and ee values (up to 99% yield and 99% ee). Moreover, the catalytic system has been applied to the enantioselective alkynylation/arylation of β-ketoamides with good results.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, P. R. China
| | - Yangbin Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, P. R. China
| | - Xiangqiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, P. R. China
| |
Collapse
|
41
|
Moon PJ, Yin S, Lundgren RJ. Ambient Decarboxylative Arylation of Malonate Half-Esters via Oxidative Catalysis. J Am Chem Soc 2016; 138:13826-13829. [DOI: 10.1021/jacs.6b08906] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Patrick J. Moon
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shengkang Yin
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J. Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
42
|
Afewerki S, Córdova A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem Rev 2016; 116:13512-13570. [PMID: 27723291 DOI: 10.1021/acs.chemrev.6b00226] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cooperation and interplay between organic and metal catalyst systems is of utmost importance in nature and chemical synthesis. Here innovative and selective cooperative catalyst systems can be designed by combining two catalysts that complement rather than inhibit one another. This refined strategy can permit chemical transformations unmanageable by either of the catalysts alone. This review summarizes innovations and developments in selective organic synthesis that have used cooperative dual catalysis by combining simple aminocatalysts with metal catalysts. Considerable efforts have been devoted to this fruitful field. This emerging area employs the different activation modes of amine and metal catalysts as a platform to address challenging reactions. Here, aminocatalysis (e.g., enamine activation catalysis, iminium activation catalysis, single occupied molecular orbital (SOMO) activation catalysis, and photoredox activation catalysis) is employed to activate unreactive carbonyl substrates. The transition metal catalyst complements by activating a variety of substrates through a range of interactions (e.g., electrophilic π-allyl complex formation, Lewis acid activation, allenylidene complex formation, photoredox activation, C-H activation, etc.), and thereby novel concepts within catalysis are created. The inclusion of heterogeneous catalysis strategies allows for "green" chemistry development, catalyst recyclability, and the more eco-friendly synthesis of valuable compounds.
Collapse
Affiliation(s)
- Samson Afewerki
- Department of Natural Sciences, Mid Sweden University , SE-851 70 Sundsvall, Sweden.,Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University , SE-851 70 Sundsvall, Sweden.,Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
43
|
Liu Y, Hu H, Lin L, Hao X, Liu X, Feng X. Enantioselective construction of branched 1,3-dienyl substituted quaternary carbon stereocenters by asymmetric allenyl Claisen rearrangement. Chem Commun (Camb) 2016; 52:11963-11966. [PMID: 27711320 DOI: 10.1039/c6cc06481g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The availability of enantiomerically enriched 1,3-dienyl substituted quaternary stereocenters is highly valuable for the synthesis of complex natural compounds. Despite great advances in the area of construction of alkenyl-substituted types, a general, practical catalytic system that works for enantioselective formation of 1,3-diene derivatives still remains to be developed. Herein, we disclose the first asymmetric Claisen rearrangement of allenyl vinyl ethers to access optically active β-ketoesters, containing branched 1,3-butadienyl substituted stereocenters. A variety of substrates bearing a range of useful functional groups were well tolerated, thus affording the corresponding products with excellent enantioselectivities (up to 99% ee) and high yields (up to 91%).
Collapse
Affiliation(s)
- Yangbin Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Haipeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoyu Hao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), China
| |
Collapse
|
44
|
Li DY, Jiang LL, Chen S, Huang ZL, Dang L, Wu XY, Liu PN. Cascade Reaction of Alkynols and 7-Oxabenzonorbornadienes Involving Transient Hemiketal Group Directed C–H Activation and Synergistic RhIII/ScIII Catalysis. Org Lett 2016; 18:5134-5137. [DOI: 10.1021/acs.orglett.6b02587] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deng Yuan Li
- Shanghai
Key Laboratory of Functional Materials Chemistry and Key Lab for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Liang Liang Jiang
- Shanghai
Key Laboratory of Functional Materials Chemistry and Key Lab for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Shuang Chen
- Shanghai
Key Laboratory of Functional Materials Chemistry and Key Lab for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Zheng Lu Huang
- Shanghai
Key Laboratory of Functional Materials Chemistry and Key Lab for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Li Dang
- Department
of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - Xin Yan Wu
- Shanghai
Key Laboratory of Functional Materials Chemistry and Key Lab for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Pei Nian Liu
- Shanghai
Key Laboratory of Functional Materials Chemistry and Key Lab for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
45
|
Neumeyer M, Brückner R. Nonracemic γ-Lactones from the Sharpless Asymmetric Dihydroxylation of β,γ-Unsaturated Carboxylic Esters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Markus Neumeyer
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Germany
| | - Reinhard Brückner
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
46
|
Moon PJ, Halperin HM, Lundgren RJ. Oxidative Coupling of Aryl Boron Reagents with sp3-Carbon Nucleophiles: The Enolate Chan-Evans-Lam Reaction. Angew Chem Int Ed Engl 2016; 55:1894-8. [DOI: 10.1002/anie.201510558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Patrick J. Moon
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| | - Heather M. Halperin
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
47
|
Moon PJ, Halperin HM, Lundgren RJ. Oxidative Coupling of Aryl Boron Reagents with sp3-Carbon Nucleophiles: The Enolate Chan-Evans-Lam Reaction. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick J. Moon
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| | - Heather M. Halperin
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
48
|
Fernández-Casado J, Nelson R, Mascareñas JL, López F. Synergistic gold and enamine catalysis: intermolecular α-alkylation of aldehydes with allenamides. Chem Commun (Camb) 2016; 52:2909-12. [DOI: 10.1039/c5cc09533f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aldehydes can be α-alkylated with allenamides by the combined action of an organocatalyst and a gold complex.
Collapse
Affiliation(s)
- Jaime Fernández-Casado
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidad de Santiago de Compostela
- C/Jenaro de la Fuente
- Santiago de Compostela
- Spain
| | - Ronald Nelson
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidad de Santiago de Compostela
- C/Jenaro de la Fuente
- Santiago de Compostela
- Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidad de Santiago de Compostela
- C/Jenaro de la Fuente
- Santiago de Compostela
- Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidad de Santiago de Compostela
- C/Jenaro de la Fuente
- Santiago de Compostela
- Spain
| |
Collapse
|
49
|
Wu YN, Xu T, Fu R, Wang NN, Hao WJ, Wang SL, Li G, Tu SJ, Jiang B. Dual rhodium/copper catalysis: synthesis of benzo[b]fluorenes and 2-naphthalenylmethanones via de-diazotized cycloadditions. Chem Commun (Camb) 2016; 52:11943-11946. [DOI: 10.1039/c6cc06320a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synergistic rhodium/copper catalysis has been established, enabling de-diazotized cycloadditions toward the selective formation of benzo[b]fluorenes and 2-naphthalenylmethanones.
Collapse
Affiliation(s)
- Ya-Nan Wu
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Ting Xu
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Rong Fu
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Nan-Nan Wang
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Shu-Liang Wang
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Guigen Li
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
- Institute of Chemistry & BioMedical Sciences
| | - Shu-Jiang Tu
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
50
|
Qiu C, Yao K, Zhang X, Gong H. Ni-catalyzed reductive coupling of α-halocarbonyl derivatives with vinyl bromides. Org Biomol Chem 2016; 14:11332-11335. [DOI: 10.1039/c6ob02269c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work describes the vinylation of α-halo carbonyl compounds with vinyl bromides under Ni-catalyzed reductive coupling conditions. While aryl-conjugated vinyl bromides entail pyridine as the sole labile ligand, the alkyl-substituted vinyl bromides require both bipyridine and pyridine as the co-ligands.
Collapse
Affiliation(s)
- Canbin Qiu
- Center for Supramolecular Chemistry and Catalysis
- and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Ken Yao
- Center for Supramolecular Chemistry and Catalysis
- and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Xinghua Zhang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis
- and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|